
How to use Fast Step Graph

Juan G. Colonna∗ Marcelo Ruiz†

To install the last version of this package directly from GitHub uncomment and run:
library(devtools)
use "quiet = FALSE" if you want to see the outputs of this command
devtools::install_github("juancolonna/FastStepGraph", quiet = TRUE, force = TRUE)

Then, load it:
library(FastStepGraph)

Simulate Gaussian Data with an Autoregressive (AR) Model:
set.seed(1234567)
phi <- 0.4
p <- 50 # number of variables (dimension)
n <- 30 # number of samples

Generate Data from a Gaussian distribution
data <- FastStepGraph::SigmaAR(n, p, phi)
X <- scale(data$X) # standardizing variables

To fit the Omega matrix with FastStepGraph() function you have to know the optimal values of αf and αb.
If you don’t know these values, try to find them using cross-validation as follows:
t0 <- Sys.time() # INITIAL TIME
res <- FastStepGraph::cv.FastStepGraph(X, data_shuffle = TRUE)
difftime(Sys.time(), t0, units = "secs")
#> Time difference of 3.542877 secs
print(res$alpha_f_opt)
print(res$alpha_b_opt)

If your input variables are non-standardized (with zero mean and unit variance), we recommend that you
set data_scale=TURE. Subsequently, calculate the Omega matrix by calling the FastStepGraph() function
passing the optimal parameters αf and αb found by cross-validation to fit the final model:
t0 <- Sys.time() # INITIAL TIME
G <- FastStepGraph::FastStepGraph(X, alpha_f = res$alpha_f_opt, alpha_b = res$alpha_b_opt)
difftime(Sys.time(), t0, units = "secs")
#> Time difference of 0.002274036 secs
print(G$Omega)

You can also perform these two steps, the cross-validation to obtain the ideal parameters and return the
fitted model, in a single step by setting the return_model=TRUE option as follows:
t0 <- Sys.time() # INITIAL TIME
res <- FastStepGraph::cv.FastStepGraph(X, return_model=TRUE, data_shuffle = TRUE)

∗Institute of Computing. Federal University of Amazonas. Brasil. juancolonna@icomp.ufam.edu.br
†Mathematics Department. National University of Río Cuarto. Argentina. mruiz@exa.unrc.edu.ar

1

mailto:juancolonna@icomp.ufam.edu.br
mailto:mruiz@exa.unrc.edu.ar

difftime(Sys.time(), t0, units = "secs")
#> Time difference of 3.470215 secs
print(res$alpha_f_opt)
print(res$alpha_b_opt)
print(res$Omega)

The arguments n_folds = 5, alpha_f_min = 0.1, alpha_f_max = 0.9, n_alpha = 32 (size of the grid
search) and nei.max = 5, have defaults values and can be omitted. Note that, cv.FastStepGraph(X) is not
an exhaustive grid search over αf and αb. This is a heuristic that tests only a few αb values starting with
the rule αb = αf

2 . It is recommended to shuffle the rows of X before running cross-validation. The default
value is data_shuffle = TRUE, but if you want to disable row shuffle, set it to data_shuffle = FALSE.

To increase time performance, you can run cv.FastStepGraph(X, parallel = TRUE) in parallel. Before,
you’ll need to install and register a parallel backend. To run on a Linux system the doParallel dependency
must be installed install.packages("doParallel"). These parallel packages will also require the following
dependencies: foreach, iterators and parallel. Make sure you satisfy them. Then, call the method setting
the parameter parallel = TRUE, as follows:
t0 <- Sys.time() # INITIAL TIME
use 'n_cores = NULL' to set the maximum number of cores minus one on your machine
res <- FastStepGraph::cv.FastStepGraph(X, return_model=TRUE, parallel = TRUE, n_cores = 2)
difftime(Sys.time(), t0, units = "secs")
print(res$alpha_f_opt)
print(res$alpha_b_opt)
print(res$Omega)

Remember, you can set the n_cores parameter to a value equal to the number of cores you have, but be
careful as this may overload your system. Setting it to 1 disables parallel processing, and setting it to a
number greater than the number of available cores does not improve efficiency.

2

