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1 Introduction
The function dmm() sets up equations which relate the observed covariance of pairs of individuals or dyads, to
their expectation in terms of postulated genetic and environmental variance and covariance components.

These equations, termed dyadic model equations (DME’s), can be solved directly to obtain estimates of
variance and covariance components. The DME’s are linear equations, and are exactly analogous to a set of
multi-trait multiple regression equations.

The function dmm() therefore effectively turns variance component estimation into a regression problem.
All of the statistical techniques for fitting a linear multiple regression are therefore available for solving the
DME’s. The function dmm() uses the qr() function by default, but can optionally use lm(), robust regression
(lmrob()), principal component regression (pls package), or feasable generalised least squares (fgls).

Assumptions about dyadic residuals have to be considered in choosing a method to solve the DME’s.
The simplest assumption, that dyadic residuals are uncorrelated and equal in variance, leads to ordinary least
squares (OLS). In dmm() the QR, lm, and pls options all use ordinary least squares. The robust regression
(lmrob) option uses OLS after deleting dyads considered to be outliers. The fgls option is an implementation
of generalised least squares (GLS), so it takes account of the known covariance structure of the dyadic residuals
( see Section ....).

The type of variance component estimate that is obtained from dmm() depends on

1. The method ( OLS or GLS) used to fit the fixed effects model, from which the residual variances to be
partitioned into components are obtained

2. The method used to fit the dyadic or random effects model which does variance component estimation.

The relationship between fitting methods and the type of variance component estimate obtained is summa-
rized in Table 1

The types of variance component estimate are as follows

MINQUE minimum variance quadratic unbiased estimate defined by Rao(1971) [5]

BCML bias corrected maximum likelihood estimate as derived by Anderson(1978) [1]

REML restricted maximum likelihood estimate Patterson and Thompson(1974) [4]

RMINQUE robust MINQUE estimate

RML robust ML estimate
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Table 1: Relationship between fitting methods for fixed and dyadic models and tpyes of variance component
estimate obtained

Method for
fixed model

Method for dyadic model

Ordinary Least
Squares

Generlised
Least Squares

Robust Re-
gression

qr or lm or pls fgls lmrob
ols MINQUE REML robust

MINQUE
gls BCML REML robust ML

The dmm() program can obtain any of the above estimates. By default dmm() uses ordinary least squares
(OLS) for both the fixed model and the dyadic model. So the default variance component estimate type is
MINQUE. If gls is specified for the fixed model dmm() does ols for the fixed model first, then does the gls
iteration, and reports both ols and gls results. If fgls is specified for the dyadic model, dmm obtains REML
variance component estimates, regardless of the method used for fixed effects. It is a property of REML
estimates that they are independent of the method used to remove fixed effects. If lmrob is specified for the
dyadic model, the corresponding robust estimates are obtained.

There are some limitations with dmm(). Robust regression can only be used for univariate models. The
fgls option which leads to REML estimates is severely restricted by memory requirements. Obtaining REML
estimates by doing generalised least squares on the dyadic model equations is an order N4 problem where N
is the number of individuals with data. In practice the fgls option can only handle about 200 individuals, so it
is of academic interest only. If you want REML estimates use the gremlin() CRAN package (Wolak(2024) [8]
All the other dmm() options are of order N2 and they are useful up to about 10000 individuals.

Multivariate models require extra caution in interpretation. Multivariate analysis amounts to treating all
the traits as if they were one trait and analysing the total variance. Multivariate MINQUE estimates will
be idential to the univariate MINQUE estimate for each trait. Multivariate BCML estimates will usually be
similar to univariate BCML estimates for each trait, with minor deviations for traits that are highly correlated.
Multivariate REML estimates will be quite different from univariate REML estimates, because using GLS on
the dyadic model equations takes acount of the correlated error structure of the dyadic model.

MINQUE, BCML, and REML estimates will agree for simple balanced data sets. Robust regression es-
timates will differ. For complex pedigrees, MINQUE and BCML estimates of variance components will be
estimates of the variances existing in the population of related individuals from which the data were obtained.
REML estimates will be adjusted to estimate what the variances would have been if the individuals were un-
related. This is because using GLS on the dyadic model equations allows for the covariance structure of the
dyadic errors. The dyadic error covariances come from two sources, the covariance structure of products, and
the relationship matrix between individuals.

Because of the above, REML estimates need to be interpreted differently from MINQUE and BCML. If
you want the conventional genetic parameters which are adjusted to a hypothetical population of unrelated
individuals, use REML. If you want to know what the selection responses might be in the population at hand,
use MINQUE or BCML.

In many of the datasets available to quantitative geneticists, the (co)variance components which we would
like to estimate are partially confounded, sometimes to the point where they are not separably estimable. This
is particularly so in dealing with nonadditive genetic components. The function dmm() offers an experimental
approach (pls() option) which allows partially confounded components to be estimated by constraining some
components, using principal component regression. This is still ordinary least squares, but it is constrained to
a certain subspace of the full variance component space.

A related issue is omitted variable bias. If you leave a variance component which is large and significant
out of the fitted dyadic model, its variance does not necessarily go into dyadic error, but will be spread unpre-
dictably among the components which are fitted, resulting in biased estimates. It is therefore always important
to include all significant variances in the dyadic model. There will be problems if all significant variances are
not separable with the data at hand. The pls option may help with this, by allowing a fit of a combination of

2



variance components, rather than fitting them individually.

2 The dyadic model equations
The dyadic model is presented in Section 6.2.2 of the document dmmOvervire.pdf [2]. It results in a set of
equations (the DME’s) which are given in matrix form as equation 12, which is reproduced below

Ψ =WΓ+∆ (1)

It is important to understand each of the matrix components of these equations, so we elaborate as follows
First, the following variables set the size of the problem and the sizes of the above matrices

n number of individuals with data

m number of individuals in pedigree

l number of traits

k number of fixed effects

c number of variance components to be estimated

Now we explain each matrix

Ψ n2 × l2 matrix of dyadic covariances for each pair of individuals (row) and each traitpair (col). Each
covariance needs to be appropriately adjusted for fixed effects. The columns of Ψ become the dependent
variables in a multi-trait multiple regression.

W n2 × c matrix containing the coefficients of the dyadic model equations, which become the independent
variables of a multiple regression. Each column of W has the form Vec(MZcRcZ

′
cM

′) where Vec is
an operator that vectorizes a matrix, M is a matrix from the fixed effect model such that Y −Xα̂ = MY ,
Zc is an incidence matrix relating individuals with data to individuals in the pedigree, and Rc is a
relationship matrix relevant to component c. Note that relationship matrices are used, not their inverse.

Γ c× l2 matrix of (co)variance component parameters to be estimated, which become the partial regression
coefficients of a multiple regression.

∆ n2 × l2 matrix of dyadic model residuals. Note the variance of these is not the individual environmental
variance component - that has to be explicitely fitted as one of the columns of matrix W and appears as
one row of matrix Γ. The ∆ matrix elements are the extent to which each dyadic covariance in matrix
Ψ deviates from its expectation. The (co)variances of the elements of ∆ enter into the standard errors of
variance component estimates, in the same way that the (co)variances of residuals enter into the standard
errors of any regression coefficient estimates.

Matrices Ψ and W have n2 rows, so we are looking at solving n2 equations in c unknowns. This is an
overdetermined system. We can use least squares to obtain an approximate solution.

3 Checking the dyadic model assumptions
Before attempting a regression fit of model (1), it is worth looking at how well the data conform to the
assumptions made in using using least squares to fit a multiple regression model. The critical assumptions are

• the independent variables ( columns of W ) are uncorrelated

• the residuals (columns of ∆) are uncorrelated with each other and with the independent variates

A least squares fit does not involve assumptions regarding the distribution of residuals, but this does be-
come involved when using residuals to obtain standard errors of parameter estimates.
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3.1 The assumption of independence of columns of W
The correlations among independent variables (columns of W ) are returned by dmm() in the attribute dme.correl
of the returned object. These are pairwise correlations between the columns of the W matrix. They are not
quite the same thing as sampling correlations between variance component estimates, but they will be similar .
They are also not quite the same thing as correlations between estimable components as obtained from corre-
lations between relationship matrix elements, because the columns of W involve M and Z matrices as well
as the relationship matrix.

The Z matrix simply selects a subset of the relationship matrix corresponding to those individuals which
have observations. The M matrix comes from the fixed effects model, and consists of a set of weights which
adjust for the degrees of freedom involved in each of the fixed effects applicable to each individual. So the
columns of the W matrix are a weighted subset of the elements of the appropriate relationship matrix. Their
correlations are therefore not the same as relationship matrix element correlations.

In the case of a dataset with mean only, and all individuals in the pedigree with data, such as the warcolak
dataset, the subset is all of the relationship matrix and the weights in M are all equal, so the correlations of
the columns of W are exactly the same as the correlations of the elements of the relationship matrices, in this
special case.

In regression analysis it is generally considered that if there are collinearities among the independent
variates amounting to correlations greater than around 0.5 then the estimates of regression coefficients are
suspect. Translating this to our dyadic model, the variance component estimates are not likely to achieve
a realistic separation if the columns of W have correlations exceeding 0.5. The option of using principal
component regression (dmeopt="pcr" has been developed as an experimental approach to dealing with serious
collinearities among the components.

If we want to plot these correlations ( eg as scatteplots) we need argument dmekeep=T in calling dmm().
The dafault for dmm() is not to save the DME’s in its return object. This can be overridden with argument
dmekeep=T. This results in 2 attributes dme.psi and dme.wmat being added to the returned object. Caution,
this can result in a very large returned object. The attribute dme.wmat is the W matrix, and its columns can
be plotted with the standard plot() routine.

3.2 The assumptions of independence of dyadic residuals
To check the dyadic residuals, we can use the S3 plot() method included in the dmm package. This will output
histograms, qqnorm plots, and scatterplots of residuals against fitted and observed values. Plots tend to be
more informative for datasets with smaller numbers of individuals.

Dyadic residuals are usually not far from normally distributed, but may be leptokurtic and slightly skewed
to the right.

If dyadic residuals are correlated with fitted values of the components, then there is something wrong with
the model, probably some extra component should be fitted.

One can expect dyadic residuals to be correlated with observed dyadic covariances. It is normal for the
fitted components in a dyadic model to explain only a small fraction of the total variation, and this of course
leads to the observed covariances being highly correlated with residuals.

The question of patterns of correlation among the dyadic residuals themselves is a seriously difficult
area. The covariances (or correlations) among the dyadic residuals for one trait form an n2 × n2 matrix -
ie n4 elements. Too many to compute and cant be stored in R. This issue is discussed in the document dm-
mOverview.pdf [2] in relation to why dmm() is not able to do REML estimates. REML estimates require that
the covariance (or correlation) matrix of the dyadic residuals be constructed and used to compute a GLS rather
than an OLS solution to the DME’s. That is not computationally feasible, and neither is an examination of the
residual covariance/correlation matrix.

The covariance structure of dyadic residuals is actually known. It is derived in Searle et al (1992) [6] on
pages 407-413. It involves fourth moments of the observations. It is discussed in the document dyadicerror-
cov.pdf [3].
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4 Examples

4.1 Using principal component regression to investigate independence of the variance
component parameters in the warcolak dataset

Using the warcolak dataset from the nadiv package (Wolak(2014) [7], and just analysing Trait2, we first setup
the data file making all the appropriate relationship matrices, then run the usual analysis fitting 4 variance
components, using the default "qr" option for solving the DME’s, and setting options to save the DME’s and
the fit object.

> library(dmm)

> data(warcolak)

> warcolak.df <- warcolak.convert(warcolak)

> warcolak.mdf.univ <- mdf(warcolak.df,pedcols=c(1:3),factorcols=4,ycols=c(5:6),

sexcode=c("M","F"),relmat=c("E","A","D","S"),keep=T)

.....

Warning message:

In makeS(ped2, heterogametic = sexcode[1], returnS = T, DosageComp = "ngdc") :

Assuming male heterogametic (e.g., XX/XY) sex chromosome system

> warcolak.fit.t2 <- dmm(warcolak.mdf.univ, Trait2 ~ 1,

components=c("VarE(I)","VarG(Ia)", "VarG(Id)","VarGs(Ia)"),

relmat = "withdf",dmekeep=T,dmekeepfit=T)

.....

> summary(warcolak.fit.t2)

Call:

summary.dmm(object = warcolak.fit.t2)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

1 Trait2 1.54 0.015 1.51 1.57

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 0.715 0.0438 0.6295 0.801

VarG(Ia) Trait2:Trait2 0.138 0.0159 0.1066 0.169

VarG(Id) Trait2:Trait2 0.153 0.0452 0.0645 0.241

VarGs(Ia) Trait2:Trait2 0.270 0.0154 0.2392 0.300

>

These results differ from those for Trait 2 in the analysis reported in dmmOverview.pdf [2]. The difference
is that we have not fitted a Sex fixed effect and we have saved some additional information.

The correlations among columns of W are, of course, the same

> round(warcolak.fit.t2$dme.correl,digits=3)

VarE(I) VarG(Ia) VarG(Id) VarGs(Ia)

VarE(I) 1.000 0.486 0.919 0.408

VarG(Ia) 0.486 1.000 0.626 0.827

VarG(Id) 0.919 0.626 1.000 0.525

VarGs(Ia) 0.408 0.827 0.525 1.000

>
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Two of these correlations are somewhat larger than the nominal 0.5 mentioned above. We need to look and
see if the multiple regression has been able to separate these 4 components properly. To that end we will redo
the analysis using dmeopt="pcr" instead of the default "qr". Using the principal component regression option
requires at least two runs - the first retaining all 4 principal components, and then one or more reruns omitting
the least important principal components. The first run is as follows

> warcolak.fitpcr1 <- dmm(warcolak.mdf.univ, Trait2 ~ 1,

components=c("VarE(I)","VarG(Ia)","VarG(Id)","VarGs(Ia)"),

relmat = "withdf",dmekeep=T,dmekeepfit=T,dmeopt="pcr")

.....

DME substep:

PCR option on dyadic model equations:

Data: X dimension: 29160000 4

Y dimension: 29160000 1

Fit method: svdpc

Number of components considered: 4

VALIDATION: RMSEP

Cross-validated using 10 random segments.

(Intercept) 1 comps 2 comps 3 comps 4 comps

CV 1.023 1.022 1.022 1.022 1.022

adjCV 1.023 1.022 1.022 1.022 1.022

TRAINING: % variance explained

1 comps 2 comps 3 comps 4 comps

X 79.46086 92.89539 99.28012 100.00000

evec 0.02946 0.03157 0.03158 0.03158

DME substep completed:

OLS-b step completed:

>

> loadings(warcolak.fitpcr1$dme.fit)

Loadings:

Comp 1 Comp 2 Comp 3 Comp 4

`VarE(I)` 0.209 0.663 0.192 -0.692

`VarG(Ia)` 0.699 -0.705

`VarG(Id)` 0.275 0.630 0.111 0.718

`VarGs(Ia)` 0.626 -0.393 0.674

Comp 1 Comp 2 Comp 3 Comp 4

SS loadings 1.00 1.00 1.00 1.00

Proportion Var 0.25 0.25 0.25 0.25

Cumulative Var 0.25 0.50 0.75 1.00

>

What we need from this at the moment is the % of variance explained by various numbers of principal
components. Obviously using all 4 components explains 100% of the variation, but what is interesting is
that 3 components explain 99% and 2 components 92%. This is a signal that we should try regressing the
observations on 3 principal components of the columns of W , and see how it affects the estimates and their
standard errors. We do that with a rerun

> warcolak.fitpcr2 <- dmm(warcolak.mdf.univ, Trait2 ~ 1,

components=c("VarE(I)","VarG(Ia)","VarG(Id)","VarGs(Ia)"),

relmat = "withdf",dmeopt="pcr",ncomp=3)

.....
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> summary(warcolak.fitpcr2)

Call:

summary.dmm(object = warcolak.fitpcr2)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

1 Trait2 -0.063 0.0138 -0.09 -0.036

Components partitioned by DME from residual var/covariance after OLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 0.286 0.0127 0.262 0.311

VarG(Ia) Trait2:Trait2 0.315 0.0182 0.279 0.351

VarG(Id) Trait2:Trait2 0.310 0.0118 0.286 0.333

VarGs(Ia) Trait2:Trait2 0.146 0.0205 0.106 0.186

VarP(I) Trait2:Trait2 1.057 0.0244 1.010 1.105

>

So comparing these estimates with those from the "qr" fit (which are the same as obtained with "pcr" with
all 4 principal components), we find that omitting one principal component has not changed the estimated
components substantially, and has reduced the standard errors of the two constrained components. By omitting
the fourth principal component we have in effect set it to zero, which amounts to constraining the components
estimates to be on the plane defined by

−0.692×VarE(I)+0.718×VarG(Id) = 0 (2)

We get this equation from the loadings which were given at the end of the run with all four principal
components above. If we substitute the estimates of VarE(I) and VarG(Id) from the 3 component run into
the above equation we find that they do indeed fall on the constraint plane. So we still get estimates of all 4
components, but two of them are constrained to be in a ratio 0.692/0.718, or approximately equal.

To my mind, that is a more satisfactory analysis than the unconstrained result from a"qr" fit. By regressing
on the principal components of columns of W instead of on the columns themselves we have avoided violating
the assumption of independence, and by applying one constraint we have improved the standard errors.

One can go on and try omitting two principal components. This leads to two constraint equations, so the
variance components would be constrained to lie on the intersection of two planes. We shall not do it here.
We have done enough to demonstrate the method.

4.2 Using fgls to allow for correlated dyadic residuals. Example with the Harvey
dataset

The dataset called harv101.df is fully described in the dmmOverview.pdf [2] document. Here we will only
look at the use of feasable GLS to solve the dyadic model equations allowing for correlated residuals and
heterogenic residual variances.

> library(dmm)

> data(harv101.df)

> harv101.mdf <- mdf(harv101.df, pedcols=c(1:3), factorcols=c(4:5,9),

ycols=8, sexcode=c(1,2),keep=T,relmat=c("E","A"))
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> harv101.fgls.fit2 <- dmm(harv101.mdf,Adg ~ 1 + Line + Agedam + Age + Weight,

dmeopt="fgls", dmekeepfit=T,dmekeep=T,relmat="withdf")

Dyadic mixed model fit for datafile: harv101.mdf

Data file is a normal dataframe:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 7

no of traits (l) = 1

Setup antemodel matrices:

No of factors with specific components: 0

No of non-specific components partitioned: 2

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 139

no of individuals with data and X codes (n) = 65

Rank of X: 7 No of Fixed Effects: 7

OLS-fixed-effects step completed:

DME substep:

No of components defined = 2

No of components estimable = 2

Checking dyadic model equations:

fgls iteration starting siga from ols:

Adg:Adg

VarE(I) 0.01674900

VarG(Ia) 0.05195215

Residual var for DME (vard):

Adg:Adg

Adg:Adg 0.003253705

Total var for DME (vart):

Adg:Adg

Adg:Adg 0.003320518

Iteration(fgls) round: 0

siga in fgls.update:

[,1]

[1,] 0.01783227

[2,] 0.05069428

Round = 1 Stopcrit = 0.0009364542

Iteration(fgls) completed - count = 1

Convergence achieved (fgls)

diagvsiga:

Adg:Adg

VarE(I) 0.001643798

VarG(Ia) 0.002516052

diagvsiga posdef:

Adg:Adg

VarE(I) 0.001643798

VarG(Ia) 0.002516052

sesiga:

Adg:Adg

VarE(I) 0.04054378

VarG(Ia) 0.05016026

DME substep with OLS-fixed-effects completed:
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>

>

>

> summary(harv101.fgls.fit2)

Call:

summary.dmm(object = harv101.fgls.fit1)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Adg 2.85434 0.50581 1.862946 3.84574

Line2 Adg 0.09427 0.09566 -0.093231 0.28176

Line3 Adg 0.03574 0.07817 -0.117471 0.18895

Agedam4 Adg -0.03049 0.09770 -0.221988 0.16100

Agedam5 Adg -0.14197 0.08708 -0.312642 0.02871

Age Adg -0.00816 0.00289 -0.013820 -0.00251

Weight Adg 0.00252 0.00090 0.000755 0.00428

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Adg:Adg 0.0176 0.0405 -0.0619 0.0971

VarG(Ia) Adg:Adg 0.0509 0.0502 -0.0474 0.1493

>

These are REML estimates of the VarE(I) and VarG(Ia) components.
We can view the dyadic residuals using the S3 plot() method included in the dmm package. We do this for

the "fgls" fit as follows

> plot(harv101.fgls.fit2)

Five plots will be displayed in five separate graphics screens. The resulting plots are shown in Figure 1 to
Figure 5. We can see that the histogram of residuals is more peaked than a normal distribution (Figure 1), that
the qqplot is sigmoidal (Figure 2), that the residuals are not associated with fitted values ( Figure 3), that the
observed values are strongly correlated with the residuals (Figure 4), and that the fitted values and observed
values are not strongly correlated (Figure 5).

The covariance matrix of residuals will not be diagonal, that is there are correlations between residuals.
That is why "fgls" is the optimal method for fitting the dyadic model and why it leads to REML estimates of
the variance components. The detailed covariance structure of the residuals from a dyadic model is dealt with
in a separate document dyadicerrorcov.pdf [3].
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Figure 1: Histogram of dyadic residuals for Trait ADG of Harvey dataset with two components fitted usng
"fgls" method

Figure 2: A qqplot of dyadic residuals for the Harvey dataset with two components fitted usng "fgls" method
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Figure 3: A plot of dyadic model fitted values against dyadic residuals for Trait ADG of Harvey dataset with
two components fitted usng "fgls" method

Figure 4: A plot of dyadic model observed values ( ie covariances) against dyadic residuals for Trait ADG of
Harvey dataset with two components fitted usng "fgls" method
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Figure 5: A plot of dyadic model observed values against dyadic model fitted values for Trait ADG of Harvey
dataset with two components fitted usng "fgls" method
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5 The size of the dyadic residuals
The dyadic residuals Delta from equation 1 are not the same thing as residuals from a monadic model such as
P =G+E, and their variances are not VarE(I). The dyadic model equates the product of the measured values
of pairs of individuals to its expectation in terms of their relationship matrix elements. The dyadic model fit
is a regression of those expectarions on products of pairs of values. So the dyadic model error is the errors
of that regression fit. Obvioulsy a product of 2 values is a very poor estimate of a covariance. So the dyadic
errors are large. The dyadic model is usually a very poor fit. We can see how poor from some examples.

Figure 6 shows relationship matrix elements plotted against products of data values for 652 pairs of animals
from the harvey dataset.

Figure 6: Plot of relationship matrix elements against product of ADG data values for pairs of individuals
from the Harvey dataset

We see 3 groups of data points.. those with zero relationship those with a positive relationship coefficient
of 0.25, and those with a relationship coefficientof 1.0 ( ie pairs of individuals with self). The regresssion line
in this plot is the estimator of the VarG(Ia) variance component ( not quite it is a multiple regression - see
below). We can see there is considerable variation around a regression line.

Figure 7 shows the same data with fitted values plotted instead of actual data values.
The regresssion line in this plot is the estimator of the VarG(Ia) variance component. This shows the

variation left after the regression equation removes fitted variance.
Note these graphs only show the VarG(Ia) component. The actual fit is a multiple regression equation

involving VarG(Ia) and VarE(I).
It is quite common for the variance accounted for by the fit to be only about 3 percent of the variance of

dyadic residuals. This is why variance component estimation in quantitative genetics is a difficult task. It is
like trying to detect a message with a signal to noise ratio of about 0.03.

6 Discussion
There is nothing special about the dyadic model used by dmm(). Quantitative genetics has always been about
covariances between relatives and measures of relationship, that is about pairs of individuals. It is just not usu-
ally called a dyadic model, but that is what it is. The term is common in the social sciences where interactions
between pairs of individuals are analysed with a dyadic model.
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Figure 7: Plot of relationship matrix elements against fitted values for 65 pairs of individuals from Harvey
dataset

What is important is what the dyadic model allows us to do, not the terminology. By turning variance
component estimation into a regression problem, a dyadic model opens the door to using the wide range of
established regression techniques for variance component estimation. That includes techniques for dealing
with collinearities among the independent variables, and these could be quite useful in quantitative genetic
applications where the variance components which we wish to estimate are often partially confounded, as in
the example of Sectuion 4.1. There is a full presentation on the use of principal components regression in
dmmOverview.pdf [2] Section 7.4. There are some issues, the interface to the "pcr" option via the pls package
is clumsy and its use is seriously memory intensive. Some further work is indicated. The "fgls" option for
solving the DME’s does lead to REML estimates of (co)variances, but it is seriously memory intensive and
only practical with example datasets of up to about 200 animals.

The dyadic residuals (∆) are usually large and highly correlated with the observed dyadic covariances
(Ψ), as in Figure 4. This is because the covariance for each dyad is obtained from only one replicate pair of
observations. The R2 for a dyadic model is tiny - only 3 percent of the variance in the case of the warcolak
example above. This highlights the central problem of quantitative genetic analysis - it is trying to extract
information from a system with a signal to noise ration of 0.03. Modelling variances is much more demanding
than modelling observations. It does not matter whether you do it by maximizing a likelihood, fitting a
regression, or doing an AOV. The problem is instinsic - dmm() just makes it obvious by attacking the problem
directly.
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