## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----Installing from CRAN, eval = FALSE--------------------------------------- # install.packages("GENEAcore", dependencies = TRUE) ## ----Installing from source, eval = FALSE------------------------------------- # # Note that R only uses / not \ when referring to a file/directory location # install.packages("changepoint") # install.packages("signal") # install.packages("C:/path/to/GENEAcore_1.0.0.tar.gz", repos = NULL, type = "source") ## ----Loading in the GENEAcore library, eval = FALSE--------------------------- # library(GENEAcore) # library(changepoint) ## ----Running geneacore, eval = FALSE------------------------------------------ # library(GENEAcore) # geneacore(data_folder = "C:/path/to/datafolder") ## ----Running geneacore with parameters, eval = FALSE-------------------------- # library(GENEAcore) # geneacore( # data_folder = "C:/path/to/datafolder", # CutTime24Hr = "15:00", # output_epochs = TRUE, # epoch_duration = 600, # 10 minutes # output_events = FALSE, # output_steps = FALSE, # output_csv = TRUE, # timer = FALSE # ) ## ----Bin file summary, eval = FALSE------------------------------------------- # # Run summary for a single bin file # binfile_summary <- binfile_summary("C:/path/to/binfile.bin") ## ----Bin file folder summary, eval = FALSE------------------------------------ # # Run summary for all bin files in bin files folder only # binfile_folder_summary <- binfile_summary("C:/path/to/binfilesfolder", recursive = FALSE) ## ----MPI summary, eval = FALSE------------------------------------------------ # # Run summary for single MPI file # mpi_summary <- MPI_summary("C:/path/to/MPI.rds") ## ----MPI folder summary, eval = FALSE----------------------------------------- # # Run summary for all MPI files in a folder # mpi_folder_summary <- MPI_summary("C:/path/to/MPIfolder") ## ----File preparation before individual runs, eval = FALSE-------------------- # binfile_path <- "C:/path/to/binfile" # output_folder <- "C:/path/to/outputfolder" # # con <- file(binfile_path, "r") # binfile <- readLines(con, skipNul = TRUE) # close(con) ## ----Create MPI, eval = FALSE------------------------------------------------- # MPI <- create_MPI(binfile, binfile_path, output_folder) ## ----Downsampling a file default, eval = FALSE-------------------------------- # # Simple run using default parameter values # downsampled_measurements <- sample_binfile(binfile, binfile_path, output_folder) ## ----Downsampling a file with parameters, eval = FALSE------------------------ # # Exposed parameters can be changed # downsampled_measurements <- sample_binfile(binfile, binfile_path, output_folder, # start_time = NULL, # end_time = NULL, # output_csv = FALSE # ) ## ----Raw sampling a file default, eval = FALSE-------------------------------- # # Simple run using default parameter values # raw_measurements <- sample_binfile(binfile, binfile_path, output_folder, downsample = FALSE) ## ----Raw sampling a file with parameters, eval = FALSE------------------------ # # Exposed parameters can be changed # raw_measurements <- sample_binfile(binfile, binfile_path, output_folder, # start_time = NULL, # end_time = NULL, # downsample = FALSE, # output_csv = FALSE # ) ## ----Auto calibration default, eval = FALSE----------------------------------- # ## Two steps in obtaining auto calibration parameters: # # # 1. Identify non-movement periods # MPI <- detect_nonmovement(binfile, binfile_path, output_folder) # # 2. Calculate auto-calibration parameters, temperature compensation TRUE by default # MPI <- calc_autocalparams(binfile, binfile_path, output_folder, MPI$non_movement$sphere_points) ## ----Calibrating your data parameters, eval = FALSE--------------------------- # # Detect non-movement # MPI <- detect_nonmovement(binfile, binfile_path, output_folder, # still_seconds = 120, # sd_threshold = 0.011, # temp_seconds = 240, # border_seconds = 300, # long_still_seconds = 120 * 60, # delta_temp_threshold = -0.7, # posture_changes_max = 2, # non_move_duration_max = 12 * 60 * 60 # ) # # # Calculate auto-calibration parameters # MPI <- calc_autocalparams(binfile, binfile_path, output_folder, # MPI$non_movement$sphere_points, # use_temp = TRUE, # spherecrit = 0.3, # maxiter = 500, # tol = 1e-13 # ) ## ----Apply calibration, eval = FALSE------------------------------------------ # # Sample data # raw_measurements <- sample_binfile(binfile, binfile_path, output_folder, downsample = FALSE) # # # Apply factory calibration # calibrated_factory <- apply_calibration(raw_measurements, MPI$factory_calibration, MPI$file_data[["MeasurementDevice"]]) # # # Apply auto calibration # calibrated_auto <- apply_calibration(raw_measurements, MPI$auto_calibration, MPI$file_data[["MeasurementDevice"]]) ## ----Detect transitions for event aggregation default, eval = FALSE----------- # MPI <- detect_transitions(binfile, binfile_path, output_folder) ## ----Detect transitions for event aggregation parameters, eval = FALSE-------- # MPI <- detect_transitions(binfile, binfile_path, output_folder, # minimum_event_duration = 3, # x_cpt_penalty = 20, # y_cpt_penalty = 30, # z_cpt_penalty = 20, # CutTime24Hr = "15:00" # ) ## ----Applying calculations on calibrated data, eval = FALSE------------------- # # To apply one measure calculations # calibrated_measure <- apply_AGSA(calibrated) # # # To apply multiple on the same data set # calibrated_measures <- apply_degrees( # apply_updown( # apply_AGSA( # apply_ENMO(calibrated) # ) # ) # ) ## ----Aggregating events, eval = FALSE----------------------------------------- # events_agg <- aggregateEvents(calibrated, # measure = c("x", "y", "z", "AGSA"), # time = "timestamp", # sample_frequency = sample_frequency, # events = events, # fun = function(x) c(mean = mean(x), sd = sd(x)) # ) ## ----Aggregating epochs, eval = FALSE----------------------------------------- # epochs_agg <- aggregateEpochs(calibrated, # duration = 1, # measure = c("x", "y", "z", "AGSA", "ENMO"), # time = "timestamp", # sample_frequency = MPI$file_data[["MeasurementFrequency"]], # fun = function(x) c(mean = mean(x), sd = sd(x)) # ) ## ----GENEAcore flowchart, echo=FALSE------------------------------------------ knitr::include_graphics("../inst/extdata/geneacore_functions.png") ## ----Loop functions for folder, eval=FALSE------------------------------------ # data_folder <- "C:/path/to/folder" # data_files <- (list.files(data_folder, pattern = "(?i)\\.bin$")) # # for (seq in 1:length(data_files)) { # binfile_path <- file.path(data_folder, data_files[seq]) # project <- gsub("\\.bin", "", basename(binfile_path)) # output_folder <- file.path(data_folder, project) # if (!file.exists(output_folder)) { # dir.create(output_folder) # } # # Open file connection and read file # con <- file(binfile_path, "r") # binfile <- readLines(con, skipNul = TRUE) # close(con) # # Create MPI # MPI <- create_MPI(binfile, binfile_path, output_folder) # # Downsample file and detect non-movement # MPI <- detect_nonmovement(binfile, binfile_path, output_folder) # # Calculate auto-calibration parameters # MPI <- calc_autocalparams( # binfile, binfile_path, output_folder, # MPI$non_movement$sphere_points # ) # } ## ----Aggregating events day by day, eval = FALSE------------------------------ # # Prepare time borders of each day # cut_time <- strptime(CutTime24Hr, format = "%H:%M")$hour # cut_time_shift <- (cut_time * 60 * 60) - MPI$file_data[["TimeOffset"]] # first_day <- as.Date(as.POSIXct(MPI$file_info$firsttimestamp - cut_time_shift, origin = "1970-01-01")) # last_day <- as.Date(as.POSIXct(MPI$file_info$lasttimestamp - cut_time_shift, origin = "1970-01-01")) # # # Generate start and end time for each day we need to process # days_to_process <- seq(first_day, last_day, by = 1) # date_range <- lapply(days_to_process, FUN = function(x) { # c( # "start" = max(MPI$file_info$firsttimestamp, as.numeric(as.POSIXlt(x)) + cut_time_shift), # "end" = min(MPI$file_info$lasttimestamp, as.numeric(as.POSIXlt(x + 1)) + cut_time_shift) # ) # }) # date_range <- data.frame(t(sapply(date_range, c))) # # sample_frequency <- MPI$file_data[["MeasurementFrequency"]] # events_list <- list() # # # Sample, calibrate and aggregate the data day-by-day # for (day_number in 1:nrow(date_range)) { # results <- sample_binfile(binfile, binfile_path, output_folder, # start_time = date_range[day_number, 1], # end_time = date_range[day_number, 2], # downsample = FALSE # ) # # calibrated <- apply_calibration(results, MPI$auto_calibration, MPI$file_data[["MeasurementDevice"]]) # # calibrated <- apply_AGSA(calibrated) # # day_transitions <- transitions[transitions$day == day_number, "index"] # events <- data.frame( # "start" = day_transitions[-length(day_transitions)], # "end" = floor(sample_frequency * (day_transitions[-1])) # ) # if (nrow(events) > 1) { # events$start[2:nrow(events)] <- events$end[-nrow(events)] + 1 # } # events_agg <- aggregateEvents(calibrated, # measure = c("x", "y", "z", "AGSA"), # time = "timestamp", # sample_frequency = sample_frequency, # events = events, # fun = function(x) c(mean = mean(x), sd = sd(x)) # ) # events_list[[day_number]] <- events_agg # } # # # Combine daily aggregated events into a single output # events_df <- do.call(rbind, events_list)