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1 Introduction
The function dmm() sets up equations which relate the observed covariance of pairs of individuals or dyads, to
their expectation in terms of postulated genetic and environmental variance and covariance components. These
equations, termed dyadic model equations (DME’s), can be solved directly to obtain estimates of variance and
covariance components.

In versions of dmm() prior to dmm_2.1-1 the various genetic and environmental variance/covariance com-
ponents could only be estimated each as a single component applying to the whole population represented by
the data. Each component mapped to one column of the W matrix which contains the coefficients of the dyadic
model equations.

From version dmm_2.1-1, components can be estimated separately for each class of a specific effect which
is coded as a factor in the dataframe. Such components are termed class specific components. Each class
specific component occupies two or more columns of the W matrix, depending on the number of classes in the
specific effect, and results in two or more component estimates.

This document deals with how to use dmm() to obtain class specific component estimates, and with how
the class specific components translate into genetic parameters and estimates of genetic change.

2 Getting started with class specific component estimates
We assume that the reader is already familiar with use of dmm(). If not consult the document dmmOverview.pdf [1],
and get some practice with the usual nonspecific component estimates before attempting a class-specific case.

We shall use the small demonstration dataset sheep.df. This has three traits, and three fixed effect factors
called "Sex", "Year", and "Tb". "Year" is year of birth for each animal, and "Tb" stands for "type of birth"
which is coded as "S" for single born animals, and "T" for twins. Prepare the data ass follows:

> library(dmm)

> data(sheep.df)

> sheep.mdf <- mdf(sheep.df,pedcols=c(1:3),factorcols=c(4:6),ycols=c(7:9),

sexcode=c("M","F"),relmat=c("E","A"))

2.1 Parameters specific to one factor
Assume that we wish to estimate additive genetic variance "VarG(Ia)" separately for each Sex. This is possible
even though each individual can only be of one Sex, because the additive genetic relationship matrix allows the
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model fitting to exploit genetic relationships between animals of like and unlike Sex. The same is not possible
for the individual environmental variance component "VarE(I)". It can only be estimated ignoring Sex. So we
leave "VarE(I)" as a "components" argument and put "VarG(Ia)" as a "specific.components" argument in the
call to dmm(), as follows

> sheep.fitss <- dmm(sheep.mdf, Ymat ~ 1 + Year + Sex,

components=c("VarE(I)"),

specific.components=list(Sex=c("VarG(Ia)")))

Dyadic mixed model fit for datafile: sheep.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 9

no of traits (l) = 3

Setup antemodel matrices:

No of factors with specific components: 1

No of non-specific components partitioned: 1

No of factors with specific components: 1

No of specific variance components partitioned (per component): 2

No of specific variance and covariance components partitioned (per component): 4

no of individuals in pedigree (m) = 44

no of individuals with data and X codes (n) = 37

Rank of X: 9 No of Fixed Effects: 9

OLS-fixed-effects step completed:

DME substep:

No of components defined = 5

No of components estimable = 5

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:

>

So we see a bit more output tabbing than with a normal (non-specific) dmm run. It is simply letting us know
that it has been given one factor called Sex which has specific component(s), that there is one non-specific
component, and one specific component, that the specific classes are "Sex:M" and "Sex:F", and that it will
make 4 classes of component called "Sex:F:F", "Sex:F:M", "Sex:M:F", and "Sex:M:M". The first and last of
these 4 classes will contain variance component estimates for each Sex, and the second and third of these 4
classes will contain cross-sex covariance component estimates.

If that seems complex, it will become clear as we view the results. We first look at the component estimates
exactly as fitted, using the summary() function.

> summary(sheep.fitss, traitset = c("Cww", "Diam"))

Call:

summary.dmm(object = sheep.fitss, traitset = c("Cww", "Diam"))

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Cww 4.1000 0.267 3.57615 4.624

Year1982 Cww 0.7667 0.378 0.02583 1.508

Year1983 Cww 0.0441 0.356 -0.65442 0.743

Year1984 Cww 0.3881 0.339 -0.27687 1.053

Year1985 Cww 0.6361 0.323 0.00203 1.270

Year1986 Cww 0.9470 0.328 0.30315 1.591
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Year1987 Cww 0.4588 0.333 -0.19334 1.111

Year1988 Cww -0.2237 0.564 -1.32829 0.881

SexM Cww 0.2237 0.178 -0.12614 0.574

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Diam 20.5667 0.565 19.459 21.674

Year1982 Diam 0.7333 0.799 -0.833 2.299

Year1983 Diam -0.3978 0.753 -1.874 1.079

Year1984 Diam -0.4623 0.717 -1.868 0.943

Year1985 Diam -0.0308 0.684 -1.371 1.309

Year1986 Diam 0.9085 0.694 -0.452 2.269

Year1987 Diam 0.2085 0.703 -1.170 1.587

Year1988 Diam -1.6913 1.191 -4.026 0.644

SexM Diam 0.2246 0.377 -0.515 0.964

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 0.107 0.0596 -0.01012 0.224

Sex:F:F:VarG(Ia) Cww:Cww 0.119 0.0564 0.00872 0.230

Sex:F:M:VarG(Ia) Cww:Cww 0.199 0.0821 0.03804 0.360

Sex:M:F:VarG(Ia) Cww:Cww 0.199 0.0821 0.03804 0.360

Sex:M:M:VarG(Ia) Cww:Cww 0.332 0.0778 0.17986 0.485

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Diam 0.0276 0.128 -0.2233 0.279

Sex:F:F:VarG(Ia) Cww:Diam 0.2244 0.121 -0.0127 0.462

Sex:F:M:VarG(Ia) Cww:Diam 0.4124 0.176 0.0668 0.758

Sex:M:F:VarG(Ia) Cww:Diam 0.3711 0.176 0.0254 0.717

Sex:M:M:VarG(Ia) Cww:Diam 0.5040 0.167 0.1765 0.832

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww 0.0276 0.128 -0.2233 0.279

Sex:F:F:VarG(Ia) Diam:Cww 0.2244 0.121 -0.0127 0.462

Sex:F:M:VarG(Ia) Diam:Cww 0.3711 0.176 0.0254 0.717

Sex:M:F:VarG(Ia) Diam:Cww 0.4124 0.176 0.0668 0.758

Sex:M:M:VarG(Ia) Diam:Cww 0.5040 0.167 0.1765 0.832

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 0.0585 0.268 -0.467 0.584

Sex:F:F:VarG(Ia) Diam:Diam 0.8586 0.254 0.362 1.356

Sex:F:M:VarG(Ia) Diam:Diam 0.5472 0.370 -0.177 1.271

Sex:M:F:VarG(Ia) Diam:Diam 0.5472 0.370 -0.177 1.271

Sex:M:M:VarG(Ia) Diam:Diam 1.4274 0.350 0.741 2.114

>

We see that component "VarG(Ia)" is estimated for all 4 classes simultneously, and there is just one overall
estimate for "VarE(I)". The columns of these tables do not sum to phenotypic variance "VarP(I)", as they
would for a nonspecific case. To get the components summing properly to "VarP(I)" we need to reorganize the
summary listing into classes. This is done with the new function csummary() as follows

> csummary(sheep.fitss,traitset=c("Cww","Diam"))

3



Call:

csummary_specific(object = object, traitset = traitset, componentset = componentset,

bytrait = bytrait, fixedgls = fixedgls, digits = digits)

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Specific class: Sex:F:F

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 0.107 0.0596 -0.01012 0.224

VarG(Ia) Cww:Cww 0.119 0.0564 0.00872 0.230

VarP(I) Cww:Cww 0.226 0.0359 0.15552 0.296

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Diam 0.0276 0.1280 -0.2233 0.279

VarG(Ia) Cww:Diam 0.2244 0.1210 -0.0127 0.462

VarP(I) Cww:Diam 0.2521 0.0771 0.1009 0.403

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww 0.0276 0.1280 -0.2233 0.279

VarG(Ia) Diam:Cww 0.2244 0.1210 -0.0127 0.462

VarP(I) Diam:Cww 0.2521 0.0771 0.1009 0.403

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 0.0585 0.268 -0.467 0.584

VarG(Ia) Diam:Diam 0.8586 0.254 0.362 1.356

VarP(I) Diam:Diam 0.9171 0.162 0.600 1.234

Specific class: Sex:F:M

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww NA NA NA NA

VarG(Ia) Cww:Cww 0.199 0.0821 0.038 0.36

VarP(I) Cww:Cww NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Diam NA NA NA NA

VarG(Ia) Cww:Diam 0.412 0.176 0.0668 0.758

VarP(I) Cww:Diam NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww NA NA NA NA

VarG(Ia) Diam:Cww 0.371 0.176 0.0254 0.717

VarP(I) Diam:Cww NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam NA NA NA NA

VarG(Ia) Diam:Diam 0.547 0.37 -0.177 1.27

VarP(I) Diam:Diam NA NA NA NA
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Specific class: Sex:M:F

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww NA NA NA NA

VarG(Ia) Cww:Cww 0.199 0.0821 0.038 0.36

VarP(I) Cww:Cww NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Diam NA NA NA NA

VarG(Ia) Cww:Diam 0.371 0.176 0.0254 0.717

VarP(I) Cww:Diam NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww NA NA NA NA

VarG(Ia) Diam:Cww 0.412 0.176 0.0668 0.758

VarP(I) Diam:Cww NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam NA NA NA NA

VarG(Ia) Diam:Diam 0.547 0.37 -0.177 1.27

VarP(I) Diam:Diam NA NA NA NA

Specific class: Sex:M:M

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 0.107 0.0596 -0.0101 0.224

VarG(Ia) Cww:Cww 0.332 0.0778 0.1799 0.485

VarP(I) Cww:Cww 0.439 0.0560 0.3294 0.549

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Diam 0.0276 0.128 -0.223 0.279

VarG(Ia) Cww:Diam 0.5040 0.167 0.177 0.832

VarP(I) Cww:Diam 0.5317 0.120 0.296 0.767

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww 0.0276 0.128 -0.223 0.279

VarG(Ia) Diam:Cww 0.5040 0.167 0.177 0.832

VarP(I) Diam:Cww 0.5317 0.120 0.296 0.767

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 0.0585 0.268 -0.467 0.584

VarG(Ia) Diam:Diam 1.4274 0.350 0.741 2.114

VarP(I) Diam:Diam 1.4859 0.252 0.992 1.980

>

So now we have 4 separate variance component summary tables. The first and last ( called Sex:F:F and
Sex:M:M) are the variance components for each Sex level, and "VarE(I)" is listed there because it is assumed
that the overall estimate of "VarE(I)" applies to each Sex level. Because "VarE(I)" is estimable, we are able to
calculate "VarP(I)" for these two Sex levels.

The second and third tables ( called Sex:F:M and Sex:M:F) are the cross-sex component estimates. It can
be seen that only "VarG(Ia)" is estimable as a cross-sex parameter. "VarE(I)" and "VarP(I)" are marked ’NA’ to
make clear that they are not estimable for the cross-sex cases. Note that we retain the two symmetric cross-sex
cases (F:M and M:F) because for the cross-sex-cross-trait cases they are not the same.
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The variance components are now grouped in a way suitable for estimation of genetic parameters, so
if we use the gsummary() function we get the same 4 groupings, but converted to heritabilities and genetic
correlations, as follows:

> gsummary(sheep.fitss,traitset=c("Cww","Diam"))

Call:

gsummary_specific(dmmobj = dmmobj, traitset = traitset, componentset = componentset,

bytrait = bytrait, fixedgls = fixedgls, digits = digits)

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Specific class: Sex:F:F

Proportion of phenotypic var/covariance to each component:

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Cww 0.473 0.239 0.00337 0.942

VarG(Ia) Cww 0.527 0.244 0.05016 1.005

VarP(I) Cww 1.000 0.000 1.00000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Diam 0.0638 0.222 -0.372 0.499

VarG(Ia) Diam 0.9362 0.289 0.370 1.502

VarP(I) Diam 1.0000 0.000 1.000 1.000

Correlation corresponding to each var/covariance component:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 1 0 1 1

VarG(Ia) Cww:Cww 1 0 1 1

VarP(I) Cww:Cww 1 0 1 1

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Diam 0.350 0.288 -0.214 0.913

VarG(Ia) Cww:Diam 0.702 0.205 0.300 1.103

VarP(I) Cww:Diam 0.554 0.108 0.342 0.765

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww 0.350 0.288 -0.214 0.913

VarG(Ia) Diam:Cww 0.702 0.205 0.300 1.103

VarP(I) Diam:Cww 0.554 0.108 0.342 0.765

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 1 1 -0.96 2.96

VarG(Ia) Diam:Diam 1 0 1.00 1.00

VarP(I) Diam:Diam 1 0 1.00 1.00

Phenotypic var/covariance from summing components:

Traitpair Estimate StdErr CI95lo CI95hi

1 Cww:Cww 0.226 0.0359 0.156 0.296

2 Cww:Diam 0.252 0.0771 0.101 0.403

3 Diam:Cww 0.252 0.0771 0.101 0.403

4 Diam:Diam 0.917 0.1616 0.600 1.234
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Specific class: Sex:F:M

Proportion of phenotypic var/covariance to each component:

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Cww NA NA NA NA

VarG(Ia) Cww NA NA NA NA

VarP(I) Cww NA 0 NA NA

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Diam NA NA NA NA

VarG(Ia) Diam NA NA NA NA

VarP(I) Diam NA 0 NA NA

Correlation corresponding to each var/covariance component:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 1 NA NA NA

VarG(Ia) Cww:Cww 1 0 1 1

VarP(I) Cww:Cww 1 NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Diam NA NA NA NA

VarG(Ia) Cww:Diam 1 0.243 0.524 1.48

VarP(I) Cww:Diam NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww NA NA NA NA

VarG(Ia) Diam:Cww 0.695 0.175 0.352 1.04

VarP(I) Diam:Cww NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 1.000 NA NA NA

VarG(Ia) Diam:Diam 0.494 0 0.494 0.494

VarP(I) Diam:Diam 1.000 NA NA NA

Phenotypic var/covariance from summing components:

Traitpair Estimate StdErr CI95lo CI95hi

1 Cww:Cww NA NA NA NA

2 Cww:Diam NA NA NA NA

3 Diam:Cww NA NA NA NA

4 Diam:Diam NA NA NA NA

Specific class: Sex:M:F

Proportion of phenotypic var/covariance to each component:

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Cww NA NA NA NA

VarG(Ia) Cww NA NA NA NA

VarP(I) Cww NA 0 NA NA

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Diam NA NA NA NA

VarG(Ia) Diam NA NA NA NA

VarP(I) Diam NA 0 NA NA
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Correlation corresponding to each var/covariance component:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 1 NA NA NA

VarG(Ia) Cww:Cww 1 0 1 1

VarP(I) Cww:Cww 1 NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Diam NA NA NA NA

VarG(Ia) Cww:Diam 0.695 0.175 0.352 1.04

VarP(I) Cww:Diam NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww NA NA NA NA

VarG(Ia) Diam:Cww 1 0.243 0.524 1.48

VarP(I) Diam:Cww NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 1.000 NA NA NA

VarG(Ia) Diam:Diam 0.494 0 0.494 0.494

VarP(I) Diam:Diam 1.000 NA NA NA

Phenotypic var/covariance from summing components:

Traitpair Estimate StdErr CI95lo CI95hi

1 Cww:Cww NA NA NA NA

2 Cww:Diam NA NA NA NA

3 Diam:Cww NA NA NA NA

4 Diam:Diam NA NA NA NA

Specific class: Sex:M:M

Proportion of phenotypic var/covariance to each component:

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Cww 0.243 0.137 -0.0245 0.511

VarG(Ia) Cww 0.757 0.135 0.4926 1.021

VarP(I) Cww 1.000 0.000 1.0000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Diam 0.0394 0.170 -0.294 0.373

VarG(Ia) Diam 0.9606 0.178 0.612 1.309

VarP(I) Diam 1.0000 0.000 1.000 1.000

Correlation corresponding to each var/covariance component:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 1 0 1 1

VarG(Ia) Cww:Cww 1 0 1 1

VarP(I) Cww:Cww 1 0 1 1

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Diam 0.350 0.2876 -0.214 0.913

VarG(Ia) Cww:Diam 0.732 0.1372 0.463 1.001

VarP(I) Cww:Diam 0.658 0.0894 0.483 0.833
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Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww 0.350 0.2876 -0.214 0.913

VarG(Ia) Diam:Cww 0.732 0.1372 0.463 1.001

VarP(I) Diam:Cww 0.658 0.0894 0.483 0.833

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 1 1 -0.96 2.96

VarG(Ia) Diam:Diam 1 0 1.00 1.00

VarP(I) Diam:Diam 1 0 1.00 1.00

Phenotypic var/covariance from summing components:

Traitpair Estimate StdErr CI95lo CI95hi

1 Cww:Cww 0.439 0.056 0.329 0.549

2 Cww:Diam 0.532 0.120 0.296 0.767

3 Diam:Cww 0.532 0.120 0.296 0.767

4 Diam:Diam 1.486 0.252 0.992 1.980

>

Again we get 4 separate sets of gsummary() tables. The first and last ( called Sex:F:F and Sex:M:M) provide
the sex-specific heritability estimates and genetic correlations. The environmental correlations are the same
for both these Sex classes. The phenotypic correlations are not the same, as they are sex-specific too.

The second and third tables (called Sex:F:M and Sex:M:F) provide estimates of the cross-sex genetic
correlations and everything else is ’NA’. Note that there are cross-sex-within-trait genetic correlations and
cross-sex-cross-trait genetic correlations.

That is as far as we can go. We cannot use these sex-specific parameters to do predictions of genetic
change under selection, at the moment, because in dmm the gresponse function cannot handle class-specific
parameters. This will be available in future releases.

2.2 Parameters specific to more than one factor
Assume that we now wish to extend the analysis of the sheep.df data , fitting 3 variance components "VarE(I)",
"VarG(Ia)", and "VarG(Ma)". We will make "VarG(Ia)" sex-specific, as above, and we will make "VarG(Ma)"
tb-specific. "Tb" stands for ’type of birth’ and is a factor with 2 levels, "S" for single born lambs, and "T" for
twin born lambs. The call to dmm() is as follows

> sheep.fitssts <- dmm(sheep.mdf,Ymat ~ 1 + Tb,

components="VarE(I)",

specific.components=list(Sex=c("VarG(Ia)"),Tb=c("VarG(Ma)")))

Dyadic mixed model fit for datafile: sheep.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 2

no of traits (l) = 3

Setup antemodel matrices:

No of factors with specific components: 2

No of non-specific components partitioned: 1

No of factors with specific components: 2

No of specific variance components partitioned (per component): 4

No of specific variance and covariance components partitioned (per component): 8

no of individuals in pedigree (m) = 44

no of individuals with data and X codes (n) = 36
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Rank of X: 2 No of Fixed Effects: 2

OLS-fixed-effects step completed:

DME substep:

No of components defined = 9

No of components estimable = 9

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:

>

We see that there is now one nonspecific component, and 2 factors with specific components. The sex-specific
components will have 4 classes, as above, and the tb-specific components will also have 4 classes. When
we put the two specific factors together there will be 4 ∗ 4 = 16 classes with separate variance component
estimates. The 16 classes are listed just before the end of the output tabbing above. One might caution that
subdividing the component space this intensively is only meaningful with adequate sized dataset.

We should note that the effect "Tb" has also been fitted as a fixed effect. This was necessary because the
column labelled "Tb" in sheep.df has an ’NA’ in one of its entries. An ’NA’ in the factor column for a class
specific variance component is not permitted. dmm() can deal with ’NA’s but these must be removed in the
fixed effect part of the model fitting. Hence it was necessary to put "Tb" in as a fixed effect to deal with the
’NA’.

Note the form of the specific.components argument of the dmm(() call. It is a list with two elements, one
called Sex and one called Tb. The Sex element is a vector of length one, and the Tb element is also a vector of
length one.

We will just look briefly at the variance component estimates

> sheep.fitssts

Call:

dmm.default(mdf = sheep.mdf, fixform = Ymat ~ 1 + Tb, components = "VarE(I)",

specific.components = list(Sex = c("VarG(Ia)"), Tb = c("VarG(Ma)")))

Fixed formula:

Ymat ~ 1 + Tb

Cohort formula:

NULL

Var/Covariance components:

NULL

Traits:

[1] "Cww" "Diam" "Bwt"

Fitted OLS-fixed-effects:

Cww Diam Bwt

(Intercept) 4.70526316 21.04211 45.894737

TbT -0.04055728 -0.55387 -1.071207

Var/covariance components partitioned by DME after OLS-fixed-effects fit:

Cww:Cww Cww:Diam Cww:Bwt Diam:Cww Diam:Diam

VarE(I) 0.38563428 0.047279595 -0.2792448 0.047279595 0.005796586

Sex:F:F:VarG(Ia) 0.06679493 0.174344832 -0.0437172 0.174344832 0.574334424

Sex:F:M:VarG(Ia) 0.10983427 0.345601540 -0.9592800 0.326608931 0.845743762

Sex:M:F:VarG(Ia) 0.10983427 0.326608931 1.4308851 0.345601540 0.845743762

Sex:M:M:VarG(Ia) 0.39858131 0.728245532 2.1704395 0.728245532 1.788165917

Tb:S:S:VarG(Ma) 0.31123428 0.491225335 3.5863191 0.491225335 1.122712602

Tb:S:T:VarG(Ma) -0.27654192 -0.293039553 0.9256589 -0.005731901 0.807581497

Tb:T:S:VarG(Ma) -0.27654192 -0.005731901 -2.5202994 -0.293039553 0.807581497

Tb:T:T:VarG(Ma) 0.25900257 0.387880857 1.3444133 0.387880857 0.580903673

Diam:Bwt Bwt:Cww Bwt:Diam Bwt:Bwt

VarE(I) -0.03423601 -0.2792448 -0.03423601 0.2022062
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Sex:F:F:VarG(Ia) -0.89464807 -0.0437172 -0.89464807 5.1367992

Sex:F:M:VarG(Ia) -2.81291131 1.4308851 3.03075062 -8.4123999

Sex:M:F:VarG(Ia) 3.03075062 -0.9592800 -2.81291131 -8.4123999

Sex:M:M:VarG(Ia) 4.91211011 2.1704395 4.91211011 13.7767644

Tb:S:S:VarG(Ma) 4.45873429 3.5863191 4.45873429 45.4810063

Tb:S:T:VarG(Ma) 4.15595980 -2.5202994 -1.33583524 11.1843079

Tb:T:S:VarG(Ma) -1.33583524 0.9256589 4.15595980 11.1843079

Tb:T:T:VarG(Ma) 2.00220129 1.3444133 2.00220129 15.3841703

Observed (residual) var/covariance after OLS-fixed-effects fit:

Cww Diam Bwt

Cww 0.2943617 0.4079038 1.506019

Diam 0.4079038 0.9742342 2.713203

Bwt 1.5060189 2.7132034 27.772355

We see there are 8 class-specific components, appropriately labelled, plus "VarE(I)". This is the brief output
obtained with print() or by just naming the ’fit’ object. For the full output with standard errors use summary()
and/or csummary().

We will just show the gsummary for one trait

> gsummary(sheep.fitssts,traitset="Cww")

Call:

gsummary_specific(dmmobj = dmmobj, traitset = traitset, componentset = componentset,

bytrait = bytrait, fixedgls = fixedgls, digits = digits)

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Specific class: Sex:F:F:Tb:S:S

Proportion of phenotypic var/covariance to each component:

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Cww 0.5050 0.1126 0.284 0.726

VarG(Ia) Cww 0.0875 0.1132 -0.134 0.309

VarG(Ma) Cww 0.4076 0.0811 0.249 0.566

VarP(I) Cww 1.0000 0.0000 1.000 1.000

Correlation corresponding to each var/covariance component:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 1 0 1 1

VarG(Ia) Cww:Cww 1 0 1 1

VarG(Ma) Cww:Cww 1 0 1 1

VarP(I) Cww:Cww 1 0 1 1

Phenotypic var/covariance from summing components:

Traitpair Estimate StdErr CI95lo CI95hi

1 Cww:Cww 0.764 0.0695 0.627 0.9

Specific class: Sex:F:F:Tb:S:T

Proportion of phenotypic var/covariance to each component:

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Cww NA NA NA NA

VarG(Ia) Cww NA NA NA NA

VarG(Ma) Cww NA NA NA NA
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VarP(I) Cww NA 0 NA NA

Correlation corresponding to each var/covariance component:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 1.000 NA NA NA

VarG(Ia) Cww:Cww 1.000 0 1.000 1.000

VarG(Ma) Cww:Cww -0.974 0 -0.974 -0.974

VarP(I) Cww:Cww 1.000 NA NA NA

Phenotypic var/covariance from summing components:

Traitpair Estimate StdErr CI95lo CI95hi

1 Cww:Cww NA NA NA NA

...........

and so on for all 16 classes covering all combinations of Sex and Tb

Note that within the output for each specific class, only the generic name of each component is used to
lable output. For example in "Specific class: Sex:F:F:Tb:S:S" the component labelled "VarG(Ia)" is really
"Tb:S:S:VarG(Ia)" and the component labelled "VarG(Ma)" is really "Tb:S:S:VarG(Ma)". The user is ex-
pected to know which components were made specific to which factor.

The component or parameter labelled "VarP(I)" will always be specific to all factors, so for the above case
it is really "Sex:F:F:Tb:S:S:VarP(I)". It does not feature significantly in the abbreviated listing above, because
we omitted all the cross-trait cases by specifying only one trait.

2.3 More than one parameter specific to a factor
Assume that we now wish to change the analysis of the sheep.df data, so that components "VarG(Ia)" and
"VarG(Ma)" are both Sex-specific. The call to dmm() for this case is as folllows

> sheep.fitss2<- dmm(sheep.mdf, Ymat ~ 1 + Year + Sex,

components=c("VarE(I)"),

specific.components=list(Sex=c("VarG(Ia)","VarG(Ma)")))

Dyadic mixed model fit for datafile: sheep.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 9

no of traits (l) = 3

Setup antemodel matrices:

No of factors with specific components: 1

No of non-specific components partitioned: 1

No of factors with specific components: 1

No of specific variance components partitioned (per component): 2

No of specific variance and covariance components partitioned (per component): 8

no of individuals in pedigree (m) = 44

no of individuals with data and X codes (n) = 37

Rank of X: 9 No of Fixed Effects: 9

OLS-fixed-effects step completed:

DME substep:

No of components defined = 9

No of components estimable = 9

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:
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>

So we see that the specific.components argument is now a list containing a single vector element called Sex,
and this vector is of length two. So it makes two components Sex-specific. We shall not list the output from
the various summary functions. It should by now be obvious to the user how to do that.

3 Limitations and features
The way that dmm() is set up to estimate class specific components opens the door to some new features (
compared to the usual method of defining separate classes as separate traits), but also imposes some restric-
tions.

The limitations first

• the classes within any factor used to generate class specific component estimates must be mutually
exclusive. For example, an animal can only be of one Sex so the Sex classes are mutually exclusive.
A factor such as Age where individuals are measured at more than one age, does not have mutually
exclusive classes. So repeated measures models can not be handled for a class-specific estimation at the
moment. They can, of course, be handled by making each Age class a separate trait, but that carries with
it making all components Age-specific. This will be addressed in a future release of dmm().

• a component can not be made specific to more than one factor simultaneously. If you really want, for
example, "VarG(Ia)" to be both Sex-specific and Tb-specific, you should define a new factor combining
Sex and Tb in the data frame, and use that factor. This restriction occurs because the way dmm() sets
up estimation equations for a class specific component amounts to a ’cell means’ model. It fits the
component to each class of a factor. It can not, for example, separate a component into two main effects
and an interaction. It is felt that this corresponds to what a user wants from class-specific component
estimation - one component estimate for each class of the population, not a study of fixed factor effects
on components.

• a component can not be made nonspecific and class specific simultaneously. In other words a component
name should not appear in both the components = and specific.components = arguments. This can lead
to problems if there are no nonspecific components defined. If the components = argument is omitted it
reverts to the default, which is c("VarE(I)","VarG(Ia)") and this is not what is required. The components
= argument should be set to components = NULL in this case. This will cancel the default.

• Missing values (’NA’) for a factor used to make class-specific components can be a problem, if the
factor is not fitted as a fixed effect. This occurs because dmm() deals with ’NA’s at the fixed model
fitting stage. The way around the problem is to fit the factor as a fixed effect, even if you think its fixed
effect negligable.

• If one of the cross-effect covariances (eg CovG(Ia,Ma)) are fitted and are class specific, then the cor-
responding variances ( ie VarG(Ia) and VarG(Ma)) must be fitted and must also be class specific to the
same factor.

If one of the cross-effect covariances (eg CovG(Ia,Ma)) are fitted and are not class specific, then the
corresponding variances ( ie VarG(Ia) and VarG(Ma)) must be fitted and must also not be class specific.

At the moment dmm does not have the ability to find the appropriate variances for calculation of cor-
relations from cross-effect covariances, unless these variances are also defined within the same set ( ie
either the nonspecific components set, or the specific components set)

• In dmm_2.1-2 release and later, any component can be made class-specific, as long as the specific factor
has mutually exclusive classes. The components "VarE(I)", "CovE(I,M)", "CovE(M,I)","CovE(I,M&!C)",
"CovE(M&!C,I)" do not have estimable cross-class covariances, so these are excluded from the estima-
tion process, and marked as NA. dmm() only sets up the within-class equations, for these components.
The class specific within-class variances should be estimable, for these environmental components.
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The reason that the cross-class components are not estimable for these individual environmental com-
ponents, is that the class levels are mutually exclusive, so there is no cross-class replication. When it
comes to class-specific factors such as Age, where the class levels may not be mutually exclusive, then
the cross-class covariances should be estimable.

• the function gresponse() can not at the moment handle class-specific genetic parameters. This will be
addressed in a future release.

Now the features

• it is possible to make only some of the components class specific, and to leave others as an overall
estimate. See the first example in Section 2

• it is possible to make some components specific to one factor, and other components specific to another
factor, and others nonspecific, all in the one model fit. See the second example in Section 2.

• it is possible to make more than one component specific to a single factor. See the third example in
Section 2.

• the factor(s) to which some components are class-specific can also be fitted as fixed effect(s) if one
wishes, but they do not have to be. However see note above concerning ’NA’s.

• the regrouping of variance components into specific classes, which occurrs after estimation and before
their use in calculating genetic parameters, will occur whenever at least one component is class-specific.
It is done to ensure components within each class sum to an appropriate phenotypic variance.

• when one or more components are not class specific, the global estimate(s) is(are) used within each
class, and the cross-class covariances for nonspecific component(s) are set to NA. This is what one is
asserting in not making a component class specific - that it is the same for all classes. The cross-class
covariances for non-specific component(s) should probably be set equal to the global variance estimate,
so that the cross-class correlation becomes unity.

• when all components are not class specific, variance components are not regrouped into classes, and the
output is the same as dmm_1.7-1.

4 Labelling of variance components
There are a number of different types of variance and covariance components. We make the following distinc-
tions

• single-trait versus cross-trait

• single-effect versus cross-effect

• nonspecific versus within-class versus cross-class

• all combinations of the above, for example single-trait-cross-class,...

The only ones of the above which are variances are single-trait, single-effect, and (nonspecific or within-class),
and their combinations. However dmm() does not follow this convention, but instead labels everhthing as "Var"
, unless it is a cross-class covariance ( which it calls "Cov"). So cross-trait covariances come out as "Var", and
cross-class covariances come out as "Var".

For genetic parameters dmm() uses the same labels as the corresponding variance or covariance component.
It is hoped that this approach does not lead to confusion. The labels are derived from the component names

used in the components= and specific.components= arguments of the call to dmm(). The component names
used in these arguments must chosen from the list of standard component names defined by the make.ctable()
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function. The labels are used to control program flow, as well as to label output so their form has to be strictly
controlled.

For each component, dmm() keeps both a short-component-name and a long-component-name. The short-
component-name is the generic name as defined in make.ctable(). The long-component-name has the class
information prepended, if the component is class-specific. In functions csummary() and gsummary() only the
short-component-names are used as line labels, and the class information appears at the head of each table.
The user should know, in this context, which componentsa are class specific. In the output of the print() and
summary() functions the long-component-names are used as line-labels.

5 A dataset with ’known’ results
The warcolak dataset, developed by Dr Matthew Wolak, and included with his package nadiv is a valuable
testbed for both sex-linked and sex-specific variance components.

There is an analysis of this dataset without fitting sex-specific variance components in the dmmOverview.pdf [1]
document. Here we report the extension of those analyses to include sex-specific components.

We do an analysis of both traits simultaneously

> library(dmm)

> data(warcolak)

> warcolak.df <- warcolal.convert(warcolak)

> warcolak.mdf <- mdf(warcolak.df,pedcols=c(1:3),factorcols=4,

ycols=c(5:6),sexcode=c("M","F"),relmat=c("E","A","D","S"),keep=T)

.....

> warcolak.fitsp <- dmm(warcolak.mdf,Ymat ~ 1 + Sex,

components=c("VarE(I)"),

specific.components=list(Sex=c("VarG(Ia)","VarG(Id)","VarGs(Ia)")),

relmat="withdf")

Dyadic mixed model fit for datafile: warcolak.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 2

no of traits (l) = 2

Setup antemodel matrices:

No of factors with specific components: 1

No of non-specific components partitioned: 1

No of factors with specific components: 1

No of specific variance components partitioned (per component): 2

No of specific variance and covariance components partitioned (per component): 12

no of individuals in pedigree (m) = 5400

no of individuals with data and X codes (n) = 5400

Rank of X: 2 No of Fixed Effects: 2

OLS-fixed-effects step completed:

DME substep:

No of components defined = 13

No of components estimable = 13

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:

>

>

> warcolak.fitsp
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Call:

dmm.default(mdf = warcolak.mdf, fixform = Ymat ~ 1 + Sex, components = c("VarE(I)"),

specific.components = list(Sex = c("VarG(Ia)", "VarG(Id)",

"VarGs(Ia)")), relmat = "withdf")

Fixed formula:

Ymat ~ 1 + Sex

Cohort formula:

NULL

Var/Covariance components:

NULL

Traits:

[1] "Trait1" "Trait2"

Fitted OLS-fixed-effects:

Trait1 Trait2

(Intercept) 2.064586 1.987414

SexM -1.020755 -1.003316

Var/covariance components partitioned by DME after OLS-fixed-effects fit:

Trait1:Trait1 Trait1:Trait2 Trait2:Trait1 Trait2:Trait2

VarE(I) 0.323035677 0.0863747023 0.0863747023 0.279919826

Sex:F:F:VarG(Ia) 0.251920865 -0.0433274504 -0.0433274504 0.335856856

Sex:F:M:VarG(Ia) 0.322903346 0.0533128035 0.0572557684 0.276175076

Sex:M:F:VarG(Ia) 0.322903346 0.0572557684 0.0533128035 0.276175076

Sex:M:M:VarG(Ia) 0.413886206 0.0646480722 0.0646480722 0.280318258

Sex:F:F:VarG(Id) 0.298195437 -0.1124049761 -0.1124049761 0.326987507

Sex:F:M:VarG(Id) 0.266975697 -0.1577731528 -0.1332074242 0.351402955

Sex:M:F:VarG(Id) 0.266975697 -0.1332074242 -0.1577731528 0.351402955

Sex:M:M:VarG(Id) 0.239024525 -0.1116635575 -0.1116635575 0.413470726

Sex:F:F:VarGs(Ia) 0.100468892 0.0539144400 0.0539144400 0.046900097

Sex:F:M:VarGs(Ia) -0.006281569 -0.0177546729 -0.0004747249 0.012130641

Sex:M:F:VarGs(Ia) -0.006281569 -0.0004747249 -0.0177546729 0.012130641

Sex:M:M:VarGs(Ia) 0.005980401 -0.0043317363 -0.0043317363 0.003137572

Observed (residual) var/covariance after OLS-fixed-effects fit:

Trait1 Trait2

Trait1 0.966773859 -0.003685244

Trait2 -0.003685244 0.966581259

>

The brief varaince component output looks reasonable. It is a little easier to see what we are getting if we
reorganise the component estimates into classes

> csummary(warcolak.fitsp)

Call:

csummary_specific(object = object, traitset = traitset, componentset = componentset,

bytrait = bytrait, fixedgls = fixedgls, digits = digits)

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Specific class: Sex:F:F

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait1 0.323 0.0542 0.2168 0.429

VarG(Ia) Trait1:Trait1 0.252 0.0511 0.1519 0.352

VarG(Id) Trait1:Trait1 0.298 0.0570 0.1865 0.410

VarGs(Ia) Trait1:Trait1 0.100 0.0366 0.0287 0.172
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VarP(I) Trait1:Trait1 0.974 0.0174 0.9395 1.008

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait2 0.0864 0.0542 -0.0198 0.19259

VarG(Ia) Trait1:Trait2 -0.0433 0.0511 -0.1434 0.05674

VarG(Id) Trait1:Trait2 -0.1124 0.0570 -0.2241 -0.00075

VarGs(Ia) Trait1:Trait2 0.0539 0.0366 -0.0179 0.12571

VarP(I) Trait1:Trait2 -0.0154 0.0174 -0.0496 0.01870

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait1 0.0864 0.0542 -0.0198 0.19259

VarG(Ia) Trait2:Trait1 -0.0433 0.0511 -0.1434 0.05674

VarG(Id) Trait2:Trait1 -0.1124 0.0570 -0.2241 -0.00075

VarGs(Ia) Trait2:Trait1 0.0539 0.0366 -0.0179 0.12571

VarP(I) Trait2:Trait1 -0.0154 0.0174 -0.0496 0.01870

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 0.2799 0.0542 0.1737 0.386

VarG(Ia) Trait2:Trait2 0.3359 0.0510 0.2358 0.436

VarG(Id) Trait2:Trait2 0.3270 0.0570 0.2154 0.439

VarGs(Ia) Trait2:Trait2 0.0469 0.0366 -0.0249 0.119

VarP(I) Trait2:Trait2 0.9897 0.0174 0.9555 1.024

Specific class: Sex:F:M

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait1 NA NA NA NA

VarG(Ia) Trait1:Trait1 0.32290 0.0282 0.2676 0.3782

VarG(Id) Trait1:Trait1 0.26698 0.0691 0.1315 0.4025

VarGs(Ia) Trait1:Trait1 -0.00628 0.0322 -0.0694 0.0568

VarP(I) Trait1:Trait1 NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait2 NA NA NA NA

VarG(Ia) Trait1:Trait2 0.0533 0.0282 -0.0020 0.1086

VarG(Id) Trait1:Trait2 -0.1578 0.0691 -0.2933 -0.0223

VarGs(Ia) Trait1:Trait2 -0.0178 0.0322 -0.0809 0.0453

VarP(I) Trait1:Trait2 NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait1 NA NA NA NA

VarG(Ia) Trait2:Trait1 0.057256 0.0282 0.00194 0.1126

VarG(Id) Trait2:Trait1 -0.133207 0.0691 -0.26872 0.0023

VarGs(Ia) Trait2:Trait1 -0.000475 0.0322 -0.06357 0.0626

VarP(I) Trait2:Trait1 NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 NA NA NA NA

VarG(Ia) Trait2:Trait2 0.2762 0.0282 0.221 0.3315

VarG(Id) Trait2:Trait2 0.3514 0.0691 0.216 0.4869

VarGs(Ia) Trait2:Trait2 0.0121 0.0322 -0.051 0.0752

VarP(I) Trait2:Trait2 NA NA NA NA
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Specific class: Sex:M:F

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait1 NA NA NA NA

VarG(Ia) Trait1:Trait1 0.32290 0.0282 0.2676 0.3782

VarG(Id) Trait1:Trait1 0.26698 0.0691 0.1315 0.4025

VarGs(Ia) Trait1:Trait1 -0.00628 0.0322 -0.0694 0.0568

VarP(I) Trait1:Trait1 NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait2 NA NA NA NA

VarG(Ia) Trait1:Trait2 0.057256 0.0282 0.00194 0.1126

VarG(Id) Trait1:Trait2 -0.133207 0.0691 -0.26872 0.0023

VarGs(Ia) Trait1:Trait2 -0.000475 0.0322 -0.06357 0.0626

VarP(I) Trait1:Trait2 NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait1 NA NA NA NA

VarG(Ia) Trait2:Trait1 0.0533 0.0282 -0.0020 0.1086

VarG(Id) Trait2:Trait1 -0.1578 0.0691 -0.2933 -0.0223

VarGs(Ia) Trait2:Trait1 -0.0178 0.0322 -0.0809 0.0453

VarP(I) Trait2:Trait1 NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 NA NA NA NA

VarG(Ia) Trait2:Trait2 0.2762 0.0282 0.221 0.3315

VarG(Id) Trait2:Trait2 0.3514 0.0691 0.216 0.4869

VarGs(Ia) Trait2:Trait2 0.0121 0.0322 -0.051 0.0752

VarP(I) Trait2:Trait2 NA NA NA NA

Specific class: Sex:M:M

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait1 0.32304 0.0542 0.2168 0.4292

VarG(Ia) Trait1:Trait1 0.41389 0.0198 0.3750 0.4528

VarG(Id) Trait1:Trait1 0.23902 0.0648 0.1120 0.3660

VarGs(Ia) Trait1:Trait1 0.00598 0.0463 -0.0848 0.0968

VarP(I) Trait1:Trait1 0.98193 0.0297 0.9236 1.0402

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait2 0.08637 0.0542 -0.0198 0.1926

VarG(Ia) Trait1:Trait2 0.06465 0.0198 0.0257 0.1036

VarG(Id) Trait1:Trait2 -0.11166 0.0648 -0.2387 0.0153

VarGs(Ia) Trait1:Trait2 -0.00433 0.0463 -0.0951 0.0865

VarP(I) Trait1:Trait2 0.03503 0.0297 -0.0233 0.0933

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait1 0.08637 0.0542 -0.0198 0.1926

VarG(Ia) Trait2:Trait1 0.06465 0.0198 0.0257 0.1036

VarG(Id) Trait2:Trait1 -0.11166 0.0648 -0.2387 0.0153
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VarGs(Ia) Trait2:Trait1 -0.00433 0.0463 -0.0951 0.0865

VarP(I) Trait2:Trait1 0.03503 0.0297 -0.0233 0.0933

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 0.27992 0.0542 0.1737 0.3861

VarG(Ia) Trait2:Trait2 0.28032 0.0198 0.2414 0.3192

VarG(Id) Trait2:Trait2 0.41347 0.0648 0.2865 0.5404

VarGs(Ia) Trait2:Trait2 0.00314 0.0463 -0.0876 0.0939

VarP(I) Trait2:Trait2 0.97685 0.0297 0.9186 1.0351

>

The estimated components "VarE(I)", "VarG(Ia)", "VarG(Id)", and "VarGs(Ia)" should agree with the stated
population values (0.3,0.4,0.3,0.0) for Trait1 and (0.3,0.3,0.3,0.1) for Trait2 respectively. Because we know
from the simulation of the warcolak dataset that the genetic effects do not differ between the sexes, we should
expect to see both the male and female component estimates agree with the above population values, within
the limits of sampling errors. We expect the cross-sex-single-trait estimates of covariances to also agree with
te above population values, and we expect the cross-trait-within-sex and cross-trait-cross-sex components to
all be close to zero.

These expectations are more or less fulfilled. The component "VarGs(Ia)" is a bit large for Trait1 in
females, but is OK for males. The component "VarG(Ia)" is a bit small for Trait1 in females, but again is OK
for males. The cross-sex-single-trait components are OK for "VarG(Ia)" and "VarG(Id)", but are close to zero
for "VarGs(Ia)". The "VarGs(Ia)" estimates are smaller than they should be for Trait2 especially in males.

The warcolak dataset is not ideal for testing sex-specific component estimation, because it has no sex-
difference in parameters. We correctly get the expected zero difference result, but an actual difference to
check against would be desirable.

6 Calculating genetic change
The function gresponse() has not yet ( as of dmm_3.1-1) been updated to deal with class-specific parameter
estimates. It is expected that this will be fixed in a future release.

7 The structure of an object of class dmm when some components are
class-specific

A dmm object for a totally nonspecific analysis looks as follows

> names(sheep.fitm2)

[1] "aov" "mdf" "fixform"

[4] "b" "seb" "vara"

[7] "totn" "degf" "dme.mean"

[10] "dme.var" "dme.correl" "dmeopt"

[13] "siga" "sesiga" "vard"

[16] "degfd" "component" "correlation"

[19] "correlation.variance" "correlation.se" "fraction"

[22] "fraction.variance" "fraction.se" "variance.components"

[25] "variance.components.se" "phenotypic.variance" "phenotypic.variance.se"

[28] "observed.variance"

All of the named items above apply to the whole population, and are as defined on the dmm() help page.
A dmm object for a case where some components are class specific looks as follows
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> names(warcolak.fitsp)

[1] "aov" "mdf" "fixform" "b" "seb"

[6] "vara" "totn" "degf" "dme.mean" "dme.var"

[11] "dme.correl" "dmeopt" "siga" "sesiga" "vard"

[16] "degfd" "specific" "call"

Some of the items have ’disappeared’ and they will be found inside the new item called ’specific’ as follows

> names(warcolak.fitsp$specific)

[1] "Sex:F:F" "Sex:F:M" "Sex:M:F" "Sex:M:M"

> names(warcolak.fitsp$specific[["Sex:F:F"]])

[1] "component" "phencovclass" "component.longnames"

[4] "correlation" "correlation.variance" "correlation.se"

[7] "fraction" "fraction.variance" "fraction.se"

[10] "variance.components" "variance.components.se" "phenotypic.variance"

[13] "phenotypic.variance.se" "observed.variance"

>

> names(warcolak.fitsp$specific[["Sex:F:M"]])

.....

>

So within ’warcolak.fitsp$specific’ there are 4 items labelled with the class names for the "Sex" effect, and
within each of those class name items are the estimates for that class. So the ’disappeared’ items have been
moved down 2 levels, because they are all the estimates that become class-specific. What remains at the top
level are the parameters which are not class-specific.

If the option fixedgls=T is used, there is an item ’gls’ and the whole structure is repeated within that item.
The user does not have to use the supplied functions (summary, csummary, gsummary) to access a dmm

object. The usual R functions for lists can be used.
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