GPvecchia: Scalable Gaussian-Process Approximations

Fast scalable Gaussian process approximations, particularly well suited to spatial (aerial, remote-sensed) and environmental data, described in more detail in Katzfuss and Guinness (2017) <doi:10.48550/arXiv.1708.06302>. Package also contains a fast implementation of the incomplete Cholesky decomposition (IC0), based on Schaefer et al. (2019) <doi:10.48550/arXiv.1706.02205> and MaxMin ordering proposed in Guinness (2018) <doi:10.48550/arXiv.1609.05372>.

Version: 0.1.7
Imports: Rcpp (≥ 1.0.9), methods, stats, sparseinv, fields, Matrix (≥ 1.5.1), parallel, GpGp, FNN
LinkingTo: Rcpp, RcppArmadillo, BH
Suggests: mvtnorm, knitr, rmarkdown, testthat
Published: 2024-03-12
DOI: 10.32614/CRAN.package.GPvecchia
Author: Matthias Katzfuss [aut], Marcin Jurek [aut, cre], Daniel Zilber [aut], Wenlong Gong [aut], Joe Guinness [ctb], Jingjie Zhang [ctb], Florian Schaefer [ctb]
Maintainer: Marcin Jurek <marcinjurek1988 at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: yes
Materials: README NEWS
CRAN checks: GPvecchia results


Reference manual: GPvecchia.pdf
Vignettes: GPvecchia


Package source: GPvecchia_0.1.7.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): GPvecchia_0.1.7.tgz, r-oldrel (arm64): GPvecchia_0.1.7.tgz, r-release (x86_64): GPvecchia_0.1.7.tgz, r-oldrel (x86_64): GPvecchia_0.1.7.tgz
Old sources: GPvecchia archive

Reverse dependencies:

Reverse imports: VeccTMVN


Please use the canonical form to link to this page.