## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(LDATree) ## ----fig.asp=0.618,out.width = "100%",fig.align = "center"-------------------- library(LDATree) set.seed(443) diamonds <- as.data.frame(ggplot2::diamonds)[sample(53940, 2000),] datX <- diamonds[, -2] response <- diamonds[, 2] # we try to predict "cut" fit <- Treee(datX = datX, response = response, verbose = FALSE) # by default, it is a pre-stopping FoLDTree # fit <- Treee(datX = datX, response = response, verbose = FALSE, ldaType = "all", pruneMethod = "post") # if you want to fit a post-pruned LDATree. ## ----fig.asp=0.618,out.width = "80%",fig.align = "center", eval=FALSE--------- # # View the overall tree. # plot(fit) ## ----out.width = '100%',fig.align = "center", echo = FALSE-------------------- knitr::include_graphics("README-plot1-1.png") ## ----echo=TRUE, eval=FALSE---------------------------------------------------- # # Three types of individual plots # # 1. Scatter plot on first two LD scores # plot(fit, datX = datX, response = response, node = 1) ## ----out.width = '100%',fig.align = "center", echo = FALSE-------------------- knitr::include_graphics("README-plot2-1.png") ## ----echo=TRUE, eval=FALSE---------------------------------------------------- # # 2. Density plot on the first LD score # plot(fit, datX = datX, response = response, node = 7) ## ----out.width = '100%',fig.align = "center", echo = FALSE-------------------- knitr::include_graphics("README-plot2-2.png") ## ----------------------------------------------------------------------------- # 3. A message plot(fit, datX = datX, response = response, node = 2) ## ----fig.asp=0.618,out.width = "100%",fig.align = "center", echo=TRUE--------- # Prediction only. predictions <- predict(fit, datX) head(predictions) ## ----fig.asp=0.618,out.width = "100%",fig.align = "center", echo=TRUE--------- # A more informative prediction predictions <- predict(fit, datX, type = "all") head(predictions)