CA Step 3 Summarize Dyads

summarize_dyads()

Jamie Reilly, Ben Sacks, Ginny Ulichney, Gus Cooney, Chelsea Helion

July 19, 2025

summarize_dyads()

This is the final step where ConversationAlign will compute summary statistics including main effects and alignment statistics for the vectorized dataframe you produced using prep_dyads(). Users have several options for how to output their data, and these choices should be guided by your analysis strategy. For example, a linear mixed effects approach might involve modeling the rise and fall of values across turns. In contrast, a standard ANOVA would work on grouped summary data.

Arguments to summarize_dyads() include:
1) df_prep= dataframe created by prep_dyads()function
2) custom_lags= default is NULL, any additional user-specified lagged correlations. will automatically produce lead of 2 turns, immediate response, lag of 2 turns for each dimension of interest.
3) sumdat_only= boolean default is TRUE, produces grouped summary dataframe with averages by conversation and participant for each alignment dimension, FALSE retrains all of the original rows, filling down empty rows of summary statistics for the conversation (e.g., AUC)
4) corr_type= default=‘Pearson’, other option ‘Spearman’ for computing turn-by-turn correlations across interlocutors for each dimension of interest.

MarySumDat <- summarize_dyads(df_prep = NurseryRhymes_Prepped, custom_lags=NULL, sumdat_only = TRUE, corr_type='Pearson') 
colnames(MarySumDat)
#>  [1] "Event_ID"           "Participant_ID"     "Dimension"         
#>  [4] "Dimension_Mean"     "AUC_raw"            "AUC_scaled100"     
#>  [7] "Talked_First"       "TurnCorr_Lead2"     "TurnCorr_Immediate"
#> [10] "TurnCorr_Lag2"
knitr::kable(head(MarySumDat, 15), format = "simple", digits = 3)
Event_ID Participant_ID Dimension Dimension_Mean AUC_raw AUC_scaled100 Talked_First TurnCorr_Lead2 TurnCorr_Immediate TurnCorr_Lag2
ItsySpider Maya emo_anger 0.001 0.783 1.630 Yin -1 -1 -1
ItsySpider Yin emo_anger -0.033 0.783 1.630 Yin -1 -1 -1
JackJill Ana emo_anger -0.066 3.729 4.662 Franklin 1 1 1
JackJill Franklin emo_anger 0.030 3.729 4.662 Franklin 1 1 1
LittleLamb Dave emo_anger -0.001 1.486 1.486 Mary NA NA NA
LittleLamb Mary emo_anger -0.031 1.486 1.486 Mary NA NA NA