
Using ‘Copernicus Data Space Ecosystem’ API Wrapper

Contents

Introduction 2

API authentication 2

Note . 2

Collections 2

Catalog search 3

Catalog by season . 5

Evalscripts 6

Built-in scripts . 6
Ready-to-use examples . 6
Awesome Spectral Indices . 6

Retrieving images 10

Retrieving AOI satellite image as a raster object . 10
Retrieving AOI satellite image as an image file . 11
Retrieving a series of images in a batch . 12

Retrieving statistics 15

Statistical evalscripts . 15
Retrieving simple statistics . 15
Retrieving statistics with percentiles . 16
Retrieving a series of statistics in a batch . 17

Copernicus Data Space Ecosystem services status 19

1

Introduction

The CDSE package for R was developed to allow access to the ‘Copernicus Data Space Ecosystem’ data
and services from R. The 'Copernicus Data Space Ecosystem', deployed in 2023, offers access to the EO
data collection from the Copernicus missions, with discovery and download capabilities and numerous data
processing tools. In particular, the ‘Sentinel Hub’ API provides access to the multi-spectral and multi-temporal
big data satellite imagery service, capable of fully automated, real-time processing and distribution of remote
sensing data and related EO products. Users can use APIs to retrieve satellite data over their AOI and
specific time range from full archives in a matter of seconds. When working on the application of EO where
the area of interest is relatively small compared to the image tiles distributed by Copernicus (100 x 100 km),
it allows to retrieve just the portion of the image of interest rather than downloading the huge tile image file
and processing it locally. The goal of the CDSE package is to provide easy access to this functionality from R.

The main functions allow to search the catalog of available imagery from the Sentinel-1, Sentinel-2, Sentinel-3,
and Sentinel-5 missions, and to process and download the images of an area of interest and a time range in
various formats. Other functions might be added in subsequent releases of the package.

API authentication

Most of the API functions require OAuth2 authentication. The recommended procedure is to obtain an
authentication client object from the GetOAuthClient function and pass it as the client argument to the
functions requiring the authentication. For more detailed information, you are invited to consult the “Before

you start” document.

id <- Sys.getenv("CDSE_ID")

secret <- Sys.getenv("CDSE_SECRET")

OAuthClient <- GetOAuthClient(id = id, secret = secret)

Note

In this document, the data.frames are output as tibbles since it renders better in PDF. However, all the
functions produce standard data.frames.

Collections

We can get the list of all the imagery collections available in the 'Copernicus Data Space Ecosystem'. By
default, the list is formatted as a data.frame listing the main collection features. It is also possible to obtain
the raw list with all information by setting the argument as_data_frame to FALSE.

collections <- GetCollections(as_data_frame = TRUE)

collections

#> # A tibble: 8 x 12

#> id title description since instrument gsd bands constellation long.min

#> <chr> <chr> <chr> <chr> <chr> <int> <int> <chr> <dbl>

#> 1 sentine~ Sent~ Sentinel 2~ 2015~ msi 10 13 sentinel-2 -180

#> 2 sentine~ Sent~ Sentinel 3~ 2016~ olci 300 NA <NA> -180

#> 3 sentine~ Sent~ Sentinel 3~ 2016~ olci 300 21 <NA> -180

#> 4 sentine~ Sent~ Sentinel 3~ 2016~ slstr 1000 11 <NA> -180

#> 5 sentine~ Sent~ Sentinel 3~ 2016~ olci/slstr 300 NA <NA> -180

#> 6 sentine~ Sent~ Sentinel 1~ 2014~ c-sar NA NA sentinel-1 -180

#> 7 sentine~ Sent~ Sentinel 2~ 2016~ msi 10 12 sentinel-2 -180

#> 8 sentine~ Sent~ Sentinel 5~ 2018~ tropomi 5500 NA <NA> -180

#> # i 3 more variables: lat.min <dbl>, long.max <dbl>, lat.max <dbl>

2

https://dataspace.copernicus.eu/
https://documentation.dataspace.copernicus.eu/APIs/SentinelHub.html

Catalog search

The imagery catalog can be searched by spatial and temporal extent for every collection present in the
'Copernicus Data Space Ecosystem'. For the spatial filter, you can provide either a sf or sfc object
from the sf package, typically a (multi)polygon, describing the Area of Interest, or a numeric vector of four
elements describing the bounding box of interest. For the temporal filter, you must specify the time range by
either Date or character values that can be converted to date by as.Date function. Open intervals (one
side only) can be obtained by providing the NA or NULL value for the corresponding argument.

dsn <- system.file("extdata", "luxembourg.geojson", package = "CDSE")

aoi <- sf::read_sf(dsn, as_tibble = FALSE)

images <- SearchCatalog(aoi = aoi, from = "2023-07-01", to = "2023-07-31",

collection = "sentinel-2-l2a", with_geometry = TRUE, client = OAuthClient)

images

#> # A tibble: 85 x 12

#> acquisitionDate tileCloudCover areaCoverage satellite acquisitionTimestamp~1

#> <date> <dbl> <dbl> <chr> <dttm>

#> 1 2023-07-31 98.9 1.84 sentinel-~ 2023-07-31 10:47:29

#> 2 2023-07-31 99.8 20.3 sentinel-~ 2023-07-31 10:47:25

#> 3 2023-07-31 99.7 5.93 sentinel-~ 2023-07-31 10:47:22

#> 4 2023-07-31 99.9 16.3 sentinel-~ 2023-07-31 10:47:14

#> 5 2023-07-31 99.9 92.5 sentinel-~ 2023-07-31 10:47:11

#> 6 2023-07-31 99.4 22.2 sentinel-~ 2023-07-31 10:47:09

#> 7 2023-07-31 99.4 22.2 sentinel-~ 2023-07-31 10:47:09

#> 8 2023-07-28 100. 4.99 sentinel-~ 2023-07-28 10:37:28

#> 9 2023-07-28 100. 4.99 sentinel-~ 2023-07-28 10:37:28

#> 10 2023-07-28 100. 5.66 sentinel-~ 2023-07-28 10:37:27

#> # i 75 more rows

#> # i abbreviated name: 1: acquisitionTimestampUTC

#> # i 7 more variables: acquisitionTimestampLocal <dttm>, sourceId <chr>,

#> # long.min <dbl>, lat.min <dbl>, long.max <dbl>, lat.max <dbl>,

#> # geometry <POLYGON [°]>

We can visualize the coverage of the area of interest by the satellite image tiles by plotting the footprints of
the available images and showing the region of interest in red.

library(maps)

days <- range(as.Date(images$acquisitionDate))

maps::map(database = "world", col = "lightgrey", fill = TRUE, mar = c(0, 0, 4, 0),

xlim = c(3, 9), ylim = c(47.5, 51.5))

plot(sf::st_geometry(aoi), add = TRUE, col = "red", border = FALSE)

plot(sf::st_geometry(images), add = TRUE)

title(main = sprintf("AOI coverage by image tiles for period %s",

paste(days, collapse = " / ")), line = 1L, cex.main = 0.75)

Some tiles cover only a small fraction of the area of interest, while others cover almost the entire area.

summary(images$areaCoverage)

#> Min. 1st Qu. Median Mean 3rd Qu. Max.

#> 1.845 5.595 15.393 18.679 20.346 92.463

The tile number can be obtained from the image attribute sourceId, as explained here. We can therefore
summarize the distribution of area coverage by tile number, and see which tiles provide the best coverage of
the AOI.

tileNumber <- substring(images$sourceId, 39, 44)

by(images$areaCoverage, INDICES = tileNumber, FUN = summary)

3

https://sentiwiki.copernicus.eu/web/s2-products

AOI coverage by image tiles for period 2023−07−01 / 2023−07−31

Figure 1: Luxembourg image tiles coverage

#> tileNumber: T31UFQ

#> Min. 1st Qu. Median Mean 3rd Qu. Max.

#> 1.845 1.845 1.845 1.845 1.845 1.845

#> --

#> tileNumber: T31UFR

#> Min. 1st Qu. Median Mean 3rd Qu. Max.

#> 16.32 16.32 16.32 16.32 16.32 16.32

#> --

#> tileNumber: T31UGQ

#> Min. 1st Qu. Median Mean 3rd Qu. Max.

#> 4.294 4.910 12.706 12.566 20.346 20.346

#> --

#> tileNumber: T31UGR

#> Min. 1st Qu. Median Mean 3rd Qu. Max.

#> 6.855 15.543 16.022 48.698 92.463 92.463

#> --

#> tileNumber: T32ULA

#> Min. 1st Qu. Median Mean 3rd Qu. Max.

#> 6.171 15.108 22.236 18.734 22.236 22.236

#> --

#> tileNumber: T32ULV

#> Min. 1st Qu. Median Mean 3rd Qu. Max.

#> 4.944 5.595 5.705 5.727 5.934 5.934

4

Catalog by season

Sometimes one can be interested in only a given period of each year, for example, the images taken during
the summer months (June to August). We can filter an existing image catalog a posteriori using the
SeasonalFilter function.

dsn <- system.file("extdata", "centralpark.geojson", package = "CDSE")

aoi <- sf::read_sf(dsn, as_tibble = FALSE)

images <- SearchCatalog(aoi = aoi, from = "2021-01-01", to = "2023-12-31",

collection = "sentinel-2-l2a", with_geometry = FALSE, filter = "eo:cloud_cover < 5",

client = OAuthClient)

images <- UniqueCatalog(images, by = "tileCloudCover")

dim(images)

#> [1] 81 10

summer_images <- SeasonalFilter(images, from = "2021-06-01", to = "2023-08-31")

dim(summer_images)

#> [1] 14 10

It is also possible to query the API directly on the desired seasonal periods by using a vectorized version
of the SearchCatalog function. The vectorized versions allow running a series of queries having the same
parameter values except for either time range, AOI, or the bounding box parameters, using lapply or similar
function, and thus potentially also using the parallel processing.

dsn <- system.file("extdata", "centralpark.geojson", package = "CDSE")

aoi <- sf::read_sf(dsn, as_tibble = FALSE)

seasons <- SeasonalTimerange(from = "2021-06-01", to = "2023-08-31")

lst_summer_images <- lapply(seasons, SearchCatalogByTimerange, aoi = aoi,

collection = "sentinel-2-l2a", filter = "eo:cloud_cover < 5", with_geometry = FALSE,

client = OAuthClient)

summer_images <- do.call(rbind, lst_summer_images)

summer_images <- UniqueCatalog(summer_images, by = "tileCloudCover")

dim(summer_images)

#> [1] 14 10

summer_images <- summer_images[rev(order(summer_images$acquisitionDate)),]

row.names(summer_images) <- NULL

summer_images

#> # A tibble: 14 x 10

#> acquisitionDate tileCloudCover satellite acquisitionTimestampUTC

#> <date> <dbl> <chr> <dttm>

#> 1 2023-08-20 0 sentinel-2a 2023-08-20 15:51:57

#> 2 2023-07-31 2.53 sentinel-2a 2023-07-31 15:51:56

#> 3 2023-07-26 0.59 sentinel-2b 2023-07-26 15:51:56

#> 4 2023-07-11 4.38 sentinel-2a 2023-07-11 15:51:56

#> 5 2023-06-01 0 sentinel-2a 2023-06-01 15:51:54

#> 6 2022-08-25 1.18 sentinel-2a 2022-08-25 15:52:03

#> 7 2022-08-03 4.58 sentinel-2b 2022-08-03 16:01:51

#> 8 2022-07-19 1.37 sentinel-2a 2022-07-19 16:01:58

#> 9 2022-07-11 4.92 sentinel-2b 2022-07-11 15:51:57

#> 10 2022-06-19 1.91 sentinel-2a 2022-06-19 16:01:58

#> 11 2022-06-06 0.99 sentinel-2a 2022-06-06 15:51:58

#> 12 2022-06-04 2.76 sentinel-2b 2022-06-04 16:01:47

#> 13 2021-06-16 4.74 sentinel-2b 2021-06-16 15:51:51

#> 14 2021-06-06 0.38 sentinel-2b 2021-06-06 15:51:52

#> # i 6 more variables: acquisitionTimestampLocal <dttm>, sourceId <chr>,

#> # long.min <dbl>, lat.min <dbl>, long.max <dbl>, lat.max <dbl>

5

Evalscripts

As we shall see in the examples below, the functions that operate on remotely sensed spectral band values,
such as GetImage or GetStatistics, require an evalscript to be passed to the script argument.

An evalscript (or “custom script”) is a piece of JavaScript code that defines how the satellite data shall be
processed by the API and what values the service shall return. It is a required part of any request involving
data processing, such as retrieving an image of the area of interest or computing some statistical values for a
given period of time.

The evaluation scripts can use any JavaScript function or language structures, along with certain utility
functions provided by the API for user convenience. The Chrome V8 JavaScript engine is used for running
the evalscripts.

The evaluation scripts are passed as the script argument to the GetImage, GetStatistics, and other
functions that require an evalscript. It has to be either a character string containing the evaluation script or
the name of the file containing the script.

Although it is beyond the scope of this document to provide the detailed guidance for writing evalscripts,
we shall provide here some tips that can help you to use the the above mentioned functions without deep
understanding of the evalscripts’ internal workings. We encourage users who wish to acquire a deeper
knowledge of evalscripts to consult the API Beginners Guide and Evalscript (custom script) documentation.
You can also find a large collection of custom scripts that you can readily use in this repository.

Built-in scripts

The scripts folder of this package contains a few examples of evaluation scripts. They are very limited,
both in number and scope, and their main purpose is to provide scripts that are used in documentation and
examples. You can, of course, use them as a starting point to develop your own scripts by applying some
relatively simple modifications (for example, starting from an NDVI script, replacing bands B04 and B08
with bands B8A and B11 will give a script for the NDMI - Normalized Difference Moisture Index).

Ready-to-use examples

There is a large collection of evalscripts that you can readily use available in this repository. The scripts are
grouped by satellite constellation (Sentinel-1, Sentinel-2, . . .) and application field (Agriculture, Disaster
management, Urban planning, . . .). To use one of these scripts, the simplest way is probably to use the
“Download code” or “Copy code” icons in the upper right corner of the code window (see the illustration
in Figure 2 below). Some indices come in several flavours (Visualisation vs. Raw Values); select the one
that corresponds to your situation. If you want to do some further analysis of the images, use raw values; if
you want to simply display the image, you can use the visualisation version (you will probably also export
the result as a JPEG or PNG file). You can, of course, always get the raw values and then customise the
visualisation in your R code. Other indices might have only one version; it will likely first compute the index
value and then possibly transform it for visualisation - adapt based on your needs.

Note:

The repository also contains scripts for satellite collections that are not available through CDSE.

Awesome Spectral Indices

‘Awesome Spectral Indices’ (ASI) is a standardized, machine-readable catalogue of spectral indices used in
remote sensing for Earth Observation. It currently includes over 240 spectral indices grouped into eight
application domains: vegetation, water, burn, snow, soil, urban, radar, and kernel indices. Each spectral
index in ASI comes with a set of attributes such as a short and long name, application domain, formula,
required bands, platforms, references, date of addition, and contributor information.

6

https://docs.sentinel-hub.com/api/latest/user-guides/beginners-guide/
https://docs.sentinel-hub.com/api/latest/evalscript/
https://custom-scripts.sentinel-hub.com/custom-scripts/sentinel/
https://custom-scripts.sentinel-hub.com/custom-scripts/sentinel/
https://awesome-ee-spectral-indices.readthedocs.io/en/latest/

Figure 2: Using evalscript code from the repository

The R package rsi implements an interface to the ASI collection, providing the list of indices directly in
R as a friendly data.frame (actually a tibble). These indices can now be directly used in the ‘CDSE’
package to provide the evalscript to the functions that require one. For this purpose, we have developed the
MakeEvalScript function that will generate the script for you based on the information contained in the
data.frame of spectral indices produced by rsi::spectral_indices().

Here is an example showing how it works.

si <- rsi::spectral_indices() # get spectral indices

NDVI

ndvi <- subset(si, short_name == "NDVI") # creates one-row data.frame

ndvi_script <- MakeEvalScript(ndvi) # generates the script

GDVI

gdvi <- subset(si, short_name == "GDVI") # creates one-row data.frame

GDVI requires an extra argument provided by the user

gdvi_script <- MakeEvalScript(gdvi, nexp = 2) # generates the script

The value returned by the function is a character vector with each element representing one line of the
script. You can best visualise the script code by cat(gdvi_script, sep = "\n"), or save it to a file for
later use with cat(gdvi_script, file = "GDVI.js", sep = "\n"). To use the generated script directly
in a function, you would use something like GetImage(..., script = paste(gdvi_script, collapse =

"\n"), ...).

If the package rsi is installed, you can use a shortcut and just provide the short_name of the index as the first
argument (instead of the one-row data.frame). Please note that the short_name is case-sensitive, although
most of the names are in full upper-case. You of course still have to provide any additional arguments, if
required, in the usual way. Here is an example:

gdvi_script <- MakeEvalScript("GDVI", nexp = 2)

Finally, you can also define ad-hoc custom indices by providing a one-row data.frame crafted after the model

7

https://cran.r-project.org/package=rsi

produced by rsi::spectral_indices(). Please ensure that you respect the correct formatting, particularly
when writing the formula. Since the function does not use all the attributes of spectral indices but just
bands, formula, platform and optionally long_name (used as a comment in the header of the script), you
can provide only this information, and it does not even have to be a data.frame, a simple list will do.

We shall illustrate this with an example. Since the ASI spectral indices collection is very rich, rather
than recreating an already existing index or creating a completely dummy ad-hoc index, we shall use a
transformation of an RGB image into a greyscale image, based on this code, which strictly speaking might
not be a spectral index, but can illustrate the process.

custom_def <- list(bands = c("R", "G", "B"),

formula = "0.3 * R + 0.59 * G + 0.11 * B",

long_name = "Greyscale image",

platforms = "Sentinel-2")

custom_script <- paste(MakeEvalScript(custom_def), collapse = "\n")

We can now compare the greyscale and RGB images.

select the day with smallest cloud cover

dsn <- system.file("extdata", "centralpark.geojson", package = "CDSE")

aoi <- sf::read_sf(dsn, as_tibble = FALSE)

images <- SearchCatalog(aoi = aoi, from = "2023-06-01", to = "2023-08-31",

collection = "sentinel-2-l2a", with_geometry = TRUE,

client = OAuthClient)

day <- images[order(images$tileCloudCover),][["acquisitionDate"]][1]

get the greyscale image

grey_file <- file.path(tempdir(), "grey.tif")

GetImage(bbox = sf::st_bbox(aoi), time_range = day, script = custom_script,

file = grey_file,

collection = "sentinel-2-l2a", format = "image/tiff",

mosaicking_order = "leastCC", resolution = 20,

mask = FALSE, buffer = 100, client = OAuthClient)

get the RGB image

script_file <- system.file("scripts", "TrueColorS2L2A.js", package = "CDSE")

rgb_file <- file.path(tempdir(), "rgb.tif")

GetImage(bbox = sf::st_bbox(aoi), time_range = day, script = script_file,

file = rgb_file,

collection = "sentinel-2-l2a", format = "image/tiff",

mosaicking_order = "leastCC", resolution = 20,

mask = FALSE, buffer = 100, client = OAuthClient)

Import the rasters

rgb_img <- terra::rast(rgb_file)

grey_img <- terra::rast(grey_file)

Rescale greyscale raster values to 0 - 1 range

mM <- terra::minmax(grey_img)

grey_img <- (grey_img - mM[1])/(mM[2] - mM[1])

Set up plotting window for side-by-side display

old.par <- par(mfrow = c(1, 2))

Plot RGB image

plotRGB(rgb_img) # expects layers 1,2,3 as R,G,B

Plot greyscale image

plot(grey_img, col = grey.colors(256, start = 0, end = 1), legend = FALSE,

axes = FALSE, mar = 0)

8

https://github.com/michaeldorman/starsExtra/blob/master/R/rgb_to_greyscale.R

Figure 3: RGB and greyscale images of Central Park

Caveats:

Kernel Spectral Indices cannot be used in this context as they do not fit into the API model (they do not
operate directly on raw spectral bands).

The indices that are not available for the Sentinel-1 or Sentinel-2 platforms cannot be used, as only the
Sentinel collections are available through the CDSE API.

9

Retrieving images

Retrieving AOI satellite image as a raster object

One of the most important features of the API is its ability to extract only the part of the images covering the
area of interest. If the AOI is small as in the example below, this is a significant gain in efficiency (download,
local processing) compared to getting the whole tile image and processing it locally.

dsn <- system.file("extdata", "centralpark.geojson", package = "CDSE")

aoi <- sf::read_sf(dsn, as_tibble = FALSE)

images <- SearchCatalog(aoi = aoi, from = "2021-05-01", to = "2021-05-31",

collection = "sentinel-2-l2a", with_geometry = TRUE, client = OAuthClient)

images

#> # A tibble: 12 x 12

#> acquisitionDate tileCloudCover areaCoverage satellite acquisitionTimestamp~1

#> <date> <dbl> <dbl> <chr> <dttm>

#> 1 2021-05-30 100 100 sentinel-~ 2021-05-30 16:01:47

#> 2 2021-05-27 16.3 100 sentinel-~ 2021-05-27 15:51:51

#> 3 2021-05-25 26.5 100 sentinel-~ 2021-05-25 16:01:47

#> 4 2021-05-22 100 100 sentinel-~ 2021-05-22 15:51:51

#> 5 2021-05-20 24.3 100 sentinel-~ 2021-05-20 16:01:47

#> 6 2021-05-17 7.17 100 sentinel-~ 2021-05-17 15:51:50

#> 7 2021-05-15 28.2 100 sentinel-~ 2021-05-15 16:01:47

#> 8 2021-05-12 1.35 100 sentinel-~ 2021-05-12 15:51:50

#> 9 2021-05-10 92.7 100 sentinel-~ 2021-05-10 16:01:45

#> 10 2021-05-07 89.6 100 sentinel-~ 2021-05-07 15:51:48

#> 11 2021-05-05 100. 100 sentinel-~ 2021-05-05 16:01:45

#> 12 2021-05-02 78 100 sentinel-~ 2021-05-02 15:51:48

#> # i abbreviated name: 1: acquisitionTimestampUTC

#> # i 7 more variables: acquisitionTimestampLocal <dttm>, sourceId <chr>,

#> # long.min <dbl>, lat.min <dbl>, long.max <dbl>, lat.max <dbl>,

#> # geometry <POLYGON [°]>

summary(images$areaCoverage)

#> Min. 1st Qu. Median Mean 3rd Qu. Max.

#> 100 100 100 100 100 100

As the area is small, it is systematically fully covered by all available images. We shall select the date with
the least cloud cover, and retrieve the NDVI values as a SpatRaster from package terra. This allows further
processing of the data, as shown below by replacing all negative values with zero. The size of the pixels is
specified directly by the resolution argument. We are also adding a 100-meter buffer around the area of
interest and masking the pixels outside of the AOI.

day <- images[order(images$tileCloudCover),]$acquisitionDate[1]

script_file <- system.file("scripts", "NDVI_float32.js", package = "CDSE")

ras <- GetImage(aoi = aoi, time_range = day, script = script_file,

collection = "sentinel-2-l2a", format = "image/tiff", mosaicking_order = "leastCC",

resolution = 10, mask = TRUE, buffer = 100, client = OAuthClient)

ras

#> class : SpatRaster

#> dimensions : 383, 355, 1 (nrow, ncol, nlyr)

#> resolution : 0.0001003292, 0.0001003292 (x, y)

#> extent : -73.98355, -73.94794, 40.76322, 40.80165 (xmin, xmax, ymin, ymax)

#> coord. ref. : lon/lat WGS 84 (EPSG:4326)

#> source(s) : memory

#> name : file1715f7ddfb63a

#> min value : -0.5069648

10

#> max value : 0.9507549

ras[ras < 0] <- 0

terra::plot(ras, main = paste("Central Park NDVI on", day), cex.main = 0.75,

col = colorRampPalette(c("darkred", "yellow", "darkgreen"))(99))

−73.98 −73.96

40
.7

65
40

.7
7

40
.7

75
40

.7
8

40
.7

85
40

.7
9

40
.7

95
40

.8

0.00

0.20

0.40

0.60

0.80

Central Park NDVI on 2021−05−12

Figure 4: Central Park NDVI raster

Retrieving AOI satellite image as an image file

If we don’t want to process the satellite image locally but simply use it as an image file (to include in a report
or a Web page, for example), we can use the appropriate script that will render a three-band raster for RGB
layers (or one for black-and-white image). Here we specify the area of interest by its bounding box instead
of the exact geometry. We also demonstrate that the evaluation script can be passed as a single character
string, and provide the number of pixels in the output image rather than the size of individual pixels - it
makes more sense if the image is intended for display and not processing.

bbox <- as.numeric(sf::st_bbox(aoi))

script_text <- paste(readLines(system.file("scripts", "TrueColorS2L2A.js",

package = "CDSE")), collapse = "\n")

cat(c(readLines(system.file("scripts", "TrueColorS2L2A.js", package = "CDSE"), n = 15),

"..."), sep = "\n")

#> //VERSION=3

#> //Optimized Sentinel-2 L2A True Color

#>

#> function setup() {

#> return {

#> input: ["B04", "B03", "B02", "dataMask"],

#> output: { bands: 4 }

#> };

#> }

11

#>

#> function evaluatePixel(smp) {

#> const rgbLin = satEnh(sAdj(smp.B04), sAdj(smp.B03), sAdj(smp.B02));

#> return [sRGB(rgbLin[0]), sRGB(rgbLin[1]), sRGB(rgbLin[2]), smp.dataMask];

#> }

#>

#> ...

png <- tempfile("img", fileext = ".png")

GetImage(bbox = bbox, time_range = day, script = script_text,

collection = "sentinel-2-l2a", file = png, format = "image/png", buffer = 100,

mosaicking_order = "leastCC", pixels = c(600, 950), client = OAuthClient)

terra::plotRGB(terra::flip(terra::rast(png), direction = "vertical"))

Figure 5: Central Park image as PNG file

Retrieving a series of images in a batch

It often happens that one is interested in acquiring a series of images of a particular zone (AOI or bounding
box) for several dates, or the images of different areas of interest for the same date (probably located close to
each other so that they are visited on the same day). The GetImageBy* functions (GetImageByTimerange,
GetImageByAOI, GetImageByBbox) facilitate this task as they are specifically crafted for being called from a
lapply-like function, and thus potentially be executed in parallel. We shall illustrate how to do this with an
example.

dsn <- system.file("extdata", "centralpark.geojson", package = "CDSE")

aoi <- sf::read_sf(dsn, as_tibble = FALSE)

images <- SearchCatalog(aoi = aoi, from = "2022-01-01", to = "2022-12-31",

collection = "sentinel-2-l2a", with_geometry = TRUE,

filter = "eo:cloud_cover < 5", client = OAuthClient)

12

Get the day with the minimal cloud cover for every month -----------------------------

tmp1 <- images[, c("tileCloudCover", "acquisitionDate")]

tmp1$month <- lubridate::month(images$acquisitionDate)

agg1 <- stats::aggregate(tileCloudCover ~ month, data = tmp1, FUN = min)

tmp2 <- merge.data.frame(agg1, tmp1, by = c("month", "tileCloudCover"), sort = FALSE)

in case of ties, get an arbitrary date (here the smallest acquisitionDate,

could also be the biggest)

agg2 <- stats::aggregate(acquisitionDate ~ month, data = tmp2, FUN = min)

monthly <- merge.data.frame(agg2, tmp2, by = c("acquisitionDate", "month"), sort = FALSE)

days <- monthly$acquisitionDate

Retrieve images in parallel --

script_file <- system.file("scripts", "NDVI_float32.js", package = "CDSE")

tmp_folder <- tempfile("dir")

if (!dir.exists(tmp_folder)) dir.create(tmp_folder)

cl <- parallel::makeCluster(4)

ans <- parallel::clusterExport(cl, list("tmp_folder"), envir = environment())

ans <- parallel::clusterEvalQ(cl, {library(CDSE)})

lstRast <- parallel::parLapply(cl, days, fun = function(x, ...) {

GetImageByTimerange(x, file = sprintf("%s/img_%s.tiff", tmp_folder, x), ...)},

aoi = aoi, collection = "sentinel-2-l2a", script = script_file,

format = "image/tiff", mosaicking_order = "mostRecent", resolution = 10,

buffer = 0, mask = TRUE, client = OAuthClient)

parallel::stopCluster(cl)

Plot the images --

par(mfrow = c(3, 4))

ans <- sapply(seq_along(days), FUN = function(i) {

ras <- terra::rast(lstRast[[i]])

day <- days[i]

ras[ras < 0] <- 0

terra::plot(ras, main = paste("Central Park NDVI on", day), range = c(0, 1),

cex.main = 0.7, pax = list(cex.axis = 0.5), plg = list(cex = 0.5),

col = colorRampPalette(c("darkred", "yellow", "darkgreen"))(99))

})

13

−73.98 −73.97 −73.96 −73.95

40
.7

65
40

.7
75

40
.7

85
40

.7
95

0.0

0.2

0.4

0.6

0.8

1.0

Central Park NDVI on 2022−01−27

−73.98 −73.97 −73.96 −73.95

40
.7

65
40

.7
75

40
.7

85
40

.7
95

0.0

0.2

0.4

0.6

0.8

1.0

Central Park NDVI on 2022−02−09

−73.98 −73.97 −73.96 −73.95

40
.7

65
40

.7
75

40
.7

85
40

.7
95

0.0

0.2

0.4

0.6

0.8

1.0

Central Park NDVI on 2022−03−16

−73.98 −73.97 −73.96 −73.95

40
.7

65
40

.7
75

40
.7

85
40

.7
95

0.0

0.2

0.4

0.6

0.8

1.0

Central Park NDVI on 2022−04−15

−73.98 −73.97 −73.96 −73.95

40
.7

65
40

.7
75

40
.7

85
40

.7
95

0.0

0.2

0.4

0.6

0.8

1.0

Central Park NDVI on 2022−05−10

−73.98 −73.97 −73.96 −73.95

40
.7

65
40

.7
75

40
.7

85
40

.7
95

0.0

0.2

0.4

0.6

0.8

1.0

Central Park NDVI on 2022−06−06

−73.98 −73.97 −73.96 −73.95

40
.7

65
40

.7
75

40
.7

85
40

.7
95

0.0

0.2

0.4

0.6

0.8

1.0

Central Park NDVI on 2022−07−19

−73.98 −73.97 −73.96 −73.95

40
.7

65
40

.7
75

40
.7

85
40

.7
95

0.0

0.2

0.4

0.6

0.8

1.0

Central Park NDVI on 2022−08−25

−73.98 −73.97 −73.96 −73.95

40
.7

65
40

.7
75

40
.7

85
40

.7
95

0.0

0.2

0.4

0.6

0.8

1.0

Central Park NDVI on 2022−09−02

−73.98 −73.97 −73.96 −73.95

40
.7

65
40

.7
75

40
.7

85
40

.7
95

0.0

0.2

0.4

0.6

0.8

1.0

Central Park NDVI on 2022−10−22

−73.98 −73.97 −73.96 −73.95
40

.7
65

40
.7

75
40

.7
85

40
.7

95

0.0

0.2

0.4

0.6

0.8

1.0

Central Park NDVI on 2022−11−03

−73.98 −73.97 −73.96 −73.95

40
.7

65
40

.7
75

40
.7

85
40

.7
95

0.0

0.2

0.4

0.6

0.8

1.0

Central Park NDVI on 2022−12−13

Figure 6: Central Park monthly NDVI

In this particular example, parallelisation is not necessarily beneficial as we are retrieving only 12 images, but
for a large number of images, it can significantly reduce the execution time. Also note that we have used the
filter argument of the SearchCatalog function to limit the list of images to the tiles having cloud cover <
5%.

14

Retrieving statistics

If you are only interested in calculating the average value (or some other statistic) of some index or just
the raw band values, the Statistical API enables you to get statistics calculated based on satellite imagery
without having to download images. You need to specify your area of interest, time period, evalscript, and
which statistical measures should be calculated. The requested statistics are returned as a data.frame or as
a list.

Statistical evalscripts

All general rules for building evalscripts apply. However, there are some specifics when using evalscripts with
the Statistical API:

• The evaluatePixel() function must, in addition to other output, always return also dataMask output.
This output defines which pixels are excluded from calculations. For more details and an example, see
here.

• The default value of sampleType is FLOAT32.

• The output.bands parameter in the setup() function can be an array. This makes it possible to specify
custom names for the output bands and different output dataMask for different outputs.

It should be noted that the scripts generated by the MakeEvalScript function can be directly used to retrieve
the statistical values.

Retrieving simple statistics

Besides the time range, you have to specify the way you want the values to be aggregated over time. For this
you use the aggregation_period and aggregation_unit arguments. The aggregation_unit must be one
of day, week, month or year, and the aggregation_period providing the number of aggregation_units

(days, weeks, . . .) over which the statistics are calculated. The default values are “1” and “day”, producing
the daily statistics. If the last interval in the given time range isn’t divisible by the provided aggregation
interval, you can skip the last interval (default behavior), shorten the last interval so that it ends at the end
of the provided time range, or extend the last interval over the end of the provided time range so that all
intervals are of equal duration. This is controlled by the value of the lastIntervalBehavior argument.

dsn <- system.file("extdata", "centralpark.geojson", package = "CDSE")

aoi <- sf::read_sf(dsn, as_tibble = FALSE)

script_file <- system.file("scripts", "NDVI_CLOUDS_STAT.js", package = "CDSE")

daily_stats <- GetStatistics(aoi = aoi, time_range = c("2023-07-01", "2023-07-31"),

collection = "sentinel-2-l2a", script = script_file, mosaicking_order = "leastCC",

resolution = 100, aggregation_period = 1, client = OAuthClient)

weekly_stats <- GetStatistics(aoi = aoi, time_range = c("2023-07-01", "2023-07-31"),

collection = "sentinel-2-l2a", script = script_file, mosaicking_order = "leastCC",

resolution = 100, aggregation_period = 7, client = OAuthClient)

weekly_stats_extended <- GetStatistics(aoi = aoi,

time_range = c("2023-07-01", "2023-07-31"), collection = "sentinel-2-l2a",

script = script_file, mosaicking_order = "leastCC", resolution = 100,

aggregation_period = 1, aggregation_unit = "w", lastIntervalBehavior = "EXTEND",

client = OAuthClient)

daily_stats

#> # A tibble: 26 x 9

#> date output band min mean max stDev sampleCount

#> <date> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <int>

#> 1 2023-07-01 statistics ndvi_value 0 2.97e-1 0.781 2.02e-1 1120

#> 2 2023-07-01 statistics cloud_cover 0 1.15e+1 59 1.64e+1 1120

15

https://documentation.dataspace.copernicus.eu/APIs/SentinelHub/Statistical.html
https://docs.sentinel-hub.com/api/latest/api/statistical/#exclude-pixels-from-calculations-datamask-output

#> 3 2023-07-04 statistics ndvi_value 0 1.31e-3 0.0809 7.35e-3 1120

#> 4 2023-07-04 statistics cloud_cover 6.5 e+1 6.5 e+1 65 0 1120

#> 5 2023-07-06 statistics ndvi_value 0 5.93e-1 0.941 3.15e-1 1120

#> 6 2023-07-06 statistics cloud_cover 0 3.12e-2 1 1.74e-1 1120

#> 7 2023-07-09 statistics ndvi_value 9.02e-3 1.44e-2 0.0182 1.60e-3 1120

#> 8 2023-07-09 statistics cloud_cover 6.5 e+1 6.5 e+1 65 0 1120

#> 9 2023-07-11 statistics ndvi_value 0 5.86e-1 0.923 3.08e-1 1120

#> 10 2023-07-11 statistics cloud_cover 0 3.85e-2 1 1.92e-1 1120

#> # i 16 more rows

#> # i 1 more variable: noDataCount <int>

weekly_stats

#> # A tibble: 8 x 10

#> from to output band min mean max stDev sampleCount

#> <date> <date> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <int>

#> 1 2023-07-01 2023-07-07 statisti~ ndvi~ 0 0.593 0.941 0.315 1120

#> 2 2023-07-01 2023-07-07 statisti~ clou~ 0 0.0312 1 0.174 1120

#> 3 2023-07-08 2023-07-14 statisti~ ndvi~ 0 0.586 0.923 0.308 1120

#> 4 2023-07-08 2023-07-14 statisti~ clou~ 0 0.0385 1 0.192 1120

#> 5 2023-07-15 2023-07-21 statisti~ ndvi~ 0 0.341 0.876 0.238 1120

#> 6 2023-07-15 2023-07-21 statisti~ clou~ 0 18.9 100 27.4 1120

#> 7 2023-07-22 2023-07-28 statisti~ ndvi~ 0 0.551 0.864 0.283 1120

#> 8 2023-07-22 2023-07-28 statisti~ clou~ 0 0.0385 2 0.204 1120

#> # i 1 more variable: noDataCount <int>

weekly_stats_extended

#> # A tibble: 10 x 10

#> from to output band min mean max stDev sampleCount

#> <date> <date> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <int>

#> 1 2023-07-01 2023-07-07 statist~ ndvi~ 0 0.593 0.941 0.315 1120

#> 2 2023-07-01 2023-07-07 statist~ clou~ 0 0.0312 1 0.174 1120

#> 3 2023-07-08 2023-07-14 statist~ ndvi~ 0 0.586 0.923 0.308 1120

#> 4 2023-07-08 2023-07-14 statist~ clou~ 0 0.0385 1 0.192 1120

#> 5 2023-07-15 2023-07-21 statist~ ndvi~ 0 0.341 0.876 0.238 1120

#> 6 2023-07-15 2023-07-21 statist~ clou~ 0 18.9 100 27.4 1120

#> 7 2023-07-22 2023-07-28 statist~ ndvi~ 0 0.551 0.864 0.283 1120

#> 8 2023-07-22 2023-07-28 statist~ clou~ 0 0.0385 2 0.204 1120

#> 9 2023-07-29 2023-08-04 statist~ ndvi~ 0 0.574 0.909 0.301 1120

#> 10 2023-07-29 2023-08-04 statist~ clou~ 0 0.0553 11 0.575 1120

#> # i 1 more variable: noDataCount <int>

In this example we have demonstrated that a week can be specified as either 7 days or 1 week.

Retrieving statistics with percentiles

Besides the basic statistics (min, max, mean, stDev), one can also request to compute the percentiles. If the
percentiles requested are 25, 50, and 75, the corresponding output is renamed ‘q1’, ‘median’, and ‘q3’.

daily_stats <- GetStatistics(aoi = aoi, time_range = c("2023-07-01", "2023-07-31"),

collection = "sentinel-2-l2a", script = script_file, mosaicking_order = "leastCC",

resolution = 100, aggregation_period = 1, percentiles = c(25, 50, 75),

client = OAuthClient)

head(daily_stats, n = 10)

#> # A tibble: 10 x 12

#> date output band min q1 median mean q3 max

#> <date> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

16

#> 1 2023-07-01 statistics ndvi_v~ 0 0.135 0.272 2.97e-1 0.467 0.781

#> 2 2023-07-01 statistics cloud_~ 0 0 0 1.15e+1 27 59

#> 3 2023-07-04 statistics ndvi_v~ 0 0 0 1.31e-3 0 0.0809

#> 4 2023-07-04 statistics cloud_~ 6.5 e+1 65 65 6.5 e+1 65 65

#> 5 2023-07-06 statistics ndvi_v~ 0 0.407 0.728 5.93e-1 0.835 0.941

#> 6 2023-07-06 statistics cloud_~ 0 0 0 3.12e-2 0 1

#> 7 2023-07-09 statistics ndvi_v~ 9.02e-3 0.0134 0.0145 1.44e-2 0.0154 0.0182

#> 8 2023-07-09 statistics cloud_~ 6.5 e+1 65 65 6.5 e+1 65 65

#> 9 2023-07-11 statistics ndvi_v~ 0 0.398 0.724 5.86e-1 0.822 0.923

#> 10 2023-07-11 statistics cloud_~ 0 0 0 3.85e-2 0 1

#> # i 3 more variables: stDev <dbl>, sampleCount <int>, noDataCount <int>

weekly_stats <- GetStatistics(aoi = aoi, time_range = c("2023-07-01", "2023-07-31"),

collection = "sentinel-2-l2a", script = script_file, mosaicking_order = "leastCC",

resolution = 100, aggregation_period = 7, percentiles = seq(10, 90, by = 10),

client = OAuthClient)

head(weekly_stats, n = 10)

#> # A tibble: 8 x 19

#> from to output band min P.10.0 P.20.0 P.30.0 P.40.0 P.50.0

#> <date> <date> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

#> 1 2023-07-01 2023-07-07 statisti~ ndvi~ 0 0 0.241 0.535 0.649 0.728

#> 2 2023-07-01 2023-07-07 statisti~ clou~ 0 0 0 0 0 0

#> 3 2023-07-08 2023-07-14 statisti~ ndvi~ 0 0 0.246 0.530 0.651 0.724

#> 4 2023-07-08 2023-07-14 statisti~ clou~ 0 0 0 0 0 0

#> 5 2023-07-15 2023-07-21 statisti~ ndvi~ 0 0.0320 0.111 0.184 0.242 0.311

#> 6 2023-07-15 2023-07-21 statisti~ clou~ 0 0 0 0 2 4

#> 7 2023-07-22 2023-07-28 statisti~ ndvi~ 0 0 0.237 0.520 0.612 0.680

#> 8 2023-07-22 2023-07-28 statisti~ clou~ 0 0 0 0 0 0

#> # i 9 more variables: mean <dbl>, P.60.0 <dbl>, P.70.0 <dbl>, P.80.0 <dbl>,

#> # P.90.0 <dbl>, max <dbl>, stDev <dbl>, sampleCount <int>, noDataCount <int>

Retrieving a series of statistics in a batch

Just as when retrieving satellite images, one can be interested in acquiring a series of statistics for a particular
zone (AOI or bounding box) for several dates, or the statistics of different zones for the same periods. The
GetStatisticsBy* functions (GetStatisticsByTimerange, GetStatisticsByAOI, GetStatisticsByBbox)
facilitate this task as they are specifically crafted for being called from a lapply-like function, and thus
potentially be executed in parallel. The following example illustrates how to do this.

dsn <- system.file("extdata", "centralpark.geojson", package = "CDSE")

aoi <- sf::read_sf(dsn, as_tibble = FALSE)

ndvi_script <- paste(MakeEvalScript(

list(

bands = c("N", "R"),

formula = "(N - R)/(N + R)",

long_name = "Normalized Difference Vegetation Index",

platforms = "Sentinel-2"

)

), collapse = "\n")

seasons <- SeasonalTimerange(from = "2020-06-01", to = "2023-08-31")

lst_stats <- lapply(seasons, GetStatisticsByTimerange, aoi = aoi,

collection = "sentinel-2-l2a", script = ndvi_script, mosaicking_order = "leastCC",

resolution = 100, aggregation_period = 7L, client = OAuthClient)

weekly_stats <- do.call(rbind, lst_stats)

weekly_stats <- weekly_stats[order(weekly_stats$from),]

17

row.names(weekly_stats) <- NULL

head(weekly_stats, n = 5)

#> # A tibble: 5 x 10

#> from to output band min mean max stDev sampleCount

#> <date> <date> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <int>

#> 1 2020-06-01 2020-06-07 default index -1 0.408 0.868 0.521 1120

#> 2 2020-06-08 2020-06-14 default index -1 0.539 0.943 0.389 1120

#> 3 2020-06-15 2020-06-21 default index -1 0.556 1 0.502 1120

#> 4 2020-06-22 2020-06-28 default index -1 0.396 0.850 0.412 1120

#> 5 2020-06-29 2020-07-05 default index -1 0.569 0.930 0.379 1120

#> # i 1 more variable: noDataCount <int>

18

Copernicus Data Space Ecosystem services status

If you encounter any connection issues while using this package, please check your internet connection first.
If your internet connection is working fine, you can also check the status of the Copernicus Data Space
Ecosystem services by visiting this webpage. It provides a quasi real-time status of the various services
provided. Once you are on the webpage, scroll down to Sentinel Hub, and pay particular attention to the
Process API (used for retrieving images), Catalog API (used for catalog searches), and Statistical API (used
for retrieving statistics).

Figure 7: Copernicus Data Space Ecosystem Service Health

19

https://dashboard.dataspace.copernicus.eu/#/service-health

	Introduction
	API authentication
	Note

	Collections
	Catalog search
	Catalog by season

	Evalscripts
	Built-in scripts
	Ready-to-use examples
	Awesome Spectral Indices

	Retrieving images
	Retrieving AOI satellite image as a raster object
	Retrieving AOI satellite image as an image file
	Retrieving a series of images in a batch

	Retrieving statistics
	Statistical evalscripts
	Retrieving simple statistics
	Retrieving statistics with percentiles
	Retrieving a series of statistics in a batch

	Copernicus Data Space Ecosystem services status

