## ----message=F,warning=F------------------------------------------------------ library(CNSigs) ## ----eval=F------------------------------------------------------------------- # readSegs("./SampleSegs.txt",colMap = c("Sample_ID","Chrom","Start","End","Total_CN")) ## ----fig.width=7, fig.height=7------------------------------------------------ smooth = smoothSegs(segDataExp) #Visualize the smoothed segments toPlot = list(segDataExp[[1]],smooth[[1]]) names(toPlot) = c("Original","Smoothed") plotSegs(toPlot, sep = T) ## ----------------------------------------------------------------------------- feats = extractCNFeats(smooth) ## ----eval=F------------------------------------------------------------------- # comps = fitModels(feats) ## ----fig=T,fig.height=4,echo=F------------------------------------------------ hist(featsExp$copynumber$value,breaks=100, main = "Histogram of orignal copynumber data", xlab = "Copynumber values") ## ----fig=T,fig.height=4,echo=F------------------------------------------------ test = CNSigs:::reducePeaks(featsExp$copynumber$value) hist(test,breaks=100, main = "Histogram of copynumber after reduction", xlab = "Copynumber values") ## ----fig.height=3------------------------------------------------------------- scm = generateSCM(feats, cancerComps) plotScm(scm) ## ----eval = F----------------------------------------------------------------- # scm = addPloidyData(scm, ploidyData) ## ----eval = F----------------------------------------------------------------- # sigs = createSigs(scm, 5) ## ----eval = F----------------------------------------------------------------- # sigs = findExposures(scm, fixedSigs) ## ----eval=F------------------------------------------------------------------- # results = runPipeline(segDataExp) ## ----eval=F------------------------------------------------------------------- # results = runPipeline(segData, components = cancerComps) ## ----eval=F------------------------------------------------------------------- # #referenceExp = readRDS("resultsPath/Pipeline results.rds") # newResults = runPipeline(segData, components = referenceExp$CN_components, # fixedSigs = referenceExp$sigs) ## ----eval=F------------------------------------------------------------------- # newResults = runPipeline(segData, components = cancerComps, # fixedSigs = collapsedSigs, ploidyData = segPloidy) ## ----fig.width=7, fig.height=4------------------------------------------------ plotComp(cancerComps,"bp10MB") #Only plots the bp10MB component ## ----eval = F----------------------------------------------------------------- # plotComps(cancerComps) #Plots all of the components ## ----fig=T,fig.height=5,echo=F------------------------------------------------ plotComp(cancerComps,"segsize") ## ----fig=T,fig.height=5,echo=F------------------------------------------------ plotComp(cancerComps,"bp10MB") ## ----fig=T,fig.height=5,echo=F------------------------------------------------ plotComp(cancerComps,"osCN") ## ----fig=T,fig.height=5,echo=F------------------------------------------------ plotComp(cancerComps,"changepoint") ## ----fig=T,fig.height=5,echo=F------------------------------------------------ plotComp(cancerComps,"copynumber") ## ----fig=T,fig.height=5,echo=F------------------------------------------------ plotComp(cancerComps,"bpchrarm") ## ----------------------------------------------------------------------------- matchSigs(referenceExp$sigs,referenceExp$sigs) ## ----fig.width=7, fig.height=6------------------------------------------------ sigSim(referenceExp,referenceExp) ## ----------------------------------------------------------------------------- plotSigExposureMat(referenceExp$sigExposure) ## ----fig.height=3------------------------------------------------------------- plotSigExposure(referenceExp$sigExposure) ## ----fig.height=4------------------------------------------------------------- sigExposure = referenceExp$sigExposure # Generate random data to represent track data sampleTrackData = sample(c(1,2,3,4),ncol(sigExposure),T) sampleTrackData2 = sample(c(1,2,3,4),ncol(sigExposure),T) # Plot with a single track plotSigExposure(sigExposure,trackData = sampleTrackData) # Plot multiple tracks. plotSigExposure(sigExposure, trackData = list(sampleTrackData,sampleTrackData2)) ## ----fig.height=4------------------------------------------------------------- # Plot multiple tracks sorted by the main plot and then the first track plotSigExposure(sigExposure, trackData = list(sampleTrackData,sampleTrackData2), sort=T,sortOrder = "mt1") # Plot multiple tracks sorted by the second track and then the first track plotSigExposure(sigExposure, trackData = list(sampleTrackData,sampleTrackData2), sort=T,sortOrder = "t2t1m") ## ----eval=F------------------------------------------------------------------- # smooth = smoothSegs(segDataExp) # feats = extractCNFeats(smooth) # comps = fitModels(feats) # determineNumSigs(feats,comps) ## ----eval=F------------------------------------------------------------------- # detSigNumPipeline(segDataExp,smooth=T) ## ----------------------------------------------------------------------------- defaultFeats desiredFeats = defaultFeats[-3] desiredFeats ## ----eval=F------------------------------------------------------------------- # results = runPipeline(segDataExp,featsToUse = desiredFeats)