Last updated on 2025-11-14 19:49:52 CET.
| Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
|---|---|---|---|---|---|---|
| r-devel-linux-x86_64-debian-clang | 0.0.5 | 15.56 | 611.67 | 627.23 | OK | |
| r-devel-linux-x86_64-debian-gcc | 0.0.5 | 11.11 | 360.18 | 371.29 | ERROR | |
| r-devel-linux-x86_64-fedora-clang | 0.0.5 | 41.00 | 1037.74 | 1078.74 | ERROR | |
| r-devel-linux-x86_64-fedora-gcc | 0.0.5 | 80.00 | 997.20 | 1077.20 | ERROR | |
| r-devel-windows-x86_64 | 0.0.5 | 21.00 | 565.00 | 586.00 | OK | |
| r-patched-linux-x86_64 | 0.0.5 | 19.00 | 581.98 | 600.98 | OK | |
| r-release-linux-x86_64 | 0.0.5 | 16.91 | 592.03 | 608.94 | OK | |
| r-release-macos-arm64 | 0.0.5 | 7.00 | 150.00 | 157.00 | OK | |
| r-release-macos-x86_64 | 0.0.5 | 15.00 | 342.00 | 357.00 | OK | |
| r-release-windows-x86_64 | 0.0.5 | 19.00 | 546.00 | 565.00 | OK | |
| r-oldrel-macos-arm64 | 0.0.5 | 7.00 | 158.00 | 165.00 | OK | |
| r-oldrel-macos-x86_64 | 0.0.5 | 14.00 | 371.00 | 385.00 | OK | |
| r-oldrel-windows-x86_64 | 0.0.5 | 28.00 | 749.00 | 777.00 | OK |
Version: 0.0.5
Check: tests
Result: ERROR
Running ‘testthat.R’ [186s/241s]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview
> # * https://testthat.r-lib.org/articles/special-files.html
>
> library(testthat)
> library(hdcuremodels)
>
> test_check("hdcuremodels")
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756490658089751
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756012758893876
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 297
Maximum C-statistic: 0.770985658659945
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 434
Maximum C-statistic: 0.734125636924605
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.09
Selected lambda for latency: 0.09
Maximum C-statistic: 0.691812421454834
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.105
Selected lambda for latency: 0.105
Maximum C-statistic: 0.71552008323144
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 27
Maximum C-statistic: 0.674984053600791
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 3
Maximum C-statistic: 0.697702519726813
Fitting a final model...
Family: Cox
Algorithm: EM
Family: Cox
Algorithm: EM
Saving _problems/test-formula-11.R
Saving _problems/test-logLik-11.R
Saving _problems/test-nobs-11.R
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 27
Maximum C-statistic: 0.674984053600791
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.155
Selected lambda for latency: 0.155
Maximum C-statistic: 0.635331032113726
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
mixturecure object fit using Weibull GMIFS algorithm
$b_path
U1 U2 X1 X2 X3 X4
[1,] 0 0 0.01 0 0 0
[2,] 0 0 0.02 0 0 0
[3,] 0 0 0.03 0 0 0
[4,] 0 0 0.04 0 0 0
[5,] 0 0 0.05 0 0 0
[6,] 0 0 0.06 0 0 0
1274 more rows
6 more columns
$beta_path
U1 U2 X1 X2 X3 X4
[1,] 0 0 0.01 0 0 0.00
[2,] 0 0 0.02 0 0 0.00
[3,] 0 0 0.03 0 0 0.00
[4,] 0 0 0.03 0 0 0.01
[5,] 0 0 0.03 0 0 0.02
[6,] 0 0 0.03 0 0 0.03
1274 more rows
6 more columns
$rate
1.74771 1.747557 1.745463 1.776432 1.806308 1.835547
1274 more elements
$alpha
0.5120896 0.5130922 0.5131297 0.5149383 0.5167088 0.51841
1274 more elements
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
mixturecure object fit using Cox EM algorithm
$b
0 0 0 0 0 0
6 more elements
$beta
0 0 0.8829866 0 0.3677159 0
6 more elements
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756490658089751
Fitting a final model...
mixturecure object fit using Weibull EM algorithm
$b
0 0 0.3534216 -0.1938579 0 -0.4778904
6 more elements
$beta
0 0 0 0 0 0
6 more elements
$rate
5.125488
$alpha
0.897226
Mixture cure model fit using the EM algorithm
Number of non-zero incidence covariates at minimum AIC: 0
Number of non-zero latency covariates at minimum AIC: 17
Optimal step for selected information criterion: EM algorithm
at step = 51 logLik = -118.896956094066
at step = 51 AIC = 273.793912188132
at step = 51 mAIC = 490.199530466681
at step = 51 cAIC = 290.4768390174
at step = 51 BIC = 311.492114308129
at step = 51 mBIC = 453.037837086205
at step = 51 EBIC = 370.050413661889
Mixture cure model fit using the EM algorithm
Number of non-zero incidence covariates at minimum AIC: 0
Number of non-zero latency covariates at minimum AIC: 17
Optimal step for selected information criterion: EM algorithm
at step = 51 logLik = -118.896956094066
at step = 51 AIC = 273.793912188132
at step = 51 mAIC = 490.199530466681
at step = 51 cAIC = 290.4768390174
at step = 51 BIC = 311.492114308129
at step = 51 mBIC = 453.037837086205
at step = 51 EBIC = 370.050413661889
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.054
Selected lambda for latency: 0.054
Maximum C-statistic: 0.703222725537594
Fitting a final model...
Mixture cure model fit using the EM algorithm
using cross-validation
Number of non-zero incidence covariates: 3
Number of non-zero latency covariates: 26
Mixture cure model fit using the EM algorithm
using cross-validation
Number of non-zero incidence covariates: 3
Number of non-zero latency covariates: 26
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ]
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-formula.R:11:3'): formula function works correctly ─────────────
Error in `expect(is.call(formula(fit)))`: `failure_message` must be a character vector, not absent.
Backtrace:
▆
1. └─testthat::expect(failure_message = <empty>) at test-formula.R:11:3
2. └─testthat:::check_character(failure_message)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
── Error ('test-logLik.R:11:3'): logLik function works correctly ───────────────
Error in `expect(round(logLik(fit), 5), -9.22893)`: `ok` must be `TRUE` or `FALSE`, not a <logLik> object.
Backtrace:
▆
1. └─testthat::expect(ok = round(logLik(fit), 5)) at test-logLik.R:11:3
2. └─testthat:::check_bool(ok)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
── Error ('test-nobs.R:11:3'): nobs function works correctly ───────────────────
Error in `expect(nobs(fit), 60)`: `ok` must be `TRUE` or `FALSE`, not the number 60.
Backtrace:
▆
1. └─testthat::expect(ok = nobs(fit)) at test-nobs.R:11:3
2. └─testthat:::check_bool(ok)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ]
Error:
! Test failures.
Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc
Version: 0.0.5
Check: tests
Result: ERROR
Running ‘testthat.R’ [10m/34m]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview
> # * https://testthat.r-lib.org/articles/special-files.html
>
> library(testthat)
> library(hdcuremodels)
>
> test_check("hdcuremodels")
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756490658082704
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756012758916735
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 297
Maximum C-statistic: 0.770985658659945
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 434
Maximum C-statistic: 0.734125636924359
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.09
Selected lambda for latency: 0.09
Maximum C-statistic: 0.691812421454245
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.105
Selected lambda for latency: 0.105
Maximum C-statistic: 0.715520083276069
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 27
Maximum C-statistic: 0.674984053587649
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 3
Maximum C-statistic: 0.697702519726813
Fitting a final model...
Family: Cox
Algorithm: EM
Family: Cox
Algorithm: EM
Saving _problems/test-formula-11.R
Saving _problems/test-logLik-11.R
Saving _problems/test-nobs-11.R
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 27
Maximum C-statistic: 0.674984053587649
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.155
Selected lambda for latency: 0.155
Maximum C-statistic: 0.63533103210919
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
mixturecure object fit using Weibull GMIFS algorithm
$b_path
U1 U2 X1 X2 X3 X4
[1,] 0 0 0.01 0 0 0
[2,] 0 0 0.02 0 0 0
[3,] 0 0 0.03 0 0 0
[4,] 0 0 0.04 0 0 0
[5,] 0 0 0.05 0 0 0
[6,] 0 0 0.06 0 0 0
1274 more rows
6 more columns
$beta_path
U1 U2 X1 X2 X3 X4
[1,] 0 0 0.01 0 0 0.00
[2,] 0 0 0.02 0 0 0.00
[3,] 0 0 0.03 0 0 0.00
[4,] 0 0 0.03 0 0 0.01
[5,] 0 0 0.03 0 0 0.02
[6,] 0 0 0.03 0 0 0.03
1274 more rows
6 more columns
$rate
1.74771 1.747557 1.745463 1.776432 1.806308 1.835547
1274 more elements
$alpha
0.5120896 0.5130922 0.5131297 0.5149383 0.5167088 0.51841
1274 more elements
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
mixturecure object fit using Cox EM algorithm
$b
0 0 0 0 0 0
6 more elements
$beta
0 0 0.8829866 0 0.3677159 0
6 more elements
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756490658082704
Fitting a final model...
mixturecure object fit using Weibull EM algorithm
$b
0 0 0.3534216 -0.1938579 0 -0.4778904
6 more elements
$beta
0 0 0 0 0 0
6 more elements
$rate
5.125488
$alpha
0.897226
Mixture cure model fit using the EM algorithm
Number of non-zero incidence covariates at minimum AIC: 0
Number of non-zero latency covariates at minimum AIC: 17
Optimal step for selected information criterion: EM algorithm
at step = 51 logLik = -118.896956094066
at step = 51 AIC = 273.793912188132
at step = 51 mAIC = 490.199530466681
at step = 51 cAIC = 290.4768390174
at step = 51 BIC = 311.492114308129
at step = 51 mBIC = 453.037837086205
at step = 51 EBIC = 370.050413661889
Mixture cure model fit using the EM algorithm
Number of non-zero incidence covariates at minimum AIC: 0
Number of non-zero latency covariates at minimum AIC: 17
Optimal step for selected information criterion: EM algorithm
at step = 51 logLik = -118.896956094066
at step = 51 AIC = 273.793912188132
at step = 51 mAIC = 490.199530466681
at step = 51 cAIC = 290.4768390174
at step = 51 BIC = 311.492114308129
at step = 51 mBIC = 453.037837086205
at step = 51 EBIC = 370.050413661889
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.054
Selected lambda for latency: 0.054
Maximum C-statistic: 0.703222725537594
Fitting a final model...
Mixture cure model fit using the EM algorithm
using cross-validation
Number of non-zero incidence covariates: 3
Number of non-zero latency covariates: 26
Mixture cure model fit using the EM algorithm
using cross-validation
Number of non-zero incidence covariates: 3
Number of non-zero latency covariates: 26
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ]
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-formula.R:11:3'): formula function works correctly ─────────────
Error in `expect(is.call(formula(fit)))`: `failure_message` must be a character vector, not absent.
Backtrace:
▆
1. └─testthat::expect(failure_message = <empty>) at test-formula.R:11:3
2. └─testthat:::check_character(failure_message)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
── Error ('test-logLik.R:11:3'): logLik function works correctly ───────────────
Error in `expect(round(logLik(fit), 5), -9.22893)`: `ok` must be `TRUE` or `FALSE`, not a <logLik> object.
Backtrace:
▆
1. └─testthat::expect(ok = round(logLik(fit), 5)) at test-logLik.R:11:3
2. └─testthat:::check_bool(ok)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
── Error ('test-nobs.R:11:3'): nobs function works correctly ───────────────────
Error in `expect(nobs(fit), 60)`: `ok` must be `TRUE` or `FALSE`, not the number 60.
Backtrace:
▆
1. └─testthat::expect(ok = nobs(fit)) at test-nobs.R:11:3
2. └─testthat:::check_bool(ok)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ]
Error:
! Test failures.
Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang
Version: 0.0.5
Check: tests
Result: ERROR
Running ‘testthat.R’ [10m/27m]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview
> # * https://testthat.r-lib.org/articles/special-files.html
>
> library(testthat)
> library(hdcuremodels)
>
> test_check("hdcuremodels")
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756490658082704
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756012758916735
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 297
Maximum C-statistic: 0.770985658659945
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 434
Maximum C-statistic: 0.734125636924359
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.09
Selected lambda for latency: 0.09
Maximum C-statistic: 0.691812421420305
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.105
Selected lambda for latency: 0.105
Maximum C-statistic: 0.715520083276069
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 27
Maximum C-statistic: 0.674984053587649
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 3
Maximum C-statistic: 0.697702519726813
Fitting a final model...
Family: Cox
Algorithm: EM
Family: Cox
Algorithm: EM
Saving _problems/test-formula-11.R
Saving _problems/test-logLik-11.R
Saving _problems/test-nobs-11.R
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 27
Maximum C-statistic: 0.674984053587649
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.155
Selected lambda for latency: 0.155
Maximum C-statistic: 0.635331032165219
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
mixturecure object fit using Weibull GMIFS algorithm
$b_path
U1 U2 X1 X2 X3 X4
[1,] 0 0 0.01 0 0 0
[2,] 0 0 0.02 0 0 0
[3,] 0 0 0.03 0 0 0
[4,] 0 0 0.04 0 0 0
[5,] 0 0 0.05 0 0 0
[6,] 0 0 0.06 0 0 0
1274 more rows
6 more columns
$beta_path
U1 U2 X1 X2 X3 X4
[1,] 0 0 0.01 0 0 0.00
[2,] 0 0 0.02 0 0 0.00
[3,] 0 0 0.03 0 0 0.00
[4,] 0 0 0.03 0 0 0.01
[5,] 0 0 0.03 0 0 0.02
[6,] 0 0 0.03 0 0 0.03
1274 more rows
6 more columns
$rate
1.74771 1.747557 1.745463 1.776432 1.806308 1.835547
1274 more elements
$alpha
0.5120896 0.5130922 0.5131297 0.5149383 0.5167088 0.51841
1274 more elements
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
mixturecure object fit using Cox EM algorithm
$b
0 0 0 0 0 0
6 more elements
$beta
0 0 0.8829866 0 0.3677159 0
6 more elements
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756490658082704
Fitting a final model...
mixturecure object fit using Weibull EM algorithm
$b
0 0 0.3534216 -0.1938579 0 -0.4778904
6 more elements
$beta
0 0 0 0 0 0
6 more elements
$rate
5.125488
$alpha
0.897226
Mixture cure model fit using the EM algorithm
Number of non-zero incidence covariates at minimum AIC: 0
Number of non-zero latency covariates at minimum AIC: 17
Optimal step for selected information criterion: EM algorithm
at step = 51 logLik = -118.896956094066
at step = 51 AIC = 273.793912188132
at step = 51 mAIC = 490.199530466681
at step = 51 cAIC = 290.4768390174
at step = 51 BIC = 311.492114308129
at step = 51 mBIC = 453.037837086205
at step = 51 EBIC = 370.050413661889
Mixture cure model fit using the EM algorithm
Number of non-zero incidence covariates at minimum AIC: 0
Number of non-zero latency covariates at minimum AIC: 17
Optimal step for selected information criterion: EM algorithm
at step = 51 logLik = -118.896956094066
at step = 51 AIC = 273.793912188132
at step = 51 mAIC = 490.199530466681
at step = 51 cAIC = 290.4768390174
at step = 51 BIC = 311.492114308129
at step = 51 mBIC = 453.037837086205
at step = 51 EBIC = 370.050413661889
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.054
Selected lambda for latency: 0.054
Maximum C-statistic: 0.703222725537594
Fitting a final model...
Mixture cure model fit using the EM algorithm
using cross-validation
Number of non-zero incidence covariates: 3
Number of non-zero latency covariates: 26
Mixture cure model fit using the EM algorithm
using cross-validation
Number of non-zero incidence covariates: 3
Number of non-zero latency covariates: 26
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ]
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-formula.R:11:3'): formula function works correctly ─────────────
Error in `expect(is.call(formula(fit)))`: `failure_message` must be a character vector, not absent.
Backtrace:
▆
1. └─testthat::expect(failure_message = <empty>) at test-formula.R:11:3
2. └─testthat:::check_character(failure_message)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
── Error ('test-logLik.R:11:3'): logLik function works correctly ───────────────
Error in `expect(round(logLik(fit), 5), -9.22893)`: `ok` must be `TRUE` or `FALSE`, not a <logLik> object.
Backtrace:
▆
1. └─testthat::expect(ok = round(logLik(fit), 5)) at test-logLik.R:11:3
2. └─testthat:::check_bool(ok)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
── Error ('test-nobs.R:11:3'): nobs function works correctly ───────────────────
Error in `expect(nobs(fit), 60)`: `ok` must be `TRUE` or `FALSE`, not the number 60.
Backtrace:
▆
1. └─testthat::expect(ok = nobs(fit)) at test-nobs.R:11:3
2. └─testthat:::check_bool(ok)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ]
Error:
! Test failures.
Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc