## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(GWlasso) ## ----Amesbury----------------------------------------------------------------- data(Amesbury) ## ----getbw, eval = FALSE, include = TRUE-------------------------------------- # # # compute the distance matrix # distance_matrix <- compute_distance_matrix(Amesbury$coords, add.noise = TRUE) # # # run the bw selection algorithm # bw_choice <- gwl_bw_estimation(x.var = Amesbury$spe.df, # y.var = Amesbury$WTD, # dist.mat = distance_matrix, # adaptive = TRUE, # adptbwd.thresh = 0.1, # kernel = "bisquare", # alpha = 1, # progress = TRUE, # n = 100) # ## ----fitgwl, eval = FALSE, include = TRUE------------------------------------- # # # compute the distance matrix # distance_matrix <- compute_distance_matrix(Amesbury$coords, add.noise = TRUE) # # my.gwl.fit <- gwl_fit(bw= 120, # x.var = Amesbury$spe.df, # y.var = Amesbury$WTD, # dist.mat = distance_matrix, # adaptive = TRUE, # kernel = "bisquare", # alpha = 1, # progress = TRUE) # # plot(my.gwl.fit) ## ----pred, include = TRUE, eval=FALSE----------------------------------------- # # my_predicted_values <- predict(my.gwl.fit, newdata = Amesbury$spe.df, newcoords = Amesbury$coords) # # plot( my_predicted_values ~Amesbury$WTD) # abline(0,1, col="red")