
NOAA Technical Memorandum NMFS–SEFSC–546

User’s Guide to ADMB2R:

A Set of AD Model Builder Output Routines

Compatible with the R Statistics Language

Jennifer L. Martin

Michael H. Prager

Andi Stephens

U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration

National Marine Fisheries Service

Southeast Fisheries Science Center

75 Virginia Beach Drive

Miami, Florida 33149

October, 2006

Revised October, 2007

Software version 1.10

ii

NOAA Technical Memorandum NMFS–SEFSC–546

User’s Guide to ADMB2R:
A Set of AD Model Builder Output Routines
Compatible with the R Statistics Language

Jennifer L. Martin
Northeast Fisheries Science Center

Woods Hole, Massachusetts

Michael H. Prager
Andi Stephens
Southeast Fisheries Science Center

Beaufort, North Carolina

U. S. Department of Commerce
Carlos M. Gutierrez, Secretary

National Oceanic and Atmospheric Administration
Conrad C. Lautenbacher, Jr., Under Secretary for Oceans and Atmosphere

National Marine Fisheries Service
William T. Hogarth, Assistant Administrator for Fisheries

Revised October, 2007

Software version 1.10

This Technical Memorandum series is used for documentation and timely communication of preliminary results,
interim reports, or similar special-purpose information. Although the memoranda are not subject to complete
formal review, editorial control, or detailed editing, they are expected to reflect sound professional work.

Notice of nonendorsement

The National Marine Fisheries Service (NMFS) does not approve, recommend or endorse any

proprietary product or material mentioned in this publication. No reference shall be made

to NMFS, or to this publication furnished by NMFS, in any advertising or sales promotion

which would imply that NMFS approves, recommends, or endorses any proprietary product or

proprietary material mentioned herein which has as its purpose any intent to cause directly or

indirectly the advertised product to be used or purchased because of this NMFS publication.

Suggested citation

Martin, J. L., M. H. Prager, and A. Stephens. 2006. User’s guide to ADMB2R: A set of AD

Model Builder output routines compatible with the R statistics language. U.S. Department of

Commerce, NOAA Technical Memorandum NMFS–SEFSC–546. iv + 24 p.

Contacting the authors

The authors can be contacted by email at Mike.Prager@noaa.gov and Jennifer.Martin@

noaa.gov and will endeavor to provide support to users.

Revision history

August, 2005 Distributed for internal SEFSC use

October, 2006 Released as NOAA Technical Memorandum

November, 2006 Minor corrections made on page 6.

October, 2007 Revisions to illustrate further use of info list.

Obtaining this document and software

Primary distribution of this document and software will be online. The document will be

available from the publications entry of the Southeast Fisheries Science Center Web site,

http://sefsc.nmfs.noaa.gov/

The document and software will be submitted to the R Comprehensive Archive Network (CRAN)

for distribution,

http://cran.r-project.org/

Paper copies are best obtained by dowloading and printing the PDF file. Copies will also be

available from the National Technical Information Service, 5285 Port Royal Road, Springfield,

VA 22161, telephone (703) 605-6000.

iv

http://cran.r-project.org/
http://sefsc.nmfs.noaa.gov/
mailto:Jennifer.Martin@noaa.gov
mailto:Jennifer.Martin@noaa.gov
mailto:Mike.Prager@noaa.gov

Contents

Front cover . i

Title page . iii

Contents . v

1 Introduction . 1

1.1 Overview of ADMB2R . 1

1.2 The ADMB2R distribution . 1

1.3 R in brief . 2

1.4 Reporting Problems in ADMB2R . 2

1.5 ADMB2R and FishGraph . 2

1.6 Data Structures in ADMB2R . 3

2 Usage considerations . 4

2.1 Compiler compatibility . 4

2.2 Writing Objects . 4

2.3 Precision . 4

2.4 Error checking . 5

2.5 Object names . 5

2.6 Missing values . 5

3 Using ADMB2R with ADMB . 6

3.1 Including the ADMB2R source . 6

3.2 Including calls to ADMB2R functions . 6

4 Typical sequence of calls . 7

5 Specifications . 8

5.1 Open and close output file . 8

5.2 Info list . 10

5.3 Comment object . 12

5.4 Vector, elementwise . 13

5.5 Vector, at once . 15

5.6 Matrix object . 16

5.7 Data frame object . 19

v

5.8 List object . 22

6 Acknowledgments . 23

Bibliography . 23

Appendices . 24

A Sample code to call ADMB2R . 24

B Output listing . 27

vi

1 Introduction

1.1 Overview of ADMB2R

ADMB2R is a collection of AD Model Builder routines for saving complex data structures into a

file that can be read in the R statistics environment with a single command.1 ADMB2R provides

both the means to transfer data structures significantly more complex than simple tables, and

an archive mechanism to store data for future reference.

We developed this software because we write and run computationally intensive numerical

models in Fortran, C++, and AD Model Builder. We then analyse results with R. We desired to

automate data transfer to speed diagnostics during working-group meetings.

We thus developed the ADMB2R interface to write an R data object (of type list) to a plain-text

file. The master list can contain any number of matrices, values, dataframes, vectors or lists,

all of which can be read into R with a single call to the dget function. This allows easy transfer

of structured data from compiled models to R.

Having the capacity to transfer model data, metadata, and results has sharply reduced the

time spent on diagnostics, and at the same time, our diagnostic capabilities have improved

tremendously. The simplicity of this interface and the capabilities of R have enabled us to

automate graph and table creation for formal reports. Finally, the persistent storage in files

makes it easier to treat model results in analyses or meta-analyses devised months—or even

years—later.

We offer ADMB2R to others in the hope that they will find it useful.

Please note that ADMB2R is considered an experimental product by NOAA and is re-

leased to the scientific community for testing and research purposes. Neither the U.S.

government nor the authors make any warranty of correct operation.

The X2R interface is available in three forms: for Fortran as For2R, for C/C++ as C2R, and

for AD Model Builder as ADMB2R. This guide specifically describes the ADMB2R interface. The

other packages, including documentation, are available from the authors or from CRAN.

1.2 The ADMB2R distribution

ADMB2R is intended for use with AD Model Builder (here, ADMB), a commercial modeling pack-

age that is a C++ code generator.1,2 Therefore, the ADMB2R user must have a license for ADMB

and one for a suitable C++ compiler.

The ADMB2R distribution contains the following:

• This guide, file admb2r-guide.pdf.

• The ADMB2R source, file admb2r.cpp.

1Mention of commercial or noncommercial products does not imply endorsement by NOAA, US Department of
Commerce, or any other government agency. No such endorsement is made or implied.

2Otter Research Ltd., P.O. Box 2040, Sidney, B.C., V8L 3S3, Canada. http://www.otter-rsch.com/

1

http://www.otter-rsch.com/

• A sample template file, test-admb2r.tpl set up for ADMB2R and with calls to ADMB2R

routines. (This is a modified version of file catage.tpl supplied by Otter Research and

is used by permission.)

• A data file, test-admb2r.dat, needed to run the sample template file.

• A set of sample ADMB2R calls, file make-Rfile.cxx. This is incorporated into the sample

template file by an #include preprocessor directive.

• A copy of the output produced by the sample calls, file test-admb2r.rdat.

• A more complex example of a fishery catch–age model is provided in the Example2

directory. This example includes ADMB template, data file, and file of ADMB2R calls

needed to generate an R-compatible output file that works with our group of automated

R graphics functions, FishGraph. The directory also includes an R script (go.r) that

reads the generated file, sources the FishGraph functions, and generates several hundred

graphs. (For the latter to work, FishGraph must be installed separately.)

1.3 R in brief

The R statistics environment (R Development Core Team 2004) is a free, open-source pro-

grammable statistics system implemented as a dialect of the S language. R offers modern

statistics and excellent graphics, which are controlled from a command line, by programming,

or from one of several graphical interfaces. R can be downloaded from the Comprehensive R

Archive Network (CRAN) or its mirrors, e. g., from

http://cran.r-project.org/

All CRAN mirrors contain links to the R Project home page and to R documentation (much

available for free download) at several levels of complexity. Among commercially available

books, an introductory text is provided by Dalgaard (2002). More extensive treatments, still

at an introductory level, are given by Maindonald and Braun (2003) and Verzani (2005). Two

widely used reference books are Venables and Ripley (2003) and Venables and Ripley (2000).

1.4 Reporting Problems in ADMB2R

The authors will greatly appreciate receiving reports of any bugs found, so that they can be

corrected. We will also attempt to include user improvements or extensions. Such information

can be sent to Mike.Prager@noaa.gov.

1.5 ADMB2R and FishGraph

The authors have developed a series of R graphics functions that produce typical graphs of

fisheries stock-assessment model output. We have used them for several years in our as-

sessment work. The FishGraph functions are currently available in beta-test versions from

M.H. Prager’s Web site, http://www.sefsc.noaa.gov/mprager/. We anticipate making them

available on the CRAN archive at some later date.

2

http://www.sefsc.noaa.gov/mprager/
mailto:Mike.Prager@noaa.gov
http://cran.r-project.org/

Each FishGraph function takes an argument that is an R list, making FishGraph highly compat-

ible and easy to use with X2R. The required structure of that list, described in the FishGraph

manual, allows for extensive user expansion or customization.

By using X2R to save model results and FishGraph to generate graphs, it is possible to produce

hundreds of diagnostic plots in seconds. The plots are saved automatically as files for use in

reports.

The ADMB2R distribution includes an example of an ADMB template (program) that writes

a fairly complex R list structured to work with FishGraph. We recommend examining that

example if you would like to use any of the automatic graphing provided by FishGraph.

FishGraph is not a formal R package, but rather a series of R functions that we use in our work.

We offer it to colleagues to use as is or to modify for their own needs.

1.6 Data Structures in ADMB2R

Output from ADMB2R is stored as an R list object in a structured ASCII file readable by R with a

dget function call. An R list is a container object that holds other data items. Each component

of a list is named, and subcomponents (e. g., the rows and columns of a contained matrix) may

be named as well.

If output from ADMB2R is stored in (for example) a file named test.rdat, it can be read into

R as a list named results with the single R function call

results = dget("test.rdat")

Then the resulting R list object will contain the data saved by the ADMB2R calls, along with

corresponding object names, metadata, and data structures specified by the user. Much of the

usefulness of ADMB2R is that the files it creates may contain complicated data structures, and

yet are read with a single statement.

The following data types may be components of the master list:

• Comment. A subroutine is provided for writing R comments to the output file.

• Info list. An info list in ADMB2R is a list of character strings in name–value pairs, in-

tended for storing metadata such as the analyst’s name, units used in calculations, etc.

A date–time stamp can be included automatically.

The info list subroutines can also be used to easily write an R list whose components are

single numeric values, such as a collection of parameter estimates.

• Vector of real or integer numbers or character strings. An R vector may be used to store

a series of name–value pairs, such as scalars from a model run, or an entire vector at

once, such as output from or input to a modeling run.

• Complete vector of numbers, written all at once from an array in the modeling source.

3

• Matrix. A two-dimensional array of real or integer values.

• Data frame. The R data frame is like the “dataset” of some statistics packages: a set of

samples (stored as rows) on different variables (stored as columns). ADMB2R supports

giving meaningful column names and, optionally, row names, to data frames.

• List. A list may contain any number of other data objects, such as vectors and lists.

Like most statistics software, R supports the concept of missing (unobserved) values in data

objects. ADMB2R supports writing missing values to its output file in R-compatible form.

2 Usage considerations

2.1 Compatibility with C++ compilers

ADMB2R was written to the ANSI/ISO C++ standard. It has been tested with the following

combinations of ADMB and compilers:

With ADMB 6.03: Borland C++ compiler, version 5.5.1,3, and MinGW release of gcc, version

2.95.

with ADMB 7.7.1: Borland C++ compiler, version 5.5.1, and MinGW release of gcc, version 3.4.2.

Compatibility of ADMB2R with ADMB when used with other compilers depends on how ADMB

interacts with a compiler’s standard libraries. We have verified that ADMB2R is not compat-

ible with Microsoft Visual C++ 6.0, but we believe it might work with later versions. We will

appreciate reports of compatibility or incompatibility from users. We are working to provide

compatibility with a wider range of compilers.

2.2 Writing Objects

Data objects are written by calling ADMB2R routines from the user’s ADMB program. Objects

may require one, two, or more calls for complete writing. Most objects require a call to initialize

the object, additional call(s) to write data, and a call to finish writing the object.

2.3 Precision

Values are output by ADMB2R using the compiler’s default precision. (This is likely to be about

6 digits.) Scientific notation is used when needed. When opening the output file, the user can

specify that more or less precision be used in data transfer (§5.1).

3As of the date of this writing, the Borland compiler was available for free download at http://www.codegear.
com/tabid/139/Default.aspx

4

http://www.codegear.com/tabid/139/Default.aspx
http://www.codegear.com/tabid/139/Default.aspx

2.4 Error checking

Basic error checking is provided by C++ compilers. ADMB2R checks for some additional errors.

It generates a log file, admb2r.log, that contains any errors encountered at runtime.

Many types of error are unchecked by ADMB2R. For example, it is possible to call ADMB2R

routines to create a file that cannot be parsed correctly by R. This might happen if the ADMB

call to close an object is missing or if matrix or vector indices are referenced incorrectly.

2.5 Object names

The ADMB2R system does not enforce correct naming of R data objects and object components—

that is up to the user! Legal R names vary by context,4 but in general, a syntactic name in S

should begin with a letter and may contain only upper- and lower-case letters, digits, and the

period (dot) character. Names so formed are handled correctly by ADMB2R.

In a few cases, ADMB2R is more restrictive than R; this avoids problems when the R parser

reads the file generated by ADMB2R.

• The R language allows the underscore character in names, but we advise against it, and

we have not tested ADMB2R with such names.5

• Some names beginning with a dot are allowed by R, but they may be handled incorrectly

by ADMB2R. Therefore, names such as ".height" should be avoided.

• The R system allows a nonstandard name to be used in some contexts if the name is

enclosed in quotation marks. Such usage is not compatible with ADMB2R, so names such

as "2y" or "abc&2" should be avoided.

Dimension names of arrays (dimnames) are not considered object or component names; there-

fore, they may be given numeric names in ADMB2R.6 However, a data frame is a form of R

list, not an R array. Columns of the data frame are list components and must have standard

syntactic names. In contrast, row names of data frames may be composed solely of digits.

2.6 Missing values

Missing values are supported by ADMB2R in several ways. When opening the output file (§5.1),

the user can supply a number that represents missing data (e. g., −99999). Data that match

that number will be written as missing values (represented NA in R). In writing a vector object

element by element, the user can explicitly set a datum missing by omitting its value (§5.4). In

writing a data frame object, missing values are inserted automatically when a vector doesn’t

span the full length of the data frame. Alternatively, a boolean vector can indicate missing

values (§5.7). In writing a matrix, a boolean matrix can indicate missing values (§5.6) as well.

Details are given with the call specifications, in the sections indicated.

4See section 7.14 in the R 2.6.2 FAQ.
5In other versions of the S language, the underscore can be an assignment operator.
6More precisely, they may be given names that are strings composed solely of digits.

5

3 Using ADMB2R with ADMB

3.1 Including the ADMB2R source

To make the ADMB2R functions available, the user must incorporate the ADMB2R source

code with an #include preprocessor directive in GLOBALS_SECTION of the model. The file

admodel.h, distributed with ADMB, must be referenced in the same way. It may be neces-

sary to refer to the files by full pathnames unless they are in the same directory as the ADMB

program. Here is an example of the added statements under Windows:

//**

GLOBALS_SECTION

#include "c:\admb\include\admodel.h"

#include "c:\admb2r\admb2r.cpp"

//**

3.2 Including calls to ADMB2R functions

Calls to ADMB2R functions are executed during the reporting phase of ADMB execution. It is

recommended that users write their ADMB2R code in a separate file (we use files with a .cxx

extension) and incorporate them with an #include preprocessor directive at the bottom of

the ADMB template file’s REPORT_SECTION. Alternatively, the ADMB2R function calls can be

written directly into the REPORT_SECTION. The following section of a template file shows two

lines of conventional ADMB output, followed by ADMB2R output:

//**

REPORT_SECTION

....

report << "Bmsy " << B_msy_out << endl;

report << "F/Fmsy " << fullF/F_msy_out << endl;

....

#include "make_Robject.cxx" // ADMB2R code

//**

6

4 Typical sequence of calls

The following sequence of calls could be used to write a typical (if brief) data object. The

example writes a master list containing an info list, a vector with two elements, a matrix, and

a list containing a matrix and a vector. For simplicity, calls are shown here without arguments

and are indented structurally.

Level Call Action

0 open_r_file Open the master data list

1 open_r_info_list Open the info object

2 wrt_r_item Write an info element

1 close_r_info_list Close the info object

1 open_r_vector Open a vector

2 wrt_r_item Write a vector element

2 wrt_r_item Write a vector element

1 close_r_vector Close the vector

1 open_r_matrix Open a matrix

2 wrt_r_matrix Write the matrix

1 close_r_matrix Close the matrix

1 open_r_list Open a list

2 open_r_matrix Open a matrix as part of the list

3 wrt_r_matrix Write the matrix

2 close_r_matrix Close the matrix

2 open_r_vector Open a vector as part of the list

3 wrt_r_item Write a vector element

2 close_r_vector Close the vector

1 close_r_list Close the list

0 close_r_file Close the master data list

A more complete example is given in Appendix A on page 24.

7

5 Specifications

The following subsections include calling specifications of all functions in ADMB2R, grouped

by type of object written. Objects may require several calls for complete writing. Most require

a function call to initialize the object, call(s) to write data, and a call to close the object.

A table of arguments is given for each set of functions. Each line in the table includes the

argument name; its data type (real, integer, character or logical); whether the argument is

required or optional; and its meaning. When calling routines, arguments must be given in the

order specified.

Caution: The interpretation of actual arguments in C++ and ADMB2R is based on their

sequence in the call. A function call that includes a value for any optional argument

must also include all optional arguments that precede it in the call specification.

5.1 Open and close output file

Subroutine open_r_file opens the output file and writes initialization information to it. This

also opens the enclosing R list in the file. Subroutine close_r_file finalizes the output data,

closes the master list, and closes the file. We recommend writing ADMB2R output files with a

consistent file extension, such as .rdat.

� �
open_r_file(fname, numdigits, missingval)

...

close_r_file()
� �
5.1.1 Table of arguments

Argument Type Required Description

fname Character Required Name of file to open for writing.

numdigits Integer Optional Digits after the decimal point in transfer of real

values. If not given, output uses the compiler’s

default precision, typically about 6 digits.

missingval Real Optional Missing value flag. Any datum matching this value

(see §5.1.2) will be output as the R missing-value

indicator, NA.

* See caution box on optional arguments, p. 8.

8

5.1.2 Missing-value comparisons

Because comparison of floating-point values for equality is unreliable, ADMB2R uses a fuzzy

test to decide whether a datum matches the missing-value flag. Let d be the datum being

written andm the missing-value flag. Then NA is written instead of the datum when |m−d| <
ε. The ADMB2R code declares ε = 10−6. The user can change the value of ε by modifying its

declaration in the ADMB2R code.

5.1.3 Example 1

open_r_file("run22.rdat");

...

close_r_file();

Example 1 creates an R-compatible output file, run22.rdat. All data are written using default

precision. No missing-value flag is specified.

5.1.4 Example 2

open_r_file("run23.rdat", 5, -99999);

...

close_r_file();

Example 2 creates output file run23.rdat. Data are written with five digits after the decimal

point. Any datum equal to −99999 will be replaced with NA (but see §5.1.2 for details). Because

the optional argument for missing-value flag is given, the optional argument for precision is

required here.

5.1.5 Example 3

open_r_file(adprogram_name + ".rdat", 12);

...

close_r_file();

This code uses the built-in ADMB variable adprogram_name to construct an output file name

like that of the ADMB template file, but with .rdat extension. Data values are written with

twelve digits after the decimal point. No missing-value flag is specified.

5.1.6 Notes

These two functions must be the first and last calls in the sequence that writes an R object.

ADMB2R allows only one file holding an R object to be written at a time. It must be completed

and closed before another is written.

9

5.2 Info list

The info list functions were designed for storing a list of metadata as a series of name–value

pairs (Example 1, §5.2.2). The series is written to an R list object, to which a date stamp can be

written as the first list component. At least one additional component must be written.

The same functions can also be used to write any R list whose components are single values.

That might be, for example, the list of parameter estimates from a model (Example 2, §5.2.3).

To write an R list whose components are matrices or vectors of length > 1, the list-writing

functions described in §5.8 should be used. They are slightly more complex but offer more

power and flexibility.� �
open_r_info_list(name, writestamp)

wrt_r_item(name, value)

close_r_info_list()
� �
5.2.1 Table of arguments

Argument Type Required Description

open_r_info_list()

name Character Required Name of list written

writestamp Boolean Optional Flag to write date/time stamp to info

list. Default: true

wrt_r_item()

name Character Required Name of info item

value Character, boolean,

integer or double

Optional Value of info item. If not specified, NA is

written.

5.2.2 Example 1—List of metadata

open_r_info_list("info");

wrt_r_item("units.length", "mm");

wrt_r_item("units.mass", "mt");

wrt_r_item("run.title", title);

wrt_r_item("finaldraft", false);

close_r_info_list();

The example demonstrates writing an info object to store metadata on an analysis. In the

fourth line, the actual argument title is assumed to be a C++ character variable.

10

Because the call to open_r_info_list in this example does not include optional argument

writestamp, the default value true is used. Thus, the name "date" and a character represen-

tation of the current date and time form the first pair in the info list.

5.2.3 Example 2—List of parameter estimates

open_r_info_list("parms", false);

wrt_r_item("vb.li", vonbert.linf);

wrt_r_item("vb.k", vonbert.k);

wrt_r_item("vb.t0", vonbert.k);

wrt_r_item("msy", MSY);

close_r_info_list();

In this example, an R list is written that holds a set of parameter values from an analysis.

Each estimate is stored as a separate list component. Because argument writestamp is set to

false, a timestamp is not written to the list by ADMB2R.

Parameters and other values stored this way are compatible with our set of graphics functions,

FishGraph.

11

5.3 Comment object

5.3.1 Summary

For troubleshooting purposes, or whenever the ADMB2R output file will be viewed directly, it

can be useful to insert R comments. These are ignored by the R parser, just as they are when

entered at the command line.� �
wrt_r_comment(text)
� �

5.3.2 Examples

wrt_r_comment("INFO object follows this comment.")

...

wrt_r_comment("This file written with revised source.")

5.3.3 Notes

Because comments are ignored by the R parser, they are not part of the data object once it has

been read into R.

12

5.4 Vector object (elementwise)

5.4.1 Overview

In ADMB2R, a vector can be stored by two different methods. This section describes storing a

vector element by element, with a name stored for each element. That might be useful, e. g.,

when recording several scalars from a model run. Data types (real, integer, logical, character)

should not be mixed in the same vector, as an R vector is always of a single data type.

A vector can also be stored by ADMB2R all at once. That would be useful, e. g., when storing an

existing vector from an AD Model Builder program. For storing a vector all at once, see §5.5.

The design of ADMB2R also accommodates ordered data as matrices (§5.6) or as columns of a

data frame (§5.7).

Three functions are used to store a vector elementwise:

� �
open_r_vector(name)

wrt_r_item(name, value)

...

close_r_vector()
� �
5.4.2 Table of arguments

Argument Type Required Description

open_r_vector()

name Character Required Name of vector

wrt_r_item()

name Character Required Name of vector element

value Character, boolean,

integer or double

Optional Value of vector element. If not specified,

NA is written.

5.4.3 Example

open_r_vector("parms");

wrt_r_item("vb.li", linf);

wrt_r_item("vb.k", vbk);

wrt_r_item("vb.t0");

wrt_r_item("MSY", msy);

close_r_vector();

13

5.4.4 Notes

The example shows use of a vector to store four quantities from an analysis in fish population

dynamics. The first, second, and fourth elements of the vector are stored from ADMB variables;

the third element is set to a missing value.

A single element from an ADMB vector or matrix can be given as the value argument using

subscript notation; for example, myvector(3) or mymatrix(2,5).

When using the resulting vector in R, components can be selected with literal subscripting.

For example, consider the vector written above and named parms. Once the master object

containing this vector has been read into R and named (e. g.) result, the MSY value in the

vector can be referenced and assigned to a variable as follows:

localmsy <- result$parms["MSY"]

14

5.5 Vector object (written at once)

5.5.1 Overview

This function writes a vector of numeric values (real or integer) to the output file in a single

function call. To store a vector one element at a time, see §5.4.� �
wrt_r_complete_vector(name, xvec, name_vec, isna, na_vector)
� �

5.5.2 Table of arguments

Argument Type Required Description

name Character Required Name of vector

xvec Real or integer Required ADMB vector of values

name_vec Integer Optional Integer vector for element names

isna Boolean Optional Signals presence of na_vector argument.

Default: false.

na_vector Boolean Optional Where true, corresponding element of xvec

vector is written as missing (NA).

Argument name_vec is completely optional: even when a missing value vector is supplied, it is

not necessary to supply name_vec. When names are supplied, they are accessible from R with

the names function and will appear when the vector is printed.

If used, name_vec and na_vector each must be the same length as xvec. They need not have

the same index values, but they must contain the same number of elements as xvec.

5.5.3 Examples

wrt_r_complete_vector(ht, heights);

wrt_r_complete_vector(ht.labeled, heights, year);

wrt_r_complete_vector(trial.results, P_values, true, invalid_trials);

5.5.4 Notes

The first line of the example writes a vector named ht from the AD Model Builder vector

heights. Elements of ht are not labeled. No elements are set to NA.

The second line of the example writes a vector named ht.labeled from the (same) ADMB

vector heights. The ADMB integer vector year is used to label elements of ht.labeled.

The third line writes an unlabeled vector named trial.results from the ADMB vector P_values.

The third argument (true), indicates that the following argument, invalid_trials, is a

Boolean vector indicating elements of P_values to be set to NA.

15

5.6 Matrix object

A matrix in R is a two-dimensional array, with every element having the same data type. This

version of ADMB2R can write matrices of real or integer numbers. If the types are mixed, R will

interpret the matrix as real.

Matrices may have row or column names, both, or neither. Names can be taken from the

indices of the ADMB data matrix, or they can be provided explicitly by a call or calls to

wrt_r_namevector before closing the matrix.� �
open_r_matrix(name)

wrt_r_matrix(xx, rowoption, coloption, isna, na_matrix)

wrt_r_namevector(rowvec, i_start, i_stop) // Call type 1

wrt_r_namevector(start, stop, inc) // Call type 2

...

close_r_matrix()
� �
5.6.1 Arguments of open_r_matrix, wrt_r_matrix

Argument Type Required Description

name Character Required Name of matrix.

xx Real or integer Required ADMB matrix of values.

rowoption Integer Optional Flag to write row names—

0: Omit names (default).

1: Row indices become names.

2: Names supplied in subsequent call to

wrt_r_namevector.

coloption Integer Optional Flag to write column names—

0: Omit names (default).

1: Column indices become names.

2: Names supplied in subsequent call to

wrt_r_namevector.

isna Boolean Optional Signals presence of na_matrix argument.

Default: false.

na_matrix Boolean Optional Where true, corresponding element of xx

matrix is written as missing (NA).

* See caution box on optional arguments, p. 8.

When using indices for row or column names, consider that ADMB matrices are not neces-

sarily indexed from 1. For example, a matrix might have rows indexed from 1950 to 2005,

designating calendar years of the study.

16

5.6.2 Arguments of wrt_r_namevector

Two types of call to wrt_r_namevector are supported. The first type generates dimension

names from an ADMB data vector of integers. The second type generates names as a regular

sequence of numbers.

First call type

wrt_r_namevector(rowvec, i_start, i_stop);

Argument Type Required Description

rowvec Integer Required Vector of values for row or column names.

i_start Integer Optional First index of rowvec to use.

i_stop Integer Optional Last index of rowvec to use.

* See caution box on optional arguments, p. 8.

Second call type

wrt_r_namevector(start, stop, inc);

Argument Type Required Description

start Integer Required First number in generated sequence.

stop Integer Required Last number in generated sequence.

inc Integer Optional Increment of generated sequence. Default: 1.

5.6.3 Example 1

open_r_matrix("n.at.age");

wrt_r_matrix(naa, 1, 2);

wrt_r_namevector(all_years, 5, 20);

close_r_matrix();

In Example 1, with 1 passed for rowoption, row names are taken from the row indices of

the ADMB matrix naa. With 2 passed for coloption, column names are written by the call to

wrt_r_namevector; they are the 16 elements of the vector all_years indexed 5 through 20.

17

5.6.4 Example 2

open_r_matrix("l.at.age");

wrt_r_matrix(laa, 2);

wrt_r_namevector(9, 27, 3);

close_r_matrix();

In this example, a matrix named l.at.age is written from the ADMB matrix laa. Row names

are written as the series, {9,12,15, . . . ,27}. No column names are written.

5.6.5 Example 3

open_r_matrix("l.at.age");

wrt_r_matrix(laa, 1, 1, true, na_matrix);

close_r_matrix();

In this example, a matrix named l.at.age is written from the ADMB matrix laa. The actual

argument true indicates that an additional, boolean matrix (here named na_matrix) is sup-

plied, in which positions of true values correspond to missing values in laa. Row and column

names for l.at.age are derived from the row and column indices of laa.

18

5.7 Data frame object

5.7.1 Overview

A data frame in R is a collection of columns (data vectors) of equal length; it forms a rectan-

gular structure similar to a matrix. Unlike a matrix, columns may hold differing data types. A

data frame typically contains a set of samples (stored as rows) on several variables (stored as

columns). ADMB2R can write columns containing real numbers or integers. A data frame is

opened with open_r_df, and each column is written in turn with wrt_r_df_col.

Function wrt_r_df_col can be called in two forms, as illustrated here. The first writes a

column from an ADMB vector. The second writes a generated integer sequence.� �
open_r_df(name, start, stop, writerow)

wrt_r_df_col(name, xx, shift, isna, na_vector)

wrt_r_df_col(name, start, stop, inc, isna, na_vector)

...

wrt_r_namevector(rowvec, i_start, i_stop) // Call type 1

wrt_r_namevector(start, stop, inc) // Call type 2

close_r_df()
� �
Row and column names. Each column of a data frame has a name. The rows may have names,

which refer to rows across all columns. Row names are written by calling wrt_r_namevector

(§5.6.2, §5.7.5) immediately before closing the data frame.

Missing values. Missing values can be written in three different ways. They can be added by

the internal coordinate system (described next), by use of the global missing-value indicator

(§5.1), or by providing boolean vectors to indicate missing values.

Internal coordinates. When ADMB2R opens a data frame, an internal coordinate system index-

ing the rows is set up from values passed for arguments start and stop. This coordinate

system can be used to provide row names. More importantly, it is compared to the indices of

each ADMB vector written as a column; those indices are expected to match the internal system

or—if shift is passed—to match it when (s − 1) is added to the vector’s indices, where s is

the value of shift. If the vector is shorter than the internal coordinates, ADMB2R pads it with

missing values at the start, finish, or both to align its indices with the internal coordinates.

When a data frame is closed by ADMB2R, its internal coordinate system ceases to exist.

In understanding the internal coordinate system, remember that ADMB vectors are not neces-

sarily indexed from 1. For example, an analysis covering fifty years might include a variable

indexed as cost(1951) through cost(2000). In that case, a data frame might be written using

ADMB2R with 1951 passed for start and 2000 passed for stop. A second variable, observed

for only part of the study, might be indexed as price(1962) through price(2000). When

written as a dataframe column, price would be positioned by aligning its indices with the

internal coordinate system, and missing values would be assigned at its beginning.

19

5.7.2 Arguments of open_r_df

Argument Type Required Description

name Character Required Name of data frame

start Integer Required First value of the data frame coordinate system

(internal to ADMB2R)

stop Integer Required Last value of the data frame coordinate system

writerow Integer Optional Integer flag to write data frame row names—

0: No row names (default).

1: Generated sequence from start to stop by 1.

2: Names provided by subsequent call to

wrt_r_namevector.

5.7.3 Arguments of wrt_r_df_col(name,xx,shift,isna,na_vector)

Argument Type Required Description

name Character Required Name of column.

xx Integer, real Optional ADMB data vector to be written.

shift Integer Optional If given, (shift-1) is added to the vector’s

indices before aligning them with data frame’s

coordinate system. May be positive or negative.

isna Boolean Optional Must be true if na_vector is supplied.

na_vector Boolean Optional Vector of same length as xx. Where true,

corresponding data element will be NA.

* See caution box on optional arguments, p. 8.

5.7.4 Arguments of wrt_r_df_col(name, start, stop, inc, isna, na_vector)

Argument Type Required Description

name Character Required Name of column.

start Integer Optional Starting value of generated sequence.

stop Integer Optional Ending value of generated sequence.

inc Integer Optional Increment value of generated sequence.

isna Boolean Optional Must be true if na_vector is supplied.

na_vector Boolean Optional Vector of same length as xx. Where true,

corresponding data element will be NA.

* See caution box on optional arguments, p. 8.

20

5.7.5 Example of writing data frame

1 firstyear = 1951;

2 lastyear = 1990;

3 ...

4 open_r_df("timeseries", firstyear, lastyear, 2);

5 wrt_r_df_col("year", yr, firstyear);

6 wrt_r_df_col("yearx", firstyear, lastyear);

7 wrt_r_df_col("biomass", b, 0, true, na_vector);

8 wrt_r_df_col("cpue.obsd", u_obsd);

9 wrt_r_df_col("cpue.pred", u_pred);

10 wrt_r_namevector(rownums);

11 close_r_df();

In the example, we write a data frame named timeseries, whose full range of years is 1951–

1990. The ADMB variables used are as follows—

• firstyear and lastyear are scalar variables.

• yr is an ADMB vector indexed from 1 to 40.

• b is an ADMB vector indexed from 1951 to 1990, with missing values for b(1983) through

b(1985).

• na_vector is a vector of the same size and indexed the same as b. All its values are

false, except for the three years in which b has missing values, which are true.

• u_obsd is a vector of observed CPUE values, indexed from 1971 to 1990.

• u_pred is a vector of predicted CPUE values, indexed from 1951 to 1990.

Explanation of the example, by line number—

1–2. firstyear and lastyear are assigned values.

4. The data frame is opened, with internal coordinate system running from 1951 to 1990.

An eventual call to wrt_r_namevector is indicated.

5. Vector yr is written as a column named year. It is shifted so that its first element aligns

with the first row of the data frame.

6. Column yearx is written as a sequence of integers, 1951 to 1990.

7. Vector b is written as column biomass. Boolean vector na_vector is passed to mark the

missing values in biomass.

8. Vector u_obsd is written as column cpue.obsd. It is padded with 20 missing values at

the start.

9. Vector u_pred is written as column cpue.pred.

10. Row names are written from ADMB integer vector rownums.

11. The data frame is closed.

21

5.8 List object

A list in R is a collection of other data objects, for example, of vectors, matrices, data frames,

model results (not supported in ADMB2R), or other lists. Each component of a list has a unique

name.

In this version of ADMB2R, a list may contain vectors, matrices, data frames, info objects, and

other lists.� �
open_r_list(name)

...

close_r_list()
� �
The single argument name is a quoted character string.

Between opening and closing a list, the user should open and write the components of (data

objects contained by) the list.

5.8.1 Example

open_r_list("laa.matrices");

open_r_matrix("laa.obsd");

wrt_r_matrix(laa_o);

close_r_matrix();

open_r_matrix("laa.pred");

wrt_r_matrix(laa_p);

close_r_matrix();

close_r_list();

The example shows the use of a list to store two matrices. The matrices need not be of the

same shape or size.

22

6 Acknowledgments

The authors are grateful for the support of the U.S. National Marine Fisheries Service, NOAA,

during development of this software. In particular, support was provided by the NMFS South-

east Fisheries Science Center, NMFS Northeast Fisheries Science Center, and NMRS National

Fisheries Toolbox program. K. W. Shertzer and E. H. Williams helped us test and refine

ADMB2R; R. Cheshire and C. Krouse read drafts of the three X2R manuals; and D. Fournier

helped us better understand his AD Model Builder software. Among other compilers, the GNU

C++ compiler gcc and the open-source Fortran 95 compiler g95 (due to A. Vaught) were used

in testing. We thank the authors of those tools for their many efforts. Finally, we thank R.

Gentleman, R. Ihaka, and the R Core Team, for without them, R would not exist.

Bibliography

Dalgaard, P. 2002. Introductory statistics with R. Springer, New York. 288 p.

Maindonald, J., and J. Braun. 2003. Data Analysis and Graphics Using R: An Example-Based

Approach. Cambridge University Press, New York. 362 pp.

R Development Core Team. 2004. R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Last

accessed: October 10, 2006.

Venables, W. N., and B. D. Ripley. 2000. S Programming. Springer, New York. 264 p.

Venables, W. N., and B. D. Ripley. 2003. Modern Applied Statistics with S, fourth edition. Springer,

New York. 195 p.

Verzani, J. 2005. Using R for Introductory Statistics. Chapman & Hall/CRC, Boca Raton. 414 p.

23

http://www.R-project.org

Appendix A Listing of example file make-Rfile.cxx

The sample file, when incorporated into a suitable ADMB program, generates an output file

readable with R. It demonstrates most of the features described in the guide.

//==
// Example ADMB code calling ADMB2R functions to create a file containing
// an R object as output from an AD Model Builder model.
//
// This source should be included in the ADMB REPORT_SECTION. See ADMB2R
// User’s Guide. This file by Andi Stephens, revised by Mike Prager.
// Address inquiries to
// Michael Prager <mike.prager@noaa.gov> or
// Jennifer Martin <jennifer.martin@noaa.gov>
//
// This file is part of the ADMB2R distribution.
//==
// Open the output file using the AD Model Builder template name, and
// specify 6 digits of precision

open_r_file(adprogram_name + ".rdat", 6, -999);

// Example of metadata stored in an INFO object (R list)

open_r_info_list("info", true);
wrt_r_item("title", "Sample Catch at Age Model");
wrt_r_item("species", "Flack Lake Trout");
wrt_r_item("units.len", "mm");

close_r_info_list();

// Example of storing scalar parameter estimates into an R list

open_r_info_list("parms", false);
wrt_r_item("M", M);
wrt_r_item("avg_F", avg_F);
wrt_r_item("pred_B", pred_B);
wrt_r_item("log_q", log_q);
wrt_r_item("log_popscale", log_popscale);
wrt_r_item("Obj.fcn", f);

close_r_info_list();

// Example of writing a COMPLETE VECTOR object
// NOTE: vector "ages" was declared in the DATA_SECTION for use here as:
// ivector ages(1,nages);

for (int i=1;i<=nages;i++) ages(i) = (i); //populate the ages vector
wrt_r_complete_vector("log.sel", log_sel, ages);

// Example of a MATRIX object with no row or column names

open_r_matrix("F.at.age");
wrt_r_matrix(F);

close_r_matrix();

// Example of a MATRIX object with row names, but no column names;
// rows specified by constructing a series since a vector of years
// is not a variable

open_r_matrix("N.at.age.1");
wrt_r_matrix(N, 2);
wrt_r_namevector(1968, 1979);

close_r_matrix();

// Example of the same matrix as above object with row and column names;
// rows specified by constructing a series since the a vector of years

24

// is not a variable; columns specified by constructing a series since
// a vector of ages isn’t supplied

open_r_matrix("N.at.age.2");
wrt_r_matrix(N, 2, 2);
wrt_r_namevector(1968, 1979);
wrt_r_namevector(3, 9);

close_r_matrix();

// Example of a DATA FRAME object composed of two items.
// The data frame will span 1 to the number of ages. The vectors
// span 2 to the number of ages, so NAs will be written for the first
// data point in the two vectors. The row names will be included,
// similar to the matrix object just before this one.

open_r_df("aseries", 1, nages, 2);
wrt_r_df_col("N.pred", predicted_N);
wrt_r_df_col("N.ratio", ratio_N);
wrt_r_namevector(3, 9);

close_r_df();

// Example of a LIST object

open_r_list("C.at.age.mats");

// List component #1: matrix with row and column names

open_r_matrix("Est");
wrt_r_matrix(C, 1, 1);

close_r_matrix();

// List component #2: another matrix with row and column names

open_r_matrix("Obs");
wrt_r_matrix(obs_catch_at_age, 1, 1);

close_r_matrix();

close_r_list();

wrt_r_comment("Begin testing permutations of matrix calls unused above");
wrt_r_comment("No rownames; col names from matrix");

open_r_matrix("Obs_catch_at_age");
wrt_r_matrix(obs_catch_at_age,0,1);

close_r_matrix();

wrt_r_comment("No names, NA matrix");

for (i = 1; i <= nyrs; i++) {
for (int j = 1; j<= nages; j++){

NA[i][j] = 0;
}

}
NA[1][1] = 1;
NA[2][2] = 1;
NA[nyrs-1][nages-1] = 1;
NA[nyrs][nages] = 1;

open_r_matrix("Obs_catch_at_age");
wrt_r_matrix(obs_catch_at_age,0,0,1,NA);

close_r_matrix();

testcol = column(obs_catch_at_age, 1);

wrt_r_comment("DF column from series");
wrt_r_comment("Then obs_catch 1,3:6 shifted by one.");
open_r_df("Series", 1966, 1970, 2);

wrt_r_df_col("First", 5,10);

25

wrt_r_df_col("Second", testcol(6,10), 1967);
wrt_r_namevector(1,5);

close_r_df();

// close file

close_r_file();

// End of example

26

Appendix B Listing of resulting R-compatible file test-admb2r.rdat

This example shows the data transferred by running the ADMB2R calls in Appendix A and

reading the resulting file into R.

> x <- dget("test-admb2r.rdat")
> # Let’s see what’s in x:
> print(x)
$info
$info$date
[1] "Friday, 05 Oct 2007 at 14:25:22"

$info$title
[1] "Sample Catch at Age Model"

$info$species
[1] "Flack Lake Trout"

$info$units.len
[1] "mm"

$parms
$parms$M
[1] 0.3

$parms$avg_F
[1] 0.7084428

$parms$pred_B
[1] 1674.736

$parms$log_q
[1] -3.583497

$parms$log_popscale
[1] 7.543647

$parms$Obj.fcn
[1] 330.4038

$log.sel
1 2 3 4 5 6 7

-3.7432470 -1.0202060 0.6132520 1.7387920 1.6700060 0.7414037 0.7414037

$F.at.age
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.004118935 0.06271720 0.3212096 0.9899298 0.9241253 0.3651271 0.3651271
[2,] 0.005342071 0.08134136 0.4165943 1.2838940 1.1985490 0.4735533 0.4735533
[3,] 0.004816444 0.07333788 0.3756040 1.1575670 1.0806190 0.4269586 0.4269586
[4,] 0.006786159 0.10332980 0.5292095 1.6309610 1.5225440 0.6015659 0.6015659
[5,] 0.005721330 0.08711618 0.4461703 1.3750440 1.2836390 0.5071731 0.5071731
[6,] 0.008840350 0.13460810 0.6894029 2.1246580 1.9834230 0.7836618 0.7836618
[7,] 0.006944907 0.10574700 0.5415893 1.6691140 1.5581610 0.6156383 0.6156383
[8,] 0.005173629 0.07877657 0.4034586 1.2434110 1.1607570 0.4586216 0.4586216
[9,] 0.006181739 0.09412662 0.4820747 1.4856970 1.3869370 0.5479865 0.5479865
[10,] 0.006863532 0.10450800 0.5352434 1.6495560 1.5399040 0.6084248 0.6084248
[11,] 0.007660283 0.11663980 0.5973770 1.8410450 1.7186630 0.6790536 0.6790536
[12,] 0.012383660 0.18856050 0.9657229 2.9762430 2.7784010 1.0977620 1.0977620

$N.at.age.1
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

1968 3925.3690 2303.208 2803.705 1634.4120 251.84320 87.93243 18.881240
1969 8319.1780 2896.032 1602.533 1506.4140 449.93750 74.04560 45.215570
1970 6943.2130 6130.163 1977.830 782.6979 309.07790 100.54040 34.162480
1971 3044.9250 5118.944 4220.204 1006.4170 182.21370 77.70927 48.598930
1972 3013.3460 2240.480 3419.924 1841.6720 145.93930 29.44828 31.544790
1973 4165.2520 2219.606 1521.313 1621.6560 344.94520 29.95066 13.137390
1974 5339.9670 3058.536 1437.236 565.6222 143.53020 35.16186 10.133930

27

1975 7091.6370 3928.566 2038.449 619.4844 78.94984 22.38485 14.073920
1976 6172.0740 5226.504 2689.884 1008.7690 132.35350 18.32114 10.483080
1977 4654.6430 4544.207 3524.068 1230.5030 169.15060 24.49673 7.846513
1978 3831.7460 3424.658 3032.372 1528.6310 175.14640 26.86664 9.876071
1979 586.7187 2816.966 2257.735 1236.1090 179.66300 23.26520 10.092890

$N.at.age.2
3 4 5 6 7 8 9

1968 3925.3690 2303.208 2803.705 1634.4120 251.84320 87.93243 18.881240
1969 8319.1780 2896.032 1602.533 1506.4140 449.93750 74.04560 45.215570
1970 6943.2130 6130.163 1977.830 782.6979 309.07790 100.54040 34.162480
1971 3044.9250 5118.944 4220.204 1006.4170 182.21370 77.70927 48.598930
1972 3013.3460 2240.480 3419.924 1841.6720 145.93930 29.44828 31.544790
1973 4165.2520 2219.606 1521.313 1621.6560 344.94520 29.95066 13.137390
1974 5339.9670 3058.536 1437.236 565.6222 143.53020 35.16186 10.133930
1975 7091.6370 3928.566 2038.449 619.4844 78.94984 22.38485 14.073920
1976 6172.0740 5226.504 2689.884 1008.7690 132.35350 18.32114 10.483080
1977 4654.6430 4544.207 3524.068 1230.5030 169.15060 24.49673 7.846513
1978 3831.7460 3424.658 3032.372 1528.6310 175.14640 26.86664 9.876071
1979 586.7187 2816.966 2257.735 1236.1090 179.66300 23.26520 10.092890

$aseries
N.pred N.ratio

3 NA NA
4 429.302500 0.1863933
5 1728.234000 0.6164107
6 636.761000 0.3895963
7 46.687690 0.1853840
8 8.270396 0.0940540
9 5.749983 0.3045342

$C.at.age.mats
$C.at.age.mats$Est

1 2 3 4 5 6 7
1 13.941170 121.1532 670.7917 909.0004 134.22420 23.449780 5.035240
2 38.297610 195.8555 476.6139 970.5528 279.44990 24.415620 14.909280
3 28.825510 375.1892 540.0599 476.8911 181.09360 30.506380 10.365710
4 17.794450 435.2752 1518.0020 726.7909 127.61940 30.803040 19.264040
5 14.854210 161.8405 1075.2690 1228.6640 94.01607 10.248660 10.978300
6 31.679000 242.3181 665.9130 1295.2390 269.08350 14.330680 6.285930
7 31.934220 265.8581 526.2487 412.5265 101.58650 14.178680 4.086410
8 31.619730 257.6167 590.5583 392.4451 48.17720 7.195165 4.523783
9 32.866270 406.5814 899.5692 698.5611 88.67582 6.768924 3.873076
10 27.510730 390.5950 1278.7220 892.9574 119.08430 9.792302 3.136559
11 25.266520 326.6844 1195.7590 1159.9530 129.30960 11.633960 4.276598
12 6.240365 420.1974 1236.7730 1080.5080 154.68990 13.755950 5.967596

$C.at.age.mats$Obs
1 2 3 4 5 6 7

1 13 129 646 954 99 19 4
2 19 169 416 1031 243 47 18
3 40 354 606 479 152 18 7
4 32 606 1424 644 157 23 17
5 0 226 1178 1156 116 16 5
6 2 165 593 982 428 22 11
7 53 209 560 410 30 0 4
8 0 105 674 446 16 2 2
9 46 422 838 726 70 4 4
10 3 310 1224 1068 65 0 0
11 14 354 1264 1172 69 0 6
12 6 429 1222 1067 192 0 0

$Obs_catch_at_age
1 2 3 4 5 6 7

[1,] 13 129 646 954 99 19 4
[2,] 19 169 416 1031 243 47 18
[3,] 40 354 606 479 152 18 7
[4,] 32 606 1424 644 157 23 17
[5,] 0 226 1178 1156 116 16 5
[6,] 2 165 593 982 428 22 11
[7,] 53 209 560 410 30 0 4
[8,] 0 105 674 446 16 2 2

28

[9,] 46 422 838 726 70 4 4
[10,] 3 310 1224 1068 65 0 0
[11,] 14 354 1264 1172 69 0 6
[12,] 6 429 1222 1067 192 0 0

$Obs_catch_at_age
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] NA 129 646 954 99 19 4
[2,] 19 NA 416 1031 243 47 18
[3,] 40 354 606 479 152 18 7
[4,] 32 606 1424 644 157 23 17
[5,] 0 226 1178 1156 116 16 5
[6,] 2 165 593 982 428 22 11
[7,] 53 209 560 410 30 0 4
[8,] 0 105 674 446 16 2 2
[9,] 46 422 838 726 70 4 4
[10,] 3 310 1224 1068 65 0 0
[11,] 14 354 1264 1172 69 NA 6
[12,] 6 429 1222 1067 192 0 NA

$Series
First Second

1 5 NA
2 6 2
3 7 53
4 8 0
5 9 46

>

29

30

	Front cover
	Title page
	Contents
	1 Introduction
	1.1 Overview of ADMB2R
	1.2 The ADMB2R distribution
	1.3 R in brief
	1.4 Reporting Problems in ADMB2R
	1.5 ADMB2R and FishGraph
	1.6 Data Structures in ADMB2R

	2 Usage considerations
	2.1 Compiler compatibility
	2.2 Writing Objects
	2.3 Precision
	2.4 Error checking
	2.5 Object names
	2.6 Missing values

	3 Using ADMB2R with ADMB
	3.1 Including the ADMB2R source
	3.2 Including calls to ADMB2R functions

	4 Typical sequence of calls
	5 Specifications
	5.1 Open and close output file
	5.2 Info list
	5.3 Comment object
	5.4 Vector, elementwise
	5.5 Vector, at once
	5.6 Matrix object
	5.7 Data frame object
	5.8 List object

	6 Acknowledgments
	Bibliography
	Appendices
	A Sample code to call ADMB2R
	B Output listing

