--- title: "Further considerations" author: "Jorge Cabral" output: rmarkdown::html_vignette: toc: true toc_depth: 4 link-citations: yes bibliography: references.bib csl: american-medical-association-brackets.csl description: | Further considerations. vignette: > %\VignetteIndexEntry{Further considerations} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} editor_options: markdown: wrap: 72 --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ```
![](GCEstim_logo.png)
## Normalized Entropy Golan et al. @Golan1996 defined normalized entropy for the signal, $\mathbf{X}\boldsymbol{\beta}$, in the GME framework, as \begin{align} \qquad \qquad \qquad \qquad \qquad S(\mathbf{\widehat{p}})=\frac{-\mathbf{\widehat{p}}' \text{ln}\mathbf{\widehat{p}}}{(K+1)\text{ln} M} \qquad \qquad \qquad \qquad \qquad (3) \end{align} where $S(\mathbf{\widehat{p}})\in[0,1]$ and $S(\mathbf{\widehat{p}})=1$ indicates perfect uncertainty, and $S(\mathbf{\widehat{p}})=0$ indicates no uncertainty. In the GCE framework it can be defined as \begin{align} \qquad \qquad \qquad \qquad \qquad S(\mathbf{\widehat{p}})=\frac{-\mathbf{\widehat{p}}' \text{ln}\mathbf{\widehat{p}}}{-\mathbf{\widehat{q}}' \text{ln}\mathbf{\widehat{q}}} \qquad \qquad \qquad \qquad \qquad (4) \end{align} but in this case the we can no longer state that $S(\mathbf{\widehat{p}})\in[0,1]$. `GCEstim` package reports normalized entropies but it uses always the definition in (3) independently of the framework used. ```{r,echo=FALSE,eval=TRUE} library(GCEstim) ``` Consider `dataGCE` (see ["Generalized Maximum Entropy framework"](V2_GME_framework.html#Examples) and [Generalized Cross Entropy framework"](V3_GCE_framework.html#Examples)). The GME estimation can be obtained, for instance, with ```{r,echo=TRUE,eval=TRUE} res.lmgce.100.GME <- GCEstim::lmgce( y ~ ., data = dataGCE, cv = TRUE, cv.nfolds = 5, support.signal = c(-100, 100), support.signal.points = 5, twosteps.n = 0, seed = 230676 ) ``` and the GCE estimation with ```{r,echo=TRUE,eval=TRUE} res.lmgce.100.GCE <- GCEstim::lmgce( y ~ ., data = dataGCE, cv = TRUE, cv.nfolds = 5, support.signal = c(-100, 100), support.signal.points = matrix( c( rep(1 / 5, 5), c(0.1, 0.1, 0.6, 0.1, 0.1), c(0.1, 0.1, 0.6, 0.1, 0.1), rep(1 / 5, 5), rep(1 / 5, 5), rep(1 / 5, 5) ), ncol = 5, byrow = TRUE ), twosteps.n = 0, seed = 230676 ) ``` The `NormEnt` extracts the normalized entropy from the models by default (`model=TRUE`). ```{r,echo=TRUE,eval=TRUE} NormEnt(res.lmgce.100.GME) NormEnt(res.lmgce.100.GCE) ``` Each estimate has its own normalized entropy associated (`model=FALSE`) ```{r,echo=TRUE,eval=TRUE} NormEnt(res.lmgce.100.GME, model = FALSE) ``` ```{r,echo=TRUE,eval=TRUE} NormEnt(res.lmgce.100.GCE, model = FALSE) ``` ## References
## Acknowledgements This work was supported by Fundação para a Ciência e Tecnologia (FCT) through CIDMA and projects and .