Package 'HMC'

March 9, 2024

Title High Dimensional Mean Comparison with Projection and Cross-Fitting

Version 1.0

Date 2024-03-04

Description Provides interpretable High-dimensional Mean Comparison methods (HMC). For example, users can use them to assess the difference in gene expression between two treatment groups. It is not a gene-by-gene comparison. Instead, we focus on the interplay between features and are interested in those that are predictive of the group label. The methods are valid frequentist tests and give sparse estimates indicating which features contribute to the test results.

License GPL-2

Imports glmnet, irlba, PMA, MASS, stats

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation no

Author Tianyu Zhang [aut, cre, cph]

Maintainer Tianyu Zhang <tianyuz3@andrew.cmu.edu>

Repository CRAN

Date/Publication 2024-03-09 13:30:09 UTC

R topics documented:

anchored_lasso_testing
debiased_pc_testing
estimate_nuisance_parameter_lasso
estimate_nuisance_pc
evaluate_influence_function_multi_factor
evaluate_pca_lasso_plug_in 8
evaluate_pca_plug_in
extract_lasso_coef
extract_pc
index_spliter
simple_pc_testing

	summarize_feature_name	13
	summarize_pc_name	14
Indov		15
Index		15

anchored_lasso_testing

Anchored test for two-sample mean comparison.

Description

Anchored test for two-sample mean comparison.

Usage

```
anchored_lasso_testing(
   sample_1,
   sample_2,
   pca_method = "sparse_pca",
   mean_method = "lasso",
   num_latent_factor = 1,
   n_folds = 5,
   verbose = TRUE
)
```

Arguments

sample_1	Group 1 sample. Each row is a subject and each column corresponds to a feature.						
sample_2	Group 2 sample. Each row is a subject and each column corresponds to a feature.						
pca_method	Methods used to estimate principle component The default is "sparse_pca", us- ing sparse PCA from package PMA. Other choices are "dense_pca"—the regular PCA; and "hard"— hard-thresholding PCA, which also induces sparsity.						
mean_method	Methods used to estimate the mean vector. Default is sample mean "naive". There is also a hard-thresholding sparse estiamtor "hard".						
num_latent_fact	cor						
	The principle component that lasso coefficient anchors at. The default is $PC1 = 1$.						
n_folds	Number of splits when performing cross-fitting. The default is 5, if computational time allows, you can try to set it to 10.						
verbose	Print information to the console. Default is TRUE.						

Value

A list of test statistics.

test_statistics

Test statistics. Each entry corresponds to the test result of one principle component.

standard_error	Estimated standard error of test_statistics_before_studentization.
test_statistics	_before_studentization
	Similar to test_statistics but does not have variance $= 1$.
split_data	Intermediate quantities needed for further assessment and interpretation of the test results.

Examples

<pre>debiased_pc_testing</pre>	Debiased one-step test for two-sample mean comparison. A small p-
	value tells us not only there is difference in the mean vectors, but can
	also indicates which principle component the difference aligns with.

Description

Debiased one-step test for two-sample mean comparison. A small p-value tells us not only there is difference in the mean vectors, but can also indicates which principle component the difference aligns with.

```
debiased_pc_testing(
  sample_1,
  sample_2 = NULL,
  pca_method = "sparse_pca",
  mean_method = "naive",
  num_latent_factor = 1,
  n_folds = 5,
  verbose = TRUE
)
```

Arguments

sample_1	Group 1 sample. Each row is a subject and each column corresponds to a feature.						
sample_2	Group 2 sample. Each row is a subject and each column corresponds to a feature.						
pca_method	Methods used to estimate principle component The default is "sparse_pca", using sparse PCA from package PMA. Other choices are "dense_pca"—the regular PCA; and "hard"— hard-thresholding PCA, which also induces sparsity.						
mean_method	Methods used to estimate the mean vector. Default is sample mean "naive". There is also a hard-thresholding sparse estiamtor "hard".						
num_latent_fact	or						
	Number of principle to be estimated/tested. Default is 1.						
n_folds	Number of splits when performing cross-fitting. The default is 5, if computational time allows, you can try to set it to 10.						
verbose	Print information to the console. Default is TRUE.						

Value

A list of test statistics.

Test statistics. Each entry corresponds to the test result of one principle component.
Estimated standard error of test_statistics_before_studentization.
_before_studentization
Similar to test_statistics but does not have variance $= 1$.
Intermediate quantities needed for further assessment and interpretation of the test results.

Examples

sample_size_1 <- sample_size_2 <- 300</pre>

```
true_mean_1 <- matrix(c(rep(1, 10), rep(0, 90)), ncol = 1)
true_mean_2 <- matrix(c(rep(1.5, 10), rep(0, 90)), ncol = 1)
pc1 <- c(rep(1, 10), rep(0, 90))
pc1 <- pc1/norm(pc1, type = '2')</pre>
```

```
simulation_covariance <- 10 * pc1 %*% t(pc1)
simulation_covariance <- simulation_covariance + diag(1, 100)</pre>
```

```
summarize_pc_name(result, latent_fator_index = 1) #shows which features contribute to PC1
extract_pc(result) # extract the estimated leading PCs.
```

estimate_nuisance_parameter_lasso

The function for nuisance parameter estimation in anchored_lasso_testing().

Description

The function for nuisance parameter estimation in anchored_lasso_testing().

Usage

```
estimate_nuisance_parameter_lasso(
    nuisance_sample_1,
    nuisance_sample_2,
    pca_method = "sparse_pca",
    mean_method = "lasso",
    num_latent_factor = 1,
    local_environment = local_environment,
    verbose = TRUE
)
```

Arguments

nuisance_sample	<u>_</u> 1					
	Group 1 sample. Each row is a subject and each column corresponds to a feature.					
nuisance_sample	2_2					
	Group 2 sample. Each row is a subject and each column corresponds to a feature.					
pca_method	Methods used to estimate principle component The default is "sparse_pca", us- ing sparse PCA from package PMA. Other choices are "dense_pca"—the regular PCA; and "hard"— hard-thresholding PCA, which also induces sparsity.					
mean_method	Methods used to estimate the discriminant direction. Default is logistic Lasso "lasso".					
<pre>num_latent_fact</pre>	or					
	The principle component that lasso coefficient anchors at. The default is $PC1 = 1$.					
local_environment						
	A environment for hyperparameters shared between folds.					
verbose	Print information to the console. Default is TRUE.					

Value

A list of estimated nuisance quantities.

```
estimate_leading_pc
Leading principle components
```

estimate_mean_1

Sample mean for group 1

estimate_mean_2 Sample mean for group 1

estimate_lasso_beta

Logistic Lasso regression coefficients.

```
estimate_projection_direction
```

Anchored projection direction. It is similar to PC1 when signal is weak but similar to estimate_optimal_direction when the signal is moderately large.

```
estimate_optimal_direction
```

Discriminant direction.

estimate_nuisance_pc The function for nuisance parameter estimation in simple_pc_testing() and debiased_pc_testing().

Description

The function for nuisance parameter estimation in simple_pc_testing() and debiased_pc_testing().

Usage

```
estimate_nuisance_pc(
   nuisance_sample_1,
   nuisance_sample_2 = NULL,
   pca_method = "sparse_pca",
   mean_method = "naive",
   num_latent_factor = 1,
   local_environment = NA
)
```

Arguments

```
nuisance_sample_1
Group 1 sample. Each row is a subject and each column corresponds to a feature.
nuisance_sample_2
Group 2 sample. Each row is a subject and each column corresponds to a feature.
pca_method
Methods used to estimate principle component The default is "sparse_pca", using sparse PCA from package PMA. Other choices are "dense_pca"—the regular
PCA; and "hard"— hard-thresholding PCA, which also induces sparsity.
```

mean_method	Methods used to estimate the mean vector. Default is sample mean "naive".
	There is also a hard-thresholding sparse estiamtor "hard".
num_latent_fact	cor
	Number of principle to be estimated/tested. Default is 1.
local_environme	ent
	A environment for hyperparameters shared between folds.

Value

A list of estimated nuisance quantities.

estimate_leading_pc

Leading principle components

estimate_mean_1

Sample mean for group 1

estimate_mean_2

Sample mean for group 1

estimate_eigenvalue

Eigenvalue for each principle compoenent.

estimate_noise_variance

Noise variance, I need this to construct block-diagonal estimates of the covariance matrix.

evaluate_influence_function_multi_factor Calculate the test statistics on the left-out samples. Called in debiased_pc_testing().

Description

Calculate the test statistics on the left-out samples. Called in debiased_pc_testing().

```
evaluate_influence_function_multi_factor(
    cross_fitting_sample_1,
    cross_fitting_sample_2 = NULL,
    nuisance_collection,
    num_latent_factor = 1
)
```

Arguments

```
cross_fitting_sample_1
            Group 1 sample. Each row is a subject and each column corresponds to a feature.
cross_fitting_sample_2
            Group 2 sample. Each row is a subject and each column corresponds to a feature.
nuisance_collection
            A collection of nuisance quantities estimated using "nuisance" samples. It is the
            output of estimate_nuisance_pc().
num_latent_factor
            Number of principle components to be considered.
```

Value

```
A list of test statistics.

inner_product_1

Simple inner products for sample 1.

inner_product_2

Simple inner products for sample 2.

influence_eigenvector_each_subject_1

Debiased test statistics, sample 1.

influence_eigenvector_each_subject_2

Debiased test statistics, sample 1.

for_variance_subject_1

Statistics for variance calculation, sample 1.

for_variance_subject_2

Statistics for variance calculation, sample 2.
```

evaluate_pca_lasso_plug_in

Calculate the test statistics on the left-out samples. Called in anchored_lasso_testing().

Description

Calculate the test statistics on the left-out samples. Called in anchored_lasso_testing().

```
evaluate_pca_lasso_plug_in(
    cross_fitting_sample_1,
    cross_fitting_sample_2,
    nuisance_collection,
    mean_method = "lasso"
)
```

Arguments

cross_fitting_s	ample_1
	Group 1 sample. Each row is a subject and each column corresponds to a feature.
cross_fitting_s	ample_2
	Group 2 sample. Each row is a subject and each column corresponds to a feature.
nuisance_collec	tion
	A collection of nuisance quantities estimated using "nuisance" samples. It is the output of estimate_nuisance_pc().
mean_method	Methods used to estimate the discriminant direction. Default is logistic Lasso "lasso".

Value

```
A list of test statistics.

influence_each_subject_1

Test statistics for sample 1.

influence_each_subject_1

Test statistics for sample 2.

for_variance_each_subject_1

Statistics for variance calculation, sample 1.

for_variance_each_subject_2

Statistics for variance calculation, sample 2.
```

evaluate_pca_plug_in	Calculate the test statistics on the left-out samples.	Called in sim-
	ple_pc_testing().	

Description

Calculate the test statistics on the left-out samples. Called in simple_pc_testing().

Usage

```
evaluate_pca_plug_in(
    cross_fitting_sample_1,
    cross_fitting_sample_2 = NULL,
    nuisance_collection
)
```

Arguments

```
cross_fitting_sample_1
    Group 1 sample. Each row is a subject and each column corresponds to a feature.
cross_fitting_sample_2
    Group 2 sample. Each row is a subject and each column corresponds to a feature.
```

extract_pc

nuisance_collection

A collection of nuisance quantities estimated using "nuisance" samples. It is the output of estimate_nuisance_pc().

Value

```
A list of test statistics.

influence_each_subject_1

Statistics for sample 1.

influence_each_subject_2

Statistics for sample 2.
```

extract_lasso_coef Extract the lasso estimate from the output of anchored_lasso_testing().

Description

Extract the lasso estimate from the output of anchored_lasso_testing().

Usage

```
extract_lasso_coef(testing_result)
```

Arguments

testing_result The output/test result list from anchored_lasso_testing().

Value

A list, whose elements are the estimated discriminant directions for each split—the length of the output list is the same as n_folds.

The discriminant vectors for each split.

extract_pc	Extract	the	principle	components	from	the	output	of	sim-
	ple_pc_testing() and debiased_pc_testing().								

Description

Extract the principle components from the output of simple_pc_testing() and debiased_pc_testing().

```
extract_pc(testing_result)
```

index_spliter

Arguments

testing_result The output/test result list from simple_pc_testing() or debiased_pc_testing().

Value

A list, whose elements are the estimated PC for each split—the length of the output list is the same as n_folds.

The PC vectors for each split.

index_spliter	Split the sample index into n_folds many groups so that we can per-
	form cross-fitting

Description

Split the sample index into n_folds many groups so that we can perform cross-fitting

Usage

```
index_spliter(array, n_folds = 5)
```

Arguments

array	Sample index. Usually just an array from 1 to the number of samples in one
	group.
n_folds	Number of splits

Value

A list indicates the sample indices in each split.

simple_pc_testing Simple plug-in test for two-sample mean comparison.

Description

Simple plug-in test for two-sample mean comparison.

Usage

```
simple_pc_testing(
  sample_1,
  sample_2 = NULL,
  pca_method = "sparse_pca",
  mean_method = "naive",
  num_latent_factor = 1,
  n_folds = 5,
  verbose = TRUE
)
```

Arguments

sample_1	Group 1 sample. Each row is a subject and each column corresponds to a feature.	
sample_2	Group 2 sample. Each row is a subject and each column corresponds to a feature.	
pca_method	Methods used to estimate principle component The default is "sparse_pca", using sparse PCA from package PMA. Other choices are "dense_pca"—the regular PCA; and "hard"— hard-thresholding PCA, which also induces sparsity.	
mean_method	Methods used to estimate the mean vector. Default is sample mean "naive". There is also a hard-thresholding sparse estiamtor "hard".	
num_latent_factor		
	Number of principle to be estimated/tested. Default is 1.	
n_folds	Number of splits when performing cross-fitting. The default is 5, if computational time allows, you can try to set it to 10.	
verbose	Print information to the console. Default is TRUE.	

Value

A list of test statistics.

test_statistics	
	Test statistics. Each entry corresponds to the test result of one principle component.
standard_error	Estimated standard error of test_statistics_before_studentization.
<pre>test_statistics_before_studentization</pre>	
	Similar to test_statistics but does not have variance $= 1$.
split_data	Intermediate quantities needed for further assessment and interpretation of the test results.

Examples

```
sample_size_1 <- sample_size_2 <- 300
true_mean_1 <- matrix(c(rep(1, 10), rep(0, 90)), ncol = 1)
true_mean_2 <- matrix(c(rep(1.5, 10), rep(0, 90)), ncol = 1)
pc1 <- c(rep(1, 10), rep(0, 90))
pc1 <- pc1/norm(pc1, type = '2')</pre>
```

12

summarize_feature_name

Summarize the features (e.g. genes) that contribute to the test result, *i.e. those features consistently show up in Lasso vectors.*

Description

Summarize the features (e.g. genes) that contribute to the test result, i.e. those features consistently show up in Lasso vectors.

Usage

```
summarize_feature_name(testing_result, method = "majority voting")
```

Arguments

testing_result The output/test result list from anchored_lasso_testing().

method How to combine the feature list across different splits. Default is 'majority voting'—features that show up more than 50% of the splits are considered active/useful. It can be 'union'—all the features pooled together; or 'intersection' only include features showing up in all splits.

Value

A list of names of features (your very original input data need to have column names!) that contribute to the test result. An empty list means there is barely any difference between the two groups.

Feature names that consistently showing up in the discriminant vectors.

summarize_pc_name

Summarize the features (e.g. genes) that contribute to the test result, *i.e. those features consistently show up in the sparse principle components.*

Description

Summarize the features (e.g. genes) that contribute to the test result, i.e. those features consistently show up in the sparse principle components.

Usage

```
summarize_pc_name(
  testing_result,
  latent_fator_index = 1,
  method = "majority voting"
)
```

Arguments

testing_result The output/test result list from simple_pc_testing() or debiased_pc_testing().
latent_fator_index

Which principle component should the algorithm summarize? Default is PC1.

method How to combine the feature list across different splits. Default is 'majority voting'—features that show up more than 50% of the splits are considered active/useful. It can be 'union'—all the features pooled together; or 'intersection' only include features showing up in all splits.

Value

A list of names of features (your very original input data need to have column names!) that contribute to the test result.

Feature names that consistently showing up in the estimated PC vectors.

Index

anchored_lasso_testing, 2

debiased_pc_testing, 3

 $index_spliter, 11$

simple_pc_testing, 11
summarize_feature_name, 13
summarize_pc_name, 14