## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(GlmSimulatoR) library(MASS) # Creating data to work with set.seed(1) simdata <- simulate_inverse_gaussian( N = 100000, link = "1/mu^2", weights = c(1, 2, 3), unrelated = 3 ) # Setting the simplest model and the most complex model. scope_arg <- list( lower = Y ~ 1, upper = Y ~ X1 + X2 + X3 + Unrelated1 + Unrelated2 + Unrelated3 ) # Run search starting_model <- glm(Y ~ 1, data = simdata, family = inverse.gaussian(link = "1/mu^2") ) glm_search <- stepAIC(starting_model, scope_arg, trace = 0) summary(glm_search) rm(simdata, scope_arg, glm_search, starting_model) ## ----------------------------------------------------------------------------- # Creating data to work with set.seed(4) simdata <- simulate_inverse_gaussian( N = 1000, link = "1/mu^2", weights = c(1, 2, 3), unrelated = 20 ) # Setting the simplest model and the most complex model. scope_arg <- list( lower = Y ~ 1, upper = Y ~ X1 + X2 + X3 + Unrelated1 + Unrelated2 + Unrelated3 + Unrelated4 + Unrelated5 + Unrelated6 + Unrelated7 + Unrelated8 + Unrelated9 + Unrelated10 + Unrelated11 + Unrelated12 + Unrelated13 + Unrelated14 + Unrelated15 + Unrelated16 + Unrelated17 + Unrelated18 + Unrelated19 + Unrelated20 ) # Run search starting_model <- glm(Y ~ 1, data = simdata, family = inverse.gaussian(link = "1/mu^2") ) glm_search <- stepAIC(starting_model, scope_arg, trace = 0) summary(glm_search) rm(simdata, scope_arg, glm_search, starting_model)