## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----adjacency-matrix, echo = FALSE, dev = 'svg', results = 'asis'------------ data = c(0,0,602,0,339,687,0,0,0,0,373,1294,0,718,86,296,263,0,0,35,0,598,0,0,0) mat = matrix(data, nrow = 5, ncol = 5) colnames(mat) = LETTERS[1:5] rownames(mat) = colnames(mat) pander::pandoc.table(mat, caption = 'Example of a matrix representation of a 5-nodes network. By convention, the rows contain the facilities of origin, and the columns contain the target facilities. Each cell contains the number of subjects transfered.', ) ## ----data_example------------------------------------------------------------- library(HospitalNetwork) data = create_fake_subjectDB(n_subjects = 3, n_facilities = 3) data ## ----check_example, error = TRUE---------------------------------------------- try({ # Example library(HospitalNetwork) base = create_fake_subjectDB(n_subjects = 100, n_facilities = 10, with_errors = TRUE) checkBase(base) }) ## ----setup, eval = FALSE------------------------------------------------------ # library(HospitalNetwork) # ## ----setup2, eval = TRUE------------------------------------------------------ mydbmed = create_fake_subjectDB(n_subjects = 100, n_facilities = 10) hn = hospinet_from_subject_database(base = mydbmed, noloops = FALSE) hn ## ----setup3, eval = TRUE------------------------------------------------------ plot(hn) ## ----setup4, eval = TRUE------------------------------------------------------ plot(hn, type = "degree") ## ----setup5, eval = TRUE------------------------------------------------------ plot(hn , type = "clustered_matrix") ## ----setup6, cache = FALSE, eval = TRUE--------------------------------------- mydb = create_fake_subjectDB_clustered(n_subjects = 10000, n_facilities = 100, n_clusters = 5) hn = hospinet_from_subject_database(base = mydb, noloops = FALSE) hn ## ----setup7, eval = TRUE------------------------------------------------------ plot(hn) ## ----setup8, eval = TRUE------------------------------------------------------ plot(hn, type = "degree") ## ----setup9, eval = TRUE------------------------------------------------------ plot(hn , type = "clustered_matrix") ## ----setup10, eval = TRUE----------------------------------------------------- #this plot may not work on some systems #plot(hn , type = "circular_network")