## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(Keng) library(effectsize) library(car) data("depress") ## ----------------------------------------------------------------------------- # factor gender and class depress_factor <- depress depress_factor$class <- factor(depress_factor$class, labels = c(3,5,9,12)) depress_factor$gender <- factor(depress_factor$gender, labels = c(0,1)) anova.fit <- lm(dm1 ~ gender + class, depress_factor) Anova(anova.fit, type = 3) cat("\n\n") print(eta_squared(Anova(anova.fit, type = 3), partial = TRUE), digits = 6) ## ----------------------------------------------------------------------------- # class3 indicates whether the class is class3 depress$class3 <- ifelse(depress$class == 3, 1, 0) # class5 indicates whether the class is class5 depress$class5 <- ifelse(depress$class == 5, 1, 0) # class9 indicates whether the class is class9 depress$class9 <- ifelse(depress$class == 9, 1, 0) ## ----------------------------------------------------------------------------- fitC <- lm(dm1 ~ class3 + class5 + class9, depress) fitA <- lm(dm1 ~ class3 + class5 + class9 + gender, depress) format(compare_lm(fitC, fitA), digits = 3, nsmall = 3) ## ----------------------------------------------------------------------------- fitC <- lm(dm1 ~ gender, depress) fitA <- lm(dm1 ~ class3 + class5 + class9 + gender, depress) format(compare_lm(fitC, fitA), digits = 3, nsmall = 3) ## ----------------------------------------------------------------------------- fitC <- lm(dm1 ~ 1, depress) fitA <- lm(dm1 ~ class3 + class5 + class9 + gender, depress) format(compare_lm(fitC, fitA), digits = 3, nsmall = 3)