## ------------------------------------------------------------------------ library(BClustLonG,quietly=TRUE) data(data) str(data) head(data.frame(ID=data$ID,years=data$years,data$Y),n=10) ## ---- results='hide'----------------------------------------------------- ## run BClustLonG and get the clustering results ## res = BClustLonG(data, iter=500, thin=2,savePara=FALSE, infoVar="both",factor=TRUE) mat = calSim(t(res$e.mat[,101:500])) ## calculate the posterior similarity matrix clust = maxpear(mat)$cl ## see maxpear for more details. ## ------------------------------------------------------------------------ clust ## ------------------------------------------------------------------------ ## using Hierarchical Clustering method to obtain the clustering results ## CL = cutree(hclust(as.dist(1-mat)),k=4) CL ## ------------------------------------------------------------------------ ## plot similarity matrix ## require(lattice,quietly=TRUE) n = length(unique(data$ID)) x = rep(1:n,times=n) y = rep(1:n,each=n) z = as.vector(mat) levelplot(z~x*y,col.regions=rev(gray.colors(n^2)), xlab = "Subject ID",ylab = "Subject ID") ## ---- eval=FALSE-------------------------------------------------------- # ## Clustering based only on intercepts ## # res = BClustLonG(data, iter=500, thin=2,savePara=FALSE, infoVar="int",factor=TRUE) # ## clustering based on intercepts and slopes ## # ## assume diagonal covariance matrix for the intecepts and slopes ## # res = BClustLonG(data, iter=500, thin=2,savePara=FALSE, infoVar="both",factor=FALSE)