## ----setup, echo = FALSE------------------------------------------------------ knitr::opts_chunk$set(collapse = FALSE, comment = "#>", prompt = FALSE, tidy = FALSE, echo = TRUE, message = FALSE, warning = FALSE, # Default figure options: dpi = 100, fig.align = 'center', fig.height = 6.0, fig.width = 6.5, out.width = "580px") ## ----pkgs, echo = FALSE, message = FALSE, results = 'hide'-------------------- library(FFTrees) ## ----fft-example, results = "hide"-------------------------------------------- # Create an FFTrees object predicting heart disease: heart.fft <- FFTrees(formula = diagnosis ~., data = heartdisease) ## ----fft-plot-1, fig.cap = "**Figure 1**: Example FFT for the `heartdisease` data."---- plot(heart.fft, tree = "best.train") ## ----confusion-table, fig.align = "center", out.width="50%", echo = FALSE, fig.cap = "**Figure 2**: A 2x2 matrix illustrating the frequency counts of 4 possible outcomes."---- knitr::include_graphics("../inst/confusiontable.jpg") ## ----fft-heart---------------------------------------------------------------- heart.fft ## ----fft-levelout------------------------------------------------------------- # A vector of levels/nodes at which each case was classified: heart.fft$trees$decisions$train$tree_1$levelout ## ----fft-mcu------------------------------------------------------------------ # Calculate the mean number or cues used (mcu): mean(heart.fft$trees$decisions$train$tree_1$levelout) ## ----fft-pci------------------------------------------------------------------ # Calculate pci (percentage of cues ignored) as # (n.cues - mcu) / n.cues): n.cues <- ncol(heartdisease) (n.cues - heart.fft$trees$stats$train$mcu[1]) / n.cues