--- title: "README" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{README} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` # Measuring and Testing Dependence by a Robust Integrated Variance Correlation The goal of package `IVCor` is to provide an easy way to implement the proposed methods in Xiong et al. (2025), which include a new robust correlation and its use in hypothesis test. ## Installation To install `IVCor`, ``` r install.packages("IVCor") ``` ## Example Here are examples showing how to use main functions in package `IVCor`. ```{r example} library("IVCor") library("mvtnorm") ###The new IVC measure### # linear model n=100 x=rnorm(n) y=3*x+rnorm(n) IVC(y,x,K=5,type="linear") # nonlinear model n=100 p=3 x=matrix(NA,nrow=n,ncol=p) for(i in 1:p){ x[,i]=rnorm(n) } y=cos(x[,1]+x[,2])+x[,3]^2+rnorm(n) IVC(y,x,K=5,type="nonlinear") ###Local linear estimation of IVC### n=100 x=rnorm(n) y=exp(x)+rnorm(n) IVCLLQ(y,x,K=4) ###IVC measure with discrete response### n=100 y=sample(rep(1:3), n, replace = TRUE, prob = c(1/3,1/3,1/3)) x=c() for(i in 1:n){ x[i]=rnorm(1,mean=2*y[i],sd=1) } IVCCA(y,x,K=5) ###IVC for interval independence### n=100 p=3 pho1=0.5 mean_x=rep(0,p) sigma_x=matrix(NA,nrow = p,ncol = p) for (i in 1:p) { for (j in 1:p) { sigma_x[i,j]=pho1^(abs(i-j)) } } x=rmvnorm(n, mean = mean_x, sigma = sigma_x,method = "chol") y=2*(x[,1]+x[,2]+x[,3])+rnorm(n) IVC_Interval(y,x,K=5,tau1=0.2,tau2=0.8,type="linear") ###IVC based hypothesis test### n=100 p=4 x=matrix(NA,nrow=n,ncol=p) for(i in 1:p){ x[,i]=runif(n,0,1) } y=3*ifelse(x[,1]>0.5,1,0)*x[,2]+3*cos(x[,3])^2*x[,1]+3*(x[,4]^2-1)*x[,1]+rnorm(n) IVCT(y,x,K=5,num_per=20,type = "nonlinear") ###Critical values for IVC based hypothesis test### IVC_crit(N=500,realizations=100) ###IVC based hypothesis test for discrete response### n=100 x=runif(n,0,1) y=sample(rep(1:3), n, replace = TRUE, prob = c(1/3,1/3,1/3)) IVCCAT(y,x,K=5,num_per=20,type = "fixed") ###Critical values for IVC based hypothesis test with discrete response### IVCCA_crit(R=5,N=500,realizations=100) ###IVC based interval independence hypothesis test### n=100 p=3 pho1=0.5 mean_x=rep(0,p) sigma_x=matrix(NA,nrow = p,ncol = p) for (i in 1:p) { for (j in 1:p) { sigma_x[i,j]=pho1^(abs(i-j)) } } x=rmvnorm(n, mean = mean_x, sigma = sigma_x,method = "chol") y=rnorm(n) IVCT_Interval(y,x,tau1=0.5,tau2=0.75,K=5,num_per=20,type = "linear") n=100 x_til=runif(n,min=-1,max=1) y_til=rnorm(n) epsilon=rnorm(n) x=x_til+2*epsilon*ifelse(x_til<=-0.5&y_til<=-0.675,1,0) y=y_til+2*epsilon*ifelse(x_til<=-0.5&y_til<=-0.675,1,0) IVCT_Interval(y,x,tau1=0.2,tau2=0.8,K=5,num_per=20,type = "nonlinear") ``` ## References Wei Xiong, Han Pan, Hengjian Cui. (2025) “Measuring and Testing Dependence by a Robust Integrated Variance Correlation.”