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1  General Description

Continuous time meta-analysis (CoTiMA) performs meta-analyses of correlation
matrices and/or raw data of repeatedly measured variables. Since variables are meas-
ured at discrete time points (e.g., today at 4pm, next week on Monday etc.) this
imposes a problem for meta-analysis of longitudinal studies because the time inter-
vals between measurements could vary across studies. However, so-called continu-
ous time math can be used to extrapolate or interpolate the results from all studies to
any desired time interval. By this, effects obtained in studies that used different time
intervals can be meta-analyzed'.

A critical assumption is the validity of the underlying causal model that de-
scribes the investigated process. CoTiMA is based on a rather general model, which
can be restricted on demand. For instance, for a causal system that describes how a
single variable that is measured repeatedly (e.g., xo, x1, X2, etc.) develops over time,
the default CoTiMA model assumes that xo affects x,, x; affects x2 and so forth. This
is called a first order auto-regressive structure. In a two-variable model of x and y,
the underlying CoTiMA model is a cross-lagged model with auto-regressive effects
for x and y and, in addition, a cross-lagged effect of x; to y:+; and of yr to x/+;. Random
intercepts cross-lagged panel models (RI-CLPM; e.g., Hamaker et al., 2015) can
performed with the CoTiMA R package, too, but certain assumptions have to be
met. More complex models (e.g., including x: to y«+; and x: to y+2) can also be meta-
analyzed, but they require user-specific adaptations. Restricted versions of the de-
fault CoTiMA model (e.g., x: to y:+1 but not yr to x.+7) are easier to implement and
several specific models (e.g., x: to yr+; exactly of the same size as yr to x:+s) could be
optionally requested. Correlations of primary studies and/or raw data serve as input
for CoTiMA and synthesized (i.e., meta-analytically aggregated) effect sizes repre-
sent the output of CoTiMA.

install.packages ("CoTiMA")
library (CoTiMA)

Figure 1. Installing CoTiMA from CRAN

CoTiMA is a package for R (R Core Team, 2020). It can be downloaded from CRAN
(https://cran.r-project.org) using the code shown in Figure 1. All codes and examples

!'In a nutshell, CoTiMA fits models to empirical data using the structural equation model (SEM) package
ctsem. The effects specified in a SEM are related (constrained) to parameters that are not directly included
in the model (i.e., continuous time parameters; together, they represent the continuous time structural
equation model, CTSEM) which is done in a fashion similar to other SEM programs (e.g., likea=b x ¢
to test for mediation in MPLUS) using matrix algebra functions (e.g., matrix exponentiation, which is not
available in MPLUS), and statistical model comparisons and significance tests are performed on the con-
tinuous time parameter estimates. For details see Dormann et al. (2020).

1



shown in this User’s Guide were performed and tested with R version 4.3.4 and run
using RStudio (Posit team, 2024). To get the most current beta version of the Co-
TiMA package consult Appendix A.

The next pages show how to conduct a CoTiMA. This involves several steps
starting with entering primary study information (correlations etc.), initial fitting of
a CTSEM to each primary study, fitting the CoTiMA, and plotting the results. We
also highlight some common problems frequently encountered during the CoTiMA
process.

2 A CoTiMA Example

To prepare a CoTiMA, users have to supply information about i primary studies to
be meta-analyzed. Primary study information is stored into objects (everything in R
is an object). Some objects have pre-defined names and are either always mandatory
(delta ti), mostly mandatory (sampleSizei, empcovi), or optional
(pairwiseNi, studyNumberi, moderatori, etc., with i indicating the study
number). User-defined object names could be added (e.g., criticalRemarki).
Let’s generate these objects in R with the code shown in Figure 2 and look closer at
them in the next step”.

The code in Figure 2 is sufficient for preparing a small but nevertheless full
CoTiMA based on two variables (Variable 1 = V1, Variable 2 = V2) measured in
three primary studies. These studies are illustrated in Figure 3. The cross-lagged
effects of earlier V1 on later V2 (V1toV2) and vice versa (V2toV1) are meant to be
meta-analyzed. The first two studies are numbered 1 and 4 in our database. Note that
the numeration itself could be arbitrarily chosen, but it should be assigned consist-
ently within every study. Both studies 1 and 4 comprise two variables measured at
two measurement occasions, which are represented in a correlation matrix with four
rows (nrow = 4) and four columns (ncol = 4;i.e., a 4x4 correlation matrix;
see Figure 2). The correlations reported in primary studies are stored in the objects
empcovl and empcov4, respectively. The third Study 313 has three waves of
measurement, and the empirical correlation matrix of Study 313 has, therefore, 6x6
entries. The order of the variables in the correlation matrices has to be V1 at Time
0, V2 at Time 0, V1 at Time 1, V2 at Time 1, etc. Note that in the continuous time

2 When it is desired, all R objects created in the following examples (e.g., empocvl, delta t1,etc. in
Figure 2 or CoTiMAstudyList 3 in Figure 4) can be created in the user’s R environment in two ways.
First, the code could be copied directly from this User Guide and then run. Second, the objects are invis-
ible but actually available in the package:CoTiMA environment. For example, empcovl <- empcovl
copies empcovl from the package:CoTiMA environment into the global environment. Afterwards,
rm (empcovl) removes empcovl from the global environment, but it still available in the package:Co-
TiMA environment. Objects that are available in the package:CoTiMA environment only, but not in the
global environment, are not used when the user performs any CoTiMA analyses.
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literature it is common to number time points starting with 0. In the output files
generated later, these two variables are labeled V7 and V2. The matrices have to be
symmetric. Lack of symmetry is automatically detected by CoTiMA, a warning is

issued, and processing is interrupted.

empcovl <- matrix(c(1.00, 0.45, 0.57, 0.18,
0.45, 1.00, 0.31, 0.66,
0.57, 0.31, 1.00, 0.40,
0.18, 0.66, 0.40, 1.00), nrow = 4, = 4)
delta_tl <- 3
sampleSizel <- 148
empcov4 <- matrix(c(1.00, 0.43, 0.71, 0.37,
0.43, 1.00, 0.34, 0.69,
0.71, 0.34, 1.00, 0.50,
0.37, 0.69, 0.50, 1.00), nrow = 4, = 4)
delta_t4 <- 3
sampleSize4 <- 88
empcov31l3 <- matrix(c(1.00, 0.38, 0.54, 0.34, 0.60, 0.28,
0.38, 1.00, 0.34, 0.68, 0.28, 0.68,
0.54, 0.34, 1.00, 0.47, 0.66, 0.39,
0.34, 0.68, 0.47, 1.00, 0.38, 0.72,
0.60, 0.28, 0.66, 0.38, 1.00, 0.38,
0.28, 0.68, 0.39, 0.72, 0.38, 1.00), nrow = 6, ncol = 6)
delta_ t313 <- ¢ (0.5, 0.5)

sampleSize313 <- 335

Figure 2. Entering Information of Three Primary Studies. The Order of Variables has to be
V1_T0, V2_TO, V1_TI1, V2_T1, etc.

Time 2

earlier

Figure 3. Visualization of a Full CoTiMA

In addition to correlation matrices, a CoTiMA requires further information. Re-
searchers need to provide time intervals (delta ti) and sample sizes (sam-
pleSizei). Primary Study 1 has a time lag of 3 quarters, which is stored in the
object delta t1 (see Figure 2). One could also use 0.25 to indicate a quarter of a
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one-year lag. Any time scale is possible, but it has to be used consistently across
primary studies. It is recommended using a time scale that allows assigning a value
of 6 or less to the longest of all time intervals®, which usually results in better model
convergence as we show later. Since Study 313 had three waves of observations, the
corresponding two time intervals have to be provided as vector (delta t313 <-
c (0.5, 0.5)).

Primary Study 1 further had a sample size of 148, which is stored in the object
sampleSizel (not sampleSize(01). In cases, in which correlation matrices in-
clude correlations based on pairwise deletion of missing values, sample sizes vary
between correlations, too. This could be specified as explained later.

activeDirectory <- "../../" # SET A VALID PATH

CoTiMAstudyList_3 <- ctmaPrep (sele > = c(l, 4, 313),
activeDirectory = activeDirectory)

saveRDS (CoTiMAstudyList_3, pasteO (activeDirectory, "CoTiMAstudyList_3.rds"))

Figure 4. Compiling a List of Primary Studies (ctmaPrep)

After all primary study information was entered, the next step is to compile them
into a list* and store this list as an R object. This is done with the ctmaPrep func-
tion included in the CoTiMA R package. Before using ctmaPrep, define the ac-
tiveDirectory (where to save results); this can then be used in all subsequent
function calls. The created list object (e.g., CoTiMAstudyList 3 in Figure 4)
could be inspected as we demonstrate later. For the moment, it is sufficient to just
have it available. Note that all functions provided by the CoTiMA R package start
with ctma such as ctmaPrep. In general, we label the objects where results deliv-
ered by ctma-functions are stored starting with CoTiMA, such as CoTiMAstudyL-
ist 3.

After a list of primary study information has been complied with ctmaPrep,
the next step is to fit a CTSEM to each primary study in a series of separate models
using ctmaInit. This step is mandatory for subsequent CoTiMA for several rea-
sons. One of the most important reasons is that at this stage one could check the
results and identify possible problems with the data entered as, for example, the
choice of a time scale that makes model convergence difficult.

The use of ctmaInit is shown in Figure 5. Before using ctmaInit, define
the activeDirectory (where to save results) if not done yet and the number of
computer cores to be used with coresToUse. This can then be used in all subse-
quent function calls. ctmaInit generates a fit-object CoTiMAInitFit 3 from

3 For example, if the longest time interval was 10 years, one could use 5-year intervals as the time scale,
and to assign the value 2 to delta ti if Study 7/ had a 10-year interval.

* A list is a particular R object that is useful to collect a variety of information such as values, vectors,
matrices, names etc.



the list of compiled studies CoTiMAstudyList 3. The fit-object Co-
TiMAstudyList 3 will be used later for aggregating (i.e., meta-analyzing) drift
effects, performing moderator analyses, estimating publication bias, calculation of
expected power and required samples sizes for different time intervals, plotting, and
much more. In virtually all cases, the CoTiMA functions to perform these tasks re-
quire CoTiMAInitFit 3 asanargument. ctmalInit requires the number of la-
tent variables (n. latent) per measurement occasion to be provided by the user as
well as an activeDirectory, which is where ctmaInit saves the fitted
CTSEM models for each primary study. These separate CTSEM model fit files be-
come interesting later. More interesting at this stage it the complied list of all fitted
models, which is stored in a fit-object named CoTiMAInitFit 3, and which can
be saved to disk with saveRDS. Using summary (CoTiMAInitFit 3) dis-
plays the results, of which we selected the most interesting ones in Figure 6.

activeDirectory <- "../../" # SET A VALID PATH

CoTiMAInitFit 3 <- ctmalnit (primaryStudies = CoTiMAstudyList_ 3,
. -y

veDirector = activeDirectory,

resToUse = 2)

summary (CoTiMAInitFit_3)
saveRDS (CoTiMAInitFit_ 3, pasteO(activeDirectory, "CoTiMAInitFit_3.rds"))

Figure 5. Fitting a ctsem Model to each Primary Study (ctmaInit)

[[111

V1toVvl SE V2toVl SE
Study No 1 "Reference not provided" "-0.2048" "0.0465" "0.0343" "0.0398"
Study No 4 "Reference not provided" "-0.132" "0.0444" "0.0228" "0.0426"
Study No 313 "Reference not provided" "-1.249" "0.1266" "0.4289" "0.1215"
V1tov2 SE V2tov2 SE

"-0.0784" "0.0358" "-0.1079" "0.0353"
"0.0438" "0.0422" "-0.1486" "0.0444"
"0.2777" "0.1056"™ "-0.8499" "0.0954"

[[2]]
discrete time V1toVl discrete time V2toVl discrete time
Study No 1 "Reference not provided" "0.8137" "0.0293"
Study No 4 "Reference not provided" "0.8768" "0.0198"
Study No 313 "Reference not provided" "0.3066" "0.1542"

V1toV2 discrete time V2toV2 discrete time

"-0.067" "0.8965"
"0.0381" "0.8623"
"0.0998" "0.4501"

Figure 6. CTSEM Results (summary (CoTiMAInitFit 3))

The output shown in the first panel [ [1]] of Figure 6 displays the so-called drift
effects. The two auto effects (VitoV1 & V2toV2) are negative as one would expect
in continuous time modeling - we explain this later in Section 6. The two cross ef-
fects are mostly positive. Note that an effect is regarded as significant if its magni-
tude is more than 1.96 times its standard error (SE). Furthermore, when auto effects
(VitoV1 & V2toV2) were not significant, this represents a warning signal that proper
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model fit might not be achieved. However, so-called credible intervals are available,
too, and should be preferred (not shown in Figure 6). All of this — and a bit more —
is displayed after entering summary (CoTiMAInitFit 3). We do not show the
full output here due to space reasons. The study numbers are repeated as row names.
"Reference not provided" just indicates that, yes, we did not provide a
reference for each study, which would improve readability of the table. We explain
later how to provide references for labeling the output.

The second panel [ [2] ] of Figure 6 displays the discrete time counterparts of
the two auto and the two cross effects across one quarter, which was the time scale
used when entering primary study information in Figure 2. We explain the relation
between continuous time and discrete time effects further below. The reason why
we already show the discrete time effects here is that they can be interpreted as or-
dinary standardized lagged regression coefficients across one quarter. Inspecting the
VitoV] and V2toV?2 auto-regressive effects shows reasonable effects for all three
studies. Experienced readers would usually expect here moderate to high auto-re-
gressive effects due to longitudinal analyses (e. g., .90 for personality variables or
.80 for health variables). Small effects (e.g., .03), on the other hand, are very rare
and unlikely.

Potential estimation problems are also reported in this summary section. A
common cause for potential estimation problems is the user’s choice of time scale
for the values of delta ti. While bigger time lags, for example, 12 months in-
stead of 1 year, are sometimes a bit too large to ensure proper convergence, CoTiMA
works extremely well for time lags in the range of 0.1 to 6, regardless of the meas-
urement unit. The user is therefore usually well-advised to rescale the time lags when
the numerical values used when performing ctmaPrep (see Figure 2) are larger
than 6, which could be done in Figure 5 by adding the argument scaleTime (e.g.,
scaleTime = 1/12 for months)— we explain this later in more detail.

A full CoTiMA, with full indicating that all drift parameters are simultaneously
aggregated, is conducted by the code in Figure 7. The summary function displays a
couple of results that we present here in reduced form and in two subsequent steps.
Results not shown here are explained later.

activeDirectory <- "../../" # SET A VALID PATH
CoTiMAFullFit 3 <- ctmaFit (ctmaInitFit = CoTiMAInitFit 3,
esToUse = 2)
saveRDS (CoTiMAFullFit_3, pasteO(activeDirectory, "CoTiMAFullFit_3.rds"))
summary (CoTiMAFullFit_3)

Figure 7. Conducting a Full CoTiMA (ctmaFit)

We reduced the Sestimates section in Figure 8 compared to the actual output
displayed on screen. Reason is that among the whole lot of estimates presented, only
the four drift effects are of major interest. These are the meta-analytically aggregated
effects as indicated by the additional label invariant. Invariant means that an effect



does not vary among primary studies and only a single overall effect is estimated.
This is similar to traditional fixed effect analysis, where it is also assumed that a
single overall (true) effect exists. This is what one usually wants from CoTiMA. We
are done. All drift effects are significant by means of the T-values as well as by
virtue of their credible intervals.

row col Mean sd 2.5% 50% 97.5% Tvalues
invariant) 1 1 -1.0797 0.1436 -1.3652 -1.0772 -0.8114 -7.5170
invariant) 1 2 0.5824 0.1048 0.3704 0.5826 0.7828 5.5567
DRIFT V1toV2 (invariant) 2 1 0.2816 0.0994 0.0744 0.2832 0.4741 2.8322
DRIFT V2toV2 (invariant) 2 2 -0.4370 0.0964 -0.6490 -0.4302 -0.2629 -4.5353

Figure 8. First part of summary (CoTiMAFullFit 3)

DRIFT V1toVl
DRIFT V2toVl

The second part of the output generated by summary (CoTiMAFullFit 3) is
shown in Figure 9. It displays the minus 2 loglikelihood (-21l) value, the number of
estimated parameters (both are important if researchers want to compare nested
models), and the optimal lag sensu Dormann and Griffin (2015), across which the
effects become largest.

Sminus21l
[1] 7311.08

$n.parameters
[1] 22

Sopt.lag.orig.time
[,11 [,2]

[1,1 NA 2

12,1 2 NA

Smax.effects

[,11 [,2]
(1,1 NA 0.3036
[2,] 0.1468 NA

Figure 9. Second Part of summary(CoTiMAFullFit 3)

The previous output in Figure 8 informed us that the effect of VitoV2 is located in
Row 2 and Column 1 and, conversely, the effect of V’2toV1 is located in Row 1 and
Column 2. In this case, the optimal lag is two quarters for both effects, where the
effects (see Smax .effects)become .1468 for V2toV1 and .3036 for VitoV2. The
former seems to be much smaller than the latter, and we explain later how to test if
the difference between the two effects is statistically significant.

Effects in continuous time are difficult to interpret. Therefore, they are usually
translated into discrete time effects. More specifically, they are usually translated
into the cross-lagged regression coefficients that can be expected across a range of
different time intervals. This is achieved when plotting a CoTiMA fit-object (or sev-
eral of the CoTiMA fit-objects in the same plot). Figure 10 shows how to plot both
the effects of the three separately fitted primary studies and the aggregated effect
into single figures. Actually, since there are four effects (auto effect VitoV1, auto



effect V2toV2, cross effect VitoV2, and cross effect V2toV1), four figures will be
created.

plot (ctmaFitList (CoTiMAInitFit_ 3, CoTiMAFullFit 3),
timeUnit = "Quarters",

= ge = c(l, 48, 1))

Figure 10. Plotting a Full CoTiMA (plot)

To inform the plot function that we want to plot multiple CoTiMA fit-objects sim-
ultaneously, they have to be combined using the CoTiMA function ctmaFitList.
For labeling of the x-axis, the time unit is defined by t imeUnit = "Quarters"

ranging from 1 to 48 in 1-quarter steps (the smaller the steps, the smoother the plot).
For the effect VitoV2, the resulting plot is shown in Figure 11.

Cross-lagged Effects of V1toV2
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As can be seen, the dashed black line that represents the aggregated effect reaches
its maximum across time intervals of two quarters, where it can be expected to be
.1468 (see Figure 11 and compare to the results shown in Figure 9), and then be-
comes smaller eventually approaching zero. It is noteworthy, albeit not occurring
very often and probably limited to CoTiMAs with very few primary studies, that the
aggregated effect does not always have to be somewhere in between the smallest
and largest effects observed among the primary studies. CoTiMA does not aggregate
by taking a (weighted) average of single effects. Rather, it optimizes estimates of all
effects simultaneously by minimizing the loglikelihood value of the fit-function, and
the single set of the two auto effects and the two cross effects best explains the ob-
served correlations across the three primary studies.

CoTiMA could be used to answer much more research questions than demon-
strated up to this point. Capabilities include traditional fixed and random effects
analyses, analyses of publication biases, assessing heterogeneity, comparing effect
sizes within models, moderator analysis, and analysis of statistical power. However,
for CoTiMA like for any kind of meta-analysis, the most time-consuming work is
data collection and data management. Therefore, the two next sections deal with this
topic. We make several recommendations of how to proceed and we introduce fur-
ther functions and capabilities of CoTiMA, which could make the life of a meta-
analyst more convenient. Subsequent sections then address additional types of anal-
yses that could be conducted after a full CoTiMA.

3 EPIC-BiG-Power: A Recommended CoTiMA Work-
flow

Our recommended CoTiMA workflow can be summarized with the acronym EPIC-
BiG-Power, which stands for Extract, Prepare, InitFit, CoTiMAs, Bias & General-
izability, and statistical Power.

1.  EPIC: Extract correlations from the literature and save them to disk. There is
no particular ctma-function available supporting this step. It is hard work!
We make some suggestions in Section 4.

2. EPIC: In a Preparatory step, combine variables, correct correlations, add fur-
ther study information, and add raw data if available. Finally, combine all
information by compiling a /ist of primary studies to be used for subsequent
analysis using ctmaPrep (and ctmaEmpCov if useful). This is elaborated
in Section 5.

3. EPIC: Perform a series of Initial fits, in which each primary study out of the
list of primary studies is used to fit a CTSEM using ctmaInit. This is
demonstrated in Section 6.

4.  EPIC: The fit-object created in Step 3 is typically used to perform a CoTiIMA
using ctmaFit. This is the core of CoTiMA!
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(a) We show how to perform a full CoTiMA in Subsection 7.1, in which an
entire drift matrix is aggregated.

(b) In Subsection 7.2 a partial CoTiMA is demonstrated, in which subsets
of drift coefficients are aggregated.

(c) To address the question whether two (or more) drift effects (e.g., the 2
cross effects) estimated in Step 4(b) are identical, or if one effect is sig-
nificantly larger than the other one, use the CoTiMA fit-object delivered
in Step 4(b) and ctmaEqual to test this. See Subsection 7.3 for details.

(d) To address the question whether one (or more) drift effects are moder-
ated by certain characteristics of the primary studies (e.g., the year when
they were published), use the CoTiMA fit-object delivered in Step 3 and
ctmaFit to test this. See Subsection 7.4.

BiG: Analysis of publication Bias including possible corrections can also be
performed. Further, various measure of heterogeneity, which allow answer-
ing the question if effects could be Generalized, are reported. This also in-
volves z-curve analysis. Classical fixed and random effects of each single
drift effect (not as a set) are estimated, too. Use the CoTiMA fit-object deliv-
ered in Step 3 and ctmaBiG to test this. This is demonstrated in Section 8.
Power: Calculation of the statistical (post hoc) Power of the cross effects in
each primary study (using the CoTiMA results as true effect estimates) as
well as required sample sizes for future studies using a range of different time
intervals could be performed, using by the CoTiMA fit-object delivered in
Step 3 and ctmaPower. This is demonstrated in Section 9.

Results of the different analyses could be plotted with plot (CoTiMaFit-
Objects). Funnel and forest plots will be created if Co-
TiMaFitObjects is a CoTiMA fit-object delivered by ctmaBiG. Plots
of required sample sizes are delivered if CoTiMaFitObjects is a Co-
TiMA fit-object delivered by ctmaPower. Discrete time cross-lagged and
auto-regressive effect size plots will be created if CoTiMaFitObjects is
a CoTiMA fit-object delivered by ctmaInit or ctmaFit. This is demon-
strated throughout 6 — Section 9.

4  Extraction of Correlations from the Literature

In the previous example, we used only the mandatory objects (delta ti)and ob-
jects that are probably required in most instances (sampleSizei, empcovi). We
show later how data management can be improved by using further objects. This
section starts, however, with some recommendations and helpful functions that can
make data entry easier and that offer new possibilities.
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One of the most laborious steps is entering the correlation matrices of primary
studies. Although it would be less laborious to enter only lower triangular correlation
matrices, the requirement to have full correlation matrices serves to double check if
correlations are entered correctly. Small typographical errors could have large con-
sequences such as time-consuming and poor convergence in fitting the model to the
data.

Although it is preferred to analyze correlation matrices in meta-analyses rather
than covariances, the option to analyze covariances is available; CoTiMA automat-
ically switches to the analysis of covariances if vectors of variances (empVar i) are
provided. This is, however, not recommended because different variances imply that
effect sizes between studies are on different scales, making aggregated effects im-
possible to interpret. Similarly, empirical mean values for all variables (emp-
Means 1) could be provided, but we do not address these possibilities here.

empcov128 <- matrix(c(
1.00, 0.48, 0.50, 0.50, 0.43, 0.40, O. =0,
0.48, 1.00, 0.17, 0.23, 0.22, 0.00, O. =0,
0.50, ©0.17, 1.00, 0.63, 0.42, 0.45, O. =0,
0.50, 0.23, 0.63, 1.00, 0.65, 0.59, O. =0,
0.43, 0.22, 0.42, 0.65, 1.00, 0.49, ©O. =0,
0.40, 0.00, 0.45, 0.59, 0.49, 1.00, O. =0,
0.39, 0.01, 0.44, 0.50, 0.64, 0.75, 1. =0,
-0.51, -0.10, -0.52, -0.50, -0.41, -0.54, - 0.
-0.45, -0.08, -0.41, -0.37, -0.41, -0.46, - 1o =9, = @)
pairwiseN128 <- matrix(c(
100, 99, 88, 77, 66, 55, 44, 33, 22,
99, 99, 99, 88, 77, 66, 55, 44, 33,
88, 99, 88, 99, 88, 77, 66, 55, 44,
77, 88, 99, 77, 99, 88, 77, 66, 55,
66, 77, 88, 99, 66, 99, 88, 77, 66,
55, 66, 77, 88, 99, 55, 99, 88, 77,
44, 55, 66, 77, 88, 99, 44, 9%, 88,
33, 44, 55, 66, 77, 88, 99, 33, 99,
99, 22), =9, = 9)

22, 33, 44, 55, 66, 77, 88,

variableNamesl28 <- c("SPP_1", "SOP 1",
"role stressil"
"exhaustionil", "exhaustion 2",

"cynicism 1", "cynicism 2", "efficacy 1", "efficacy 2")
dimnames (empcov128) <- ,1st(var1ableNam65128, variableNames128
activeDirectory <- "../../" # SET A VALID PATH

saveRDS (empcov128, pasteo(actlveDlrectory, "empcov128.rds"))
saveRDS (pairwiseN128, pastel (activeDirectory, "pairwiseN128.rds"))

Figure 12. Entering Correlation Matrices

Figure 12 shows an example of how to enter and save correlation matrices. We rec-
ommend entering them as they are published and not change any signs or skip vari-
ables. This could be easily done later. Although it is no formal requirement, we also
recommend labeling the variables (i.e., the row names and column names of the
matrices) as they are labelled by the authors of the primary studies. The correlation
matrices including the labels are then saved. For demonstration purposes, we change
the original matrix reported by Childs and Stoeber (2012) by deleting one variable
from the matrix shown in Figure 12. In the original study (Childs & Stoeber, Study
1), the variable role stress 2 was available, but sometimes researchers do not
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measure all variable at all time points. Regardless the missing data (correlations) one
has to deal with, such primary studies provide useful information (e.g., for estimat-
ing auto-regressive effects), and could therefore be included when conducting a Co-
TiMA.

A further possible challenge for CoTiMA are correlation matrices reported in
primary studies that are based on pairwise deletion of missing values. One possible
problem is that such matrices might not be suited at all for analysis if they are not
positive definite. This cannot happen with listwise deletion. A not positive definite
matrix is given, for example, if the correlation between A and B is » = .90, between
A and C it is » = .80, and between B and C it is » = .10. Given the two large correla-
tions, such a small correlation is impossible if all correlations are based on identical
samples. If a matrix is not positive definite, we recommend contacting the authors
of the primary study and ask for a correlation matrix based on listwise deletion, or
for raw data. Another option is to drop one or more variables from the correlation
matrix. One could check if the matrix is positive definite after dropping variables;
the code eigen (empcov128) $values should deliver only positive eigenvalues
then.

A second challenge resulting from pairwise deletion of missing values in pri-
mary studies is the sample size to be used for CoTiMA. Sometimes, authors report
the range of pairwise N (e.g., pairwise N =22 to 100) in a table note. We recommend
using the smallest value then (e.g., sampleSizel28 = 22), which prevents SEs
from being estimated much lower than they actually are. Sometimes, however, au-
thors report pairwise N for each correlation. Thus, we also have a matrix of pairwise
N, which we illustrate in Figure 12. Recall that we also have to deal with the entirely
missing variable role stress 2. Using a matrix of pairwise N rather than just the
smallest of all N increases the statistical power of a CoTiMA. We recommend saving
the matrix to disk (see Figure 12).

5 Preparatory Step (ctmaEmpCov, ctmaCorRel,
ctmaPrep)

CoTiMA uses correlation matrices to generate pseudo raw data (also known as syn-
thetic data; cf. Grund et al., 2022) using the MASS R package (Veneables & Ripley,
2002). Pseudo raw data exactly (1) reproduce the correlation matrices and offer a
couple of interesting options. In the present section we show how data can be pro-
cessed in terms of recoding variables, combining two or more variables into compo-
site (mean) scores, and dealing with missing correlations.

We turn now to processing the correlations shown in Figure 12. Our aim is to
analyze the reciprocal effects between job demands and burnout. In particular, we
(1) want to correct the correlations for unreliability (aka correction for attenuation
or disattenuation). Further, we (2) want to drop the variables SPP_1 and SOP 1
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because these variables do not exist in other primary studies and because they are
not of particular interest. We also (3) want to recode efficacy 1 and efficacy 2 so
that they represent lack of efficacy rather than efficacy. Lack of efficacy, cynicism,
and exhaustion are the three burnout symptoms, and we (4) want to combine them
into a single variable®. Whereas a measure of demands is available for the first meas-
urement occasion (role stress_1), such a measure is missing at the second measure-
ment occasion. Thus, we (5) also have to deal with missing correlations.

To achieve our aims, we start with preparing the relevant data using the code
shown in Figure 13. Note that the only computation done here is correction for un-
reliability using ctmaCorRel. No further computations are done until the Co-
TiMA function ctmaEmpCov in Figure 14 is applied. Here in Figure 13 we only
prepare the required objects in R.

activeDirectory <- "../../" # SET A VA ATH
empcovl128 <- readRDS (pastel (activeDirectory, "empcov128.rds"))
pairwiseN128 <- readRDS (pasteO (activeDirectory, "pairwiseN128.rds"))
delta_t128 <- 1.5
alphasl128 <- c(.87, .88, .80, .94, .91, .88, .95, .81, .88)
empcovl128 <- ctmaCorRel (empcovl128, alphasl28)
targetVariablesl28 <- c("role stress_1",
"exhaustion_1", "cynicism_1", "efficacy 1",
"exhaustion_2", "cynicism_ 2", "efficacy 2")
recodeVariablesl128 <- c("efficacy 1", "efficacy 2")
sampleSizel28 <- mean (pairwiseN128)
combineVariablesl28 <- list("role stress_1",
c("exhaustion_1", "cynicism_1", "efficacy_1"),
c("exhaustion_2", "cynicism_ 2", "efficacy_2"))
combineVariablesNamesl28 <- c("Demandsl", "Burnoutl", "Burnout2")
missingVariablesl28 <- c(3)

Figure 13. Processing Correlation Matrices (ctmaCorRel)

We begin with reading the previously saved correlation matrix and the matrix of
pairwise N from disk (see Figure 13) and assign them to R objects empcov128 and
pairwiseN128. With colnames (empcov128) (not shown in Figure 13) we
could recall the variable names, which are "SPP 1", "SOP 1", "role
stress 1", "exhaustion 1", "exhaustion 2","cynicism 1","cyn-
icism 2","efficacy 1",and"efficacy 2"

First, we do the corrections for unreliability. This has to be done first because,
for example, reliabilities would be no longer available after two or more variables
are combined. To correct for unreliability, a vector of reliabilities (alphal28) has
to be provided from primary studies, and then the ctmaCorRel is used to replace

> CoTiMA could also be used with measurement models, for example, with lack of efficacy, cynicism,
and exhaustion as manifest indicators of a latent factor. However, in meta-analysis the most common case
is that burnout would be measured using different (numbers of) variables. Therefore, combining the avail-
able variables for each primary study and then using a single manifest indicator in subsequent CoTiMA
is frequently the only viable way.
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empcov128 by its disattenuated counterpart. Note that we usually do not recom-
mend disattenuating correlations®!

Second, we reduce the number of variables. All variables except the two we
want to drop (SPP_1 and SOP_1) are assigned to targetVariables128. Note
that a formal requirement of CoTiMA is that the variables are ordered in Time (Time
0 variables, Time 1 variables, etc.). This is also achieved by ordering the variables
accordingly when creating targetVariables128.

Third, the two variables we want to recode are assigned to the object recode-
Variables128.Ifan empcovi does not include variable names (no dimnames),
one could use the variables’ positions (i.e., recodeVariablesl128 <- c (4,
7) ). Note that if numbers are used, they should correspond to the positions in the
targetVariables i object rather than the rows/columns in the empcov i object
(i.e., recoding is done after targetVariables i were selected from empcovi).
Although it is not necessary to assign any value to sampleSizel28, we assigned
the mean of the pairwise N (mean (pairwiseN128)), as a rough indicator of the
overall contribution of the primary study to the result of CoTiMA. This is a reason-
able value that will be used for descriptive statistics in the output of subsequent Co-
TiMAs. Other options could be min(pairwiseN128) or max (pair-
wiseN128).

Fourth, we use a list (!) of variable names or vectors of variable names to define
the variables that should or should not be combined. This list is stored in the object
combineVariables128. We keep the variable role stress 1 as it is, whereas for
the first and second measurement occasion the three burnout variables are combined
into a single scale, respectively. The three final variables are then labeled as defined
in combineVariablesNames128.

Fifth, since there is no variable for demands at the second time point, we de-
clare it as missing. This is done by stating which variable is missing in the imagined
set of Demands1, Burnoutl, Demands2, Burnout2, which is the 3rd element. Thus,
missingVariablesl28 <- 3.

¢ Correlations are disattenuated using the well-known formula developed by Spearman (1904). This for-
mula is based on several assumptions. One of these assumptions is that underlying Cronbach’s alpha (or
any other estimate of reliability), which is usually used to measure reliability, are correct. While violations
of the assumptions do usually not cause visible consequences when dealing with a single cross-sectional
correlation coefficient, in the case of correlation matrices of longitudinal studies it might cause problems.
One problem is that disattenuated test-retest correlations could become larger than 1.0, which is automat-
ically corrected by ctmaCorRel (i.e., they are set to 1.0). Another problem is that the disattenuated
matrices might not positive definite and could not be analyzed then.
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resultsl28 <- ctmaEmpCov (targetVari le: targetVariablesl128,

: recodeVariablesl28,

ineVari les = combineVariablesl28,

ineVari lesNames = combineVariablesNamesl128,

les = missingVariablesl128,

e =2,
5 iseN = pairwiseN128,
Tpoints = 2,
er v = empcovl128)
empcovl128 <- resultsl28$rNew
pairwiseN128 <- resultsl28$pairwiseNNew

Figure 14. Convert Correlation Matrices (ctmaEmpCov)

The CoTiMA package comes with the function ctmaEmpCov, which performs the
desired operations (recoding, combining etc.) and yields the final correlation matrix
that we want to use for our subsequent CoTiMA (see Figure 14). Bevor using this
function no computations were applied to the data. Since we have a matrix of pair-
wise N, this will be processed by ctmaEmpCov, too. Note that a common problem
resulting from copying/pasting the code in Figure 14 is failure to adjust the
Tpoints. The function ctmaEmpCov returns a new correlation matrix, which is
then used to replace the empcov128 from which we started. Further, ctmaEmp—
Cov returns a new matrix of pairwise &V, which is then used to replace the pair-
wiseN128. Figure 15 shows the new correlation matrix and matrix of pairwise N.

[,1] 2] [,3] [,4]
[1,] 1.0000000 0.7361878 NA 0.5809288
[2,] 0.7361878 1.0000000 NA 0.8118634
[3,1 NA NA NA NA
[4,] 0.5809288 0.8118634 NA 1.0000000

11,21 [,31 [,4]
77

[1,1 88 0 44
[2,1 77 55 0 44
13,1 0 0 0 0
[4,1 44 44 0 22

Figure 15. Results of Applying ctmaEmpCov to the Specifications of Study 128

Instead of correlation matrices, raw data can be used as well, and the arguments
required to read raw data from disc have to be stored in a rawData i object (see
Figure 16). In R, a 1ist is a list (sic!) that has elements, which have their own
labels (like in a shopping list, in which you summarize the planned purchases in
subitems like vegetables, cheese etc.). Unlike a vector, the elements of a list could
be of different types, for example, characters, numbers, symbols, matrices etc. The
list-object created in Figure 16 has seven elements: £i1eName, studyNumbers,
missingValues, standardize, header, dec, and sep. Note for this exam-
ple, data preparation has already been done (e. g., combining, eliminating variables).
Consult the Appendix B for the ctmaShapeRawData function, which can be
helpful to get raw data organized in the way required by CoTiMA (or ctsem).
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activeDirectory <- "../../" # SET A VALID PATH
rawData228 <- list(fileName pasteO (activeDirectory, "rawdata228.txt"),
studyNur = 228, missingValues = -99,
st rdize = TRUE, header = TRUE, dec = ".", sep = " ")
delta_t228 <- c(NA)

Figure 16. Specification for Using Raw Data

3D |l

The raw data have to be included in an ordinary text file, and the name of the file
should be stored in the list element £i1eName (Note for this example, the raw data
were not provided in this user’s guide). Possibly missing values should be defined,
and only a single value is possible (-99 is assumed by default) and stored in the list
element missingValues. Whether or not the raw data should be standardized,
which implies the analysis of correlations, or not, which implies the analysis of co-
variance, could be specified by setting the list element standardize to either
TRUE (default and recommended) or to FALSE. Whether or not the raw data files
include a header with variable names (as for the example data below) could be spec-
ified by setting the element header to either TRUE (default) or to FALSE. Finally,
a decimal delimiter (default =".") and the characters separating the values (default
="") could be defined using the list elements dec and sep, respectively.

Note that in meta-analysis, moderators are usually study characteristics (e.g.,
the average age of a sample) rather than characteristics of individual study partici-
pants. Therefore, study-level moderator values are not included in raw data files, but
they are defined directly for a primary study that does provide raw data by assigning
values to the moderator-object; this is explained later’. Figure 17 shows the raw data
file structure corresponding to the code used in Figure 16.

V1 TO V2 TO V1l T1 V2 T1 dTl

0.835 2.328 -0.778 2.969 11
1.555 2.634 1.977 1.807 12
3.209 1.849 2.291  2.795 12
0.416 2.351 0.127 1.705 13
-99.000 -99.000 0.476 -99.000 13
-99.000 -99.000 0.854 -99.000 11

-99.000 -99.000 -99.000 2.987 12
-99.000 -99.000 -99.000 2.087 12
-99.000 -99.000 -99.000 0.927 13

Figure 17. Raw Data File Structure

Raw data of a primary study has to be provided as a text (ascii) file. Data has to be
in wide format (i.e., one row per individual). Assuming there are ¢ measurement
occasions, the order of the variables should be V1_TO, V2 _TO, ..., V1_Tt, V2_Tt,
dT1,dT2, ...dT(¢1), where dT¢ are the variables representing the time intervals (del-
tas) between measurements (see Figure 17). Note that if  measurement occasions

7 Individual-level moderator variables could be modelled if raw data are available (see Appendix B for
further details).
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exist, there are #-1 time intervals. Compared to correlation matrices as input, raw
data allow the time intervals to vary between the individuals within a study (average
time intervals are automatically reported in CoTiMA fit-objects). However, for stud-
ies that supply raw data, it is mandatory to define the delta ti object! It has to
have as many NA as the largest number of possible time intervals in the respective
study is, for example, in the case of three intervals, delta ti <- c(NA, NA).
In the example in Figure 17 there are only two time points and, thus, one interval
dT1. Thus, delta ti is indeed the only mandatory object because rawData i
could substitute empcovi and pairwiseNi or sampleSizei.

So far, we introduced the objects delta ti, sampleSizei, empcovi,
targetVariablesi, alphasi, pairwiseNi, and rawDatai. Further pre-
defined object names are:

e moderatori. A vector of numerical values either representing categori-
cal or continuous variables, e.g., moderator6 <- c¢(1, 2, 2,
0.76, 2.56, 2001)

e empMeansi. Mean values of variables (default = 0). It is not recom-
mended to change the default, but it is possible, e.g., empMeans7 <-
c(l, -2.5, 1.1, -2.4)

e empVarsi. Variances of variables; (default = 1). It is not recommended
to change the default, but it is possible, e.g., empVarse <- c (1, 2,
1.1, 1.9)

e studyNumberi. A special number used for labeling in the outputs of
subsequently fitted CoTiMA models, e.g., studyNumber6 <- 66

e source1i. Useful to label the table displaying the estimated parameters for
each primary study, rather than using the numbers used for the primary
study-objects (e.g., 128 from empcov128), e.g., source6 <- c("De
Jonge", "Dormann", "Janssen", "Dollard",
"Landeweerd", "& Nijhuis", "2001")

e ageMi. A value indicating the mean age of participants in a primary study,
e.g.,ageM6 <- 31.78

e malePercenti. A value indicating the percentage of male participants
in a primary study, e.g., malePercent6 <- 0.11

e occupationi. A vector of character strings representing the occupations
of participants in a primary study. Of course, this has not to be taken liter-
ally. For example, it could be also used to represent the program in which
student participants are enrolled and similar classifications, e.g., occupa-
tion6o <- c("Health care workers")

e countryi. A single character string representing the country in which a
primary study was conducted, e.g., country6 <- c("Nether-
lands")
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e startValuesi. A vector of start values, which was used in previous
CoTiMA versions. Currently the use of start values is disabled, but this
might change in the future.

In addition to these pre-defined object names, user-defined object names could
be added (e.g., demandsi and burnouti, to add information about the type of
measurement scale used in primary studies). The difference between pre-defined and
user-defined objects is twofold. First, pre-defined objects are included in the Excel
workbook that summarizes primary study information (see Figure 22). Second, user-
defined objects have to be declared in ctmaPrep using the argument addEle-
ments (see Figure 20).

To proceed further with the example, in a first step documented in Figure 18
we add information to those four primary studies data already entered before (Study
1, 4, 128 and 313). In a second step, we add two further primary study information
as shown in Figure 19.
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ageMl <- 39.3

ageSDl <- 8.7

malePercentl <- .60

occupationl <- c("Bank employees")

countryl <- c("Netherlands")

demandsl <- c("Workload")

burnoutl <- c("Emotional Exhaustion")

targetVariablesl <- c("Demandsl", "Burnoutl", "Demandsl", "Burnout2")

sourcel <- c("Houkes, I,", "Janssen, P, P, M,", "de Jonge, J", "& Bakker, A, B",
"Studyl", "2003")

moderatorl <- c (1, 0.72)

ageM4 <- 47.4

ageSD4 <- 5.8

malePercent4 <- .70

occupationd4 <- c("Teachers for adults")

country4 <- c("Netherlands")

demands4 <- c("Workload")

burnout4 <- c("Emotional exhaustion")

targetVariables4 <- c("Demandsl", "Burnoutl", "Demandsl", "Burnout2")

source4 <- c("Houkes, I,", "Janssen, P, P, M,", "de Jonge, J", "& Bakker, A, B",
"Study2", "2003")

moderatord <- c (1, 0.72)

ageM313 <- 30

ageSD313 <- 6

malePercent313 <- 0.30

occupation313 <- c("Employment agency employees")

country313 <- c("Netherlands")

demands313 <- c("Work pressure")

burnout313 <- c("Exhaustion")

targetVariables313 <- c("Demandsl", "Burnoutl", "Demandsl", "Burnout2",
"Demands3", "Burnout3")

source313 <- c("Demerouti", "Bakker", "& Bulters", "2004")

moderator313 <- c (2, 0.72)

ageM128 <- 41

agesD128 <- 11.4

malePercentl28 <- 0.203

occupationl28 <- c("Managerial employees in NHS trusts")
countryl28 <- c("UK")

demands128 <- c("Role Stress")

burnoutl28 <- c("Exhaustion", "Cynicism")

sourcel28 <- c("Childs, J. H.", "& Stoeber, J.", "Studyl", "2012")
moderatorl28 <- c(2, 0.66)

Figure 18. Additional Information for Studies Entered Earlier (Primary Studies 1, 4, 313, &
128)
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empcovl8 <- matrix(c(1.00, 0.44, 0.62, 0.34,

0.44, 1.00, 0.41, 0.62,

0.62, 0.41, 1.00, 0.55,

0.34, 0.62, 0.55, 1.00), nrow = 4, ncol = 4)
variableNamesl8 <- c("Demands_1", "Burnout_1", "Demands_2", "Burnout_2")

dimnames (empcov18)
delta_t18 <- 3
sampleSizel8 <- 174
ageM18 <- 41.33
agesSD18 <- 9.70
malePercentl8 <- 0.03
occupationl8
countryl8 <-
demandsl8 <-
burnoutl8 <-

c ("Germany")
c("Workload")

<- c("Service employees")

c ("Emotional exhaustion",

<- list(variableNamesl8, variableNamesl8)

"Depersonalization")

sourcel8 <- c("Diestel", "& Schmidt", "Study 1", "2012")
moderatorl8 <- c(l, 0.7)
empcov32 <- matrix(c(1.00, 0.45, 0.70, 0.40,
0.45, 1.00, 0.36, 0.66,
0.70, 0.36, 1.00, 0.43,
0.40, 0.66, 0.43, 1.00), nrow = 4, ncol = 4)
variableNames32 <- c("Demands_1", "Burnout_1", "Demands_2", "Burnout_2")

dimnames (empcov32)
delta_t32 <- 2
sampleSize32 <- 433
ageM32 <- 41.5
agesSD32 <- 10.2
malePercent32 <- 0.199

<- list(variableNames32, variableNames32)

occupation32
country32 <-
demands32 <-

<- c("Teachers")
c("Canada")
c("classroom overload")

burnout32 <- c("Emotional exhaustion",
source32 <- c("Fernet", "Guay",
moderator32 <- c(l, NA)

Figure 19. Information for Two Further Primary Studies (18 & 32)

"Depersonalization")
"Senecal", "& Austin", "2012")

The six studies are then compiled into a list as shown in Figure 20. Here we add the
two user-defined object names demands i and burnout i. We also provide a vec-
tor with the labels of the two moderators, and we provide a list of vectors to label
the moderator values.

activeDirectory <- "../../" # SET A VALID PATH
CoTiMAstudyList_ 6 <- ctmaPrep (selectedStuc

= c(1, 4, 313, 128,
activeDirectory,
demands", "burnout"),
= c( "Burnout Measure",
"Control at Work"),
= list(c( "1 = Emotional Exhaustion",
"2 = Exhaustion"),
"continuous"))
"CoTiMAstudyList_6.rds"))

Figure 20. Compiling a List of Primary Studies with Extended Information (ctmaPrep)

18, 32),

®
I

saveRDS (CoTiMAstudyList_6, pasteO (activeDirectory,

To get a convenient overview of the information stored in this list, one could use the
openxlsx R package (see Figure 21). An example of what is displayed when opening
the excel workbook with its several sheets with openXL is shown in Figure 22. The
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workbook could also be saved to disk using the saveWorkbook function of open-
xIsx.

openXL (CoTiMAstudyList_ 6$excelSheets)

activeDirectory <- "../../" # SET A VALID PATH
saveWorkbook(CoTlMAstudyLlst 6$SexcelSheets, verwrite = TRUE,
file = pasteO (activeDirectory, "myExcelSheet.xlsx") )

Figure 21. Open an Excel Sheet with Summary Information Included in a Compiled List of
Primary Studies (Requires Package openxIsx)

A B c D E F G H I
1 |Source Info 1 Source Info 2 Source Info 3 Source Info4 Source Info 5 Source Info 6 Orig. Study No. Moderatur# 1 Moderator #2
2 |Houkes,|,  Janssen,P,P, M, delonge,J &Bakker, A, B Studyl "2003 1 1 0.72
3 |Houkes, |, Janssen, P, P, M, delJonge,] &Bakker, A, B Study2 2003 2 1 0.72
4 |Demerouti  Bakker &Bulters 2004 13 ) 0.72
5 |Childs, J.H. &Stoeber,).  Studyl 012 "128 2 0.66
6 |Diestel & Schmidt Study 1 2012 s 1 0.7
7 |Fernet Guay Senecal & Austin 012 32 1
8 Burnout Measure Control at Work
9 1=Emotional Exhaustion continuous
10 2 =Exhaustion

Figure 22. Excel Sheet with Summary Information Included in a Compiled List of Primary
Studies

6 Initial Fitting (ctmaInit)

Now the first two steps (Extract & Prepare) in the recommended EPIC-BiG-Power
workflow are done and we can move forward to the Init step, for which the previ-
ously compiled CoTiMAstudyList 6 is required. Initial fitting is done with the
code in Figure 23 (analogous to Figure 5), and the result is then displayed on the
console (see Figure 24).

activeDirectory <- "../../" # \
CoTiMAInitFit 6 <- ctmalnit (primary 1 s = CoTiMAstudyList_6,

summary (CoTiMAInitFit_6)
saveRDS (CoTiMAInitFit_ 6, pasteO(activeDirectory, "CoTiMAInitFit_6.rds"))

Figure 23. Fitting a ctsem Model for each Primary Study (ctmaInit)

For Study 128, which we used to demonstrate how to deal with missing variables,
some unusual estimates (e.g., large SEs and non-significant auto effects) emerged,
which was not unexpected in this case. In Study 128, which comprised two waves
of measurement, the variable V1_T1 was missing (demands T1, i.e., role stress_2).
Obviously, this makes it impossible to validly estimate parameter involving V1_T1.
These parameters are called non-identified. Thus, all estimates involving V1_T1 are
not trustworthy. And even if only a single parameter was not identified, conse-
quently the entire model is not identified. Thus, even the seemingly reasonable drift
effect V2toV2 in Figure 24 is not trustworthy. We show later why Study 128 could
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nevertheless be used for CoTiMA. Anyway, we will use the current case to review
some of the general principles of continuous time structural equation modeling
(CTSEM).

Vitovl SE V2toVl SE
Study No 1 "Houkes et al., Studyl, 2003" "-0.208" "0.0454"™ "0.0363" "0.0389"
Study No 4 "Houkes et al., Study2, 2003" "-0.1301" "0.0459" "0.0217" "0.0422"
Study No 313 "Demerouti et al., 2004" "-1.2538" "0.1364" "0.4298" "0.1195"
Study No 128 "Childs, & Stoeber, Studyl, 2012" "-7.5969" "10.1265" "-0.2537" "1.938"
Study No 18 ™"Diestel, & Schmidt, Study 1, 2012" "-0.2166" "0.0421" "0.1037" "0.0411"
Study No 32 "Fernet, Guay, Senecal, & Austin, 2012" "-0.2031" "0.0306" "0.0435" "0.03"
Study No 1 "Houkes et al., Studyl, 2003" V1itov2 SE V2toVv2 SE
Study No 4 "Houkes et al., Study2, 2003" "-0.0777" "0.037" "-0.1081" "0.0359"
Study No 313 "Demerouti et al., 2004" "0.0438" "0.0425" "-0.1516" "0.0467"
Study No 128 "Childs, & Stoeber, Studyl, 2012" "0.2761" "0.1039"™ "-0.8486" "0.0957"
Study No 18 "Diestel, & Schmidt, Study 1, 2012" "-0.0991" "0.208" "-0.1756" "0.1433"
Study No 32 "Fernet, Guay, Senecal, & Austin, 2012" "0.0501" "0.0396" "-0.1914" "0.0412"

Figure 24. Some Results for the Primary Studies (ctmaInit)

Table 1. Overview of the parameters/terms used in discrete and continuous time modelling

discrete time continuous time
variable at Time ¢ affect variable at Time t+1 earlier variable affect later variable
- auto-regressive effect: e.g., from V1,t0 V14, - auto effect: e.g., from earlier V1 to later V1
- cross-lagged effect: e.g., from V1,to V2;+; - cross effect: e.g., from earlier V1 to later V2
[structural equations, regression slopes/paths] [drift effects]
(matrices gamma I or beta B) (drift matrix A)
(co-)variance of residuals (co-)variance of innovations
[unexplained/ residual/ error variance, [system noise, random change,
structural disturbance] prediction error]
(matrix psi ¥) (diffusion matrix G)
intercept continuous time intercept
[constant] (matrices b, CINT)

(matrix alpha @)

measurement error observational noise
(matrices theta @, s, or O¢) [measurement error]
(matrix theta @)

(co-)variance of exogeneous variables (co-)variance of variables at Time 0
(matrix phi @) [initial (co-)variance]
(matrices TOvar or TOcovar)

Note. Parameters/commonly used terms and phrases, [synonyms], (matrices).
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First, in CTSEM any pair of subsequent measurement occasions is regarded as
equivalent except the length of the time interval, which may vary. Therefore, con-
tinuous time coefficients do not describe, for example, the relations between de-
mands at Time 0 and burnout at Time 1. Rather, earlier demands affect later burn-
out. Thus, in CoTiMA, the effect V1toV 1 means the auto effect of earlier V1 to later
V1. Similarly, the effect V'1toV2 means the cross effect of earlier V1 to later V2.
Note that in continuous time, the terms auto effect and cross effect are used, whereas
in discrete time, the terms auto-regressive effect and cross-lagged effect are used.
In a similar vein, the terms innovation and their associated (co-)variances (diffusion
matrix) in continuous time substitute the term error (and unexplained variance) in
discrete time, and the term continuous time intercept substitutes the term intercept
(cf. Table 1 and for more details see Driver et al., 2017; Voelkle et al., 2012).

Between continuous time and discrete time coefficients, well-defined mathe-
matical relations exist. The only reason why continuous time coefficients are used
is that the math is known to describe how coefficients change across time. To trans-
late auto and cross effects into auto-regressive and cross-lagged effects, put the for-
mer into a matrix, multiply the matrix by length of time interval, and then apply the
matrix (!) exponential function. The resulting matrix contains the auto-regressive
effects in the diagonal and the cross-lagged effects off the diagonal (cf. Dormann et
al., 2020; Voelkle et al., 2012).

Figure 25 shows how the continuous time drift effects obtained for Study 313
(see Figure 24) relate to 1-quarter auto-regressive and cross-lagged effects in dis-
crete time. Demands have slightly smaller carry-over effects (V1toV'1) than burnout
(V2toV2). The negative auto effects in continuous time thus translate into positive
auto-regressive effects in discrete time. Thus, in continuous time, the more negative
an auto effect is, the smaller are the effects that a variable carries over time. Further,
the effect of earlier demands on later burnout is smaller (V/foV2) than the effect of
earlier burnout on later stressors (V2toV1). Note that multiplying the matrix with,
for example, 2 (i.e., expm (A313 * 2)) yields the effects across a 2-quarter lag
(i.e., half a year). This is the way how discrete time effect sizes are computed and
plotted (see Figure 11).

library (expm)
A313 <- matrix(c(-1.2538, 0.4298, 0.2761, -0.8486), nrow = 2, col = 2, w = TRUE)
A313
[,1] [,2]
[1,] -1.2538 0.4298
[2,] 0.2761 -0.8486

expm (A313 * 1)

[,1] [,2]
[1,] 0.30509068 0.1542537
[2,] 0.09909133 0.4505155

Figure 25. Relation Between Continuous Time Drift Coefficients of Study 313 and its Dis-
crete Time Counterparts Across one Quarter
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The result of applying the same transformation to the suspicious drift effects of
Study 128 is shown in Figure 26. The non-identified auto effect V'/toV1 corresponds
to an auto-regressive effect of 0.0009 across one quarter: A person’s level of de-
mands at work does virtually not predict at all the person’s level of demands one
quarter later, which one would usually regard as implausible. In fact, this out-of-
range estimate is a consequence that in Study 128 later demands was a missing
variable. Thus, we cannot expect meaningful results from fitting a ctsem model to
Study 128.

library (expm)
Al28 <- matrix(c(-7.5969, -0.2537, -0.0991, -0.1756), nrow = 2, ncc =
Al28

N

= TRUE)

[,1] [,2]
[y =7:.5968 =0.2537
[2,] -0.0991 -0.1756

expm(A128 * 1)

[,1] [,2]
[1,] 0.0008838301 -0.02873391
[2,] -0.0112240047 0.84141568

Figure 26. Relation Between Continuous Time Drift Coefficients of Study 128 and its Dis-
crete Time Counterparts Across one Quarter

Again, model results could also be opened as excel workbook with openXL (Co-
TiMAInitFit 6$excelSheets). For example, effects, their standard errors
(SEs) and lower limit (LL) and upper limit (UL) credible intervals are shown in Fig-
ure 27. Excel Sheet with Summary Information Included in a Compiled List of Pri-
mary Studies. From the workbook, coefficients could be easily copied into a word
processing app to build proper results tables.

A B © D E F G H |
1 Study V1toVILL V1toVI1UL V2toVILL V2toVIUL V1toV2LL V1toV2UL V2toV2LL V2toV2UL
2 1 -0,3062  -0,1284 -0,0408 0,1148 -0,1483 -0,0108 -0,1915 -0,0549
3 4 -0,2361 -0,0645 -0,0552 0,1039 -0,0421 0,1319 -0,2648 -0,0832
4 313 -1,4976  -1,0342 0,1903 0,6718 0,0571 0,4789 -1,0364  -0,6883
5 128 -122,8276 0 -27,3917 22,0153 -0,198 0,1404 -2,1477 -0,0077
6 18 -0,3069  -0,1446 0,0245 0,183 -0,0267 0,134 -0,282  -0,1237
7 32 -0,2685 -0,1507 -0,0123 0,1075 0,0413 0,167 -0,336  -0,2012

Figure 27. Excel Sheet with Summary Information Included in a Compiled List of Primary
Studies

Doing the initial fitting of ctsem models to all primary studies allows specifying
several arguments, for example, constraining some drift effects to be 0.0, or using
different estimators such as Bayesian instead of maximum likelihood estimation (de-
fault). The arguments to select estimators are introduced next, and the entire list of
possible arguments of the different CoTiMA functions are listed in the Appendix B.
Note that the optimize argument should be used and not be confused with op-
timise, which is used by ctsem.
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One particular option is to use Bayesian estimation. Thus, Bayesian estimates
will be drawn from posterior probability distributions. The Stan Math library (Car-
penter et al., 2015), which is used by ctsem and CoTiMA for estimation, offers there-
fore a No U-Turn Sampler (NUTS). However, this sampler is much (!) slower than
the default estimator maximum likelihood estimation or the maximum a posteriori
estimation. In fact, most desktop computers in 2024 probably would need a several
days for a full CoTiMA with Bayesian estimation if 20 or more primary studies are
analyzed. Table 2 gives an overview of how the different estimators can be requested
by setting the optimize and the priors argument. This applies to all CoTiIMA
fitting functions (ctmaInit, ctmaFit, ctmaEqual, & ctmaPower).

Table 2. Estimators available for CoTIMA

Estimator Argument Settings
optimize priors
Bayesian estimation via Stan’s NUTS (No U-Turn) sampler FALSE TRUE
Maximum a posteriori estimation TRUE TRUE
Maximum likelihood estimation (default) TRUE FALSE

Weakly informative priors for Bayesian estimation with the NUTS sampler and for
maximum a posteriori estimation are provided by ctsem. They work well under most
circumstances, however, sometimes they might not work well because the priors
provided by ctsem have been optimized for time measured in years. For example,
one could use the argument scaleTime = 1/365.25 if time was measured in
days and previous fitting attempts did not yield meaningful results.

Figure 28 shows how Bayesian estimates using the NUTS sampler could be
obtained. Since estimation requires long time (expect several hours), it is recom-
mended to save the model fits for each primary study using the saveSingleS-
tudyModelFit argument. If further studies are added later, re-estimating these
models could be avoided by the corresponding readSingleStudyModelFit
argument. In the example in Figure 28, we used chains = 2 and coresToUse
= 2. Three chains and three cores are recommended before publishing results. Since
Bayesian estimation takes a long time, we want to take care that we get precise re-
sults in our first fitting attempt; we set finishsamples = 10000 for this pur-
pose; parameter estimates and credible intervals will be sampled 10000 times from
the estimated parameter distribution, rather than only 1000 sample, which is the de-
fault for finishsamples.
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activeDirectory <- "../../" # SET A
CoTiMAInitFit_6_NUTS <- ctmalnit (p

ies = CoTiMAstudyList_6,

tiveDire ry = activeDirectory,
veSingleStudvModelFit =
c("InitFit_6_NUTS", 1, 4, 313, 128, 18, 32),
ptimize = FALSE,
oriors = TRUE,
L= 2,
oresToUse = 2,

finishsamples

10000)
summary (CoTiMAInitFit_6_NUTS)
saveRDS (CoTiMAInitFit_6_NUTS, paste((activeDirectory, "CoTiMAInitFit_ 6_NUTS.rds"))

Figure 28. Using Bayesian Estimation via Stan’s NUTS Sampler (ctmaInit)

Part of the results obtained from the code in Figure 28 printed to the console with
summary (CoTiMAInitFit 6 NUTS) is shown in Figure 298. A comparison
with the maximum likelihood effects and their standard errors in Figure 24 reveals
no substantial differences except for Study 128, for which results are not trustworthy
anyway. We should note, further, that Bayesian estimation is sensitive to priors, and
default priors are only appropriate if the time scale is appropriately chosen, too. This
could require using an appropriately chosen scaleTime argument.

Vitovl SE V2toVvl SE
Study No 1 "Houkes et al., Studyl, 2003" "-0.2123" "0.0455" "0.0388" "0.0397"
Study No 4 "Houkes et al., Study2, 2003" V=), 135 0.0439" "0.0245" 0.0435"
Study No 313 "Demerouti, Bakker, & Bulters, 2004" "-1.2559" "0.1285" "0.4319" "0.1197"
Study No 128 "Childs, J. H., & Stoeber, J., Studyl, 2012" "-3.3878" "2.3539" "-0.1908" "0.8782"
Study No 18 "Diestel, & Schmidt, Study 1, 2012" "-0.2171" "0.0424" "0.1043" "0.0427"
Study No 32 "Fernet, Guay, Senecal, & Austin, 2012" "-0.2038" "0.0297" "0.0461™ "0.0304"
Study No 1 "Houkes et al., Studyl, 2003" V1tov2 SE V2toV2 SE
Study No 4 "Houkes et al., Study2, 2003" "-0.0786" "0.0376" "-0.1073" "0.0344"
Study No 313 "Demerouti, Bakker, & Bulters, 2004" "0.0483" "0.0484" "-0.1542" "0.0467"
Study No 128 "Childs, J. H., & Stoeber, J., Studyl, 2012" "0.277" "0.1062" "-0.8489" "0.0989"
Study No 18 "Diestel, & Schmidt, Study 1, 2012" "0.0832" "0.4813" "-0.2162" "0.1715"
Study No 32 "Fernet, Guay, Senecal, & Austin, 2012" "0.0551" "0.0431"™ "-0.1996" "0.0489"

Figure 29. Estimates for the Primary Studies Using Bayesian Estimation (ctmaInit)

7 CoTiMA (ctmaFit)

Now the first three steps (Extract, Prepare, & InitFit) in the recommended EPIC-
BiG-Power workflow are done, and we can move forward to do CoTiMAs, for
which the now available CoTiMAInitFit 6 (or CoTiMAInitFit 6 NUTS)
object is required. In the first subsection, we demonstrate how a full CoTiMA with
all drift effects could be fitted. A distinction is therefore made between two special
model types depending on the structure of the data: the all-invariant-model (see
7.1.1) and the regular model (see 7.1.2). In the second subsection, we show how a

8 In addition, several warning messages are issued. They are all related to Study 128, for which we intro-
duced missing data. This does not happen if doing the analysis again without Study 128.
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partial CoTiMA could be fitted, and we use this subsection to introduce the possi-
bilities to analyze specific invariance constraints. In the third subsection, we show
how to statistically test the equality of drift effects, that is, a CoTiMA with equality
constraints. Finally, in the fourth subsection, we show how a moderated CoTiMA
can be performed.

7.1 Full CoTiMA (ctmaFit)

We shall note that the first full CoTIMA we present here is a very special case that
is probably rarely applied, and we will move on to the regular case a bit further
below. The reason why the first full CoTiMA is a very special case is, again, Study
128, which was a 2-wave study with one missing variable. Such studies prevent ap-
plying the usually recommended CoTiMA.

7.1.1  Full CoTiMA as All-Invariant Model (ctmaFit)

Usually, CoTiMA aggregates the drift coefficients by constraining them to be invar-
iant across primary studies, whereas the correlations at Time 0 and the diffusion
terms (i.e., innovation (co-)variances) are freely estimated within each primary
study. This is impossible with the current set of primary studies because for Study
128, demands (role stress) was measured at Time 0 only, so diffusions for demands
cannot be estimated for Study 128. As we shall later, missing variables do not im-
pose problems if each variable is measured at least twice, which is possible in studies
comprising more than two waves, but Study 128 had only two waves. In such in-
stances, one could either decide to exclude critical studies from CoTiMA, or one
could estimate a very restrictive CoTiMA that restricts all parameters (Time 0 cor-
relations, drift effects, diffusions) to be invariant across all studies. This is called an
all-invariant-model, and estimating such a model can be achieved by using the ar-
gument allInvModel = TRUE. Usually, we do not recommend using this argu-
ment, but in this case there is no other option except excluding Study 128, which we
do further below in Section 7.1.2.

activeDirectory <- "../../" # SET A VALID PATH
CoTiMAFullFit 6 <- ctmaFit (ctmaInitFit CoTiMAInitFit_6_NUTS,
11InvM TRUE,
e = 2)

summary (CoTiMAFullFit_6)
saveRDS (CoTiMAFullFit_6, paste0 (activeDirectory, "CoTiMAFullFit_6.rds"))

Figure 30. Full CoTiMA with Six Studies (ctmaFit)

Fitting this type of a very restrictive CoTiMA is done with the code in Figure 30,
and with summary (CoTiMAFullFit 6) the results are displayed’. The term

° Fitting will issue a warning that an approximate Hessian was used and standard errors are not trustwor-
thy. This is caused by the missing variables in Study 128.
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full CoTiMA is used to refer to a model in which all possible auto effects and all
possible cross effects are simultaneously aggregated. Later, we show how some ef-
fects could be excluded from the model (i.e., fixed to 0.0), and how some effects
could be exempted from being invariant across primary studies. It is noteworthy that
the estimator used for initial fitting, which was NUTS, does not affect which esti-
mator is used in a CoTiMA,; it is maximum likelihood in the present example, which
is the default estimator. Other estimators could be specified as shown in Table 2.

The results in Figure 31 show the names of all parameters of the full (and all-
invariant) CoTiMA model, their respective row and column numbers in the matrices
in which they are used, their estimated mean population values, their standard errors
(labelled sd), their 2.5% lower credible interval, mean, and 97.5% upper credible
interval, and the T-values.

The four rows starting with DRIF'T show the estimates for the continuous time
drift coefficients, and their discrete time counterparts, that is, the auto-regressive and
cross-lagged effects, across one quarter, are again shown closer to the bottom
(dtDRIFT). As explained earlier, only the four rows containing the drift coeffi-
cients are usually important for reporting CoTiMA results. Nevertheless, we briefly
explain what the other parameters stand for. For a more detailed description see
Driver et al. (2017) and exact mathematical definitions can be found in Driver and
Voelkle (2018).

TOMEANS at the top of Figure 31 represent the initial (T0) means of the latent
variables. Closer to the bottom in Figure 31, TOcov shows correlation of the latent
factors at TO, which is identical to their covariance because we deal with standard-
ized variables here!'’.

LAMBDA is a matrix with the factor loadings of the manifest variables on the
latent factors. In the present example, this is a diagonal matrix in which the diagonal
was fixed to 1.0. By this, each manifest variable loads on a single latent factor. Con-
versely, each latent factor is identified by a single manifest variable.

MANIFESTMEANS is a matrix (with a single column only) containing the
means of the intercepts of the manifest variables. Again, all values were fixed to 0.0
because we deal with standardized variables here.

CINT are the continuous time intercepts, which in case of standardized varia-
bles are usually zero. asymCint are the asymptotic continuous time intercepts.
They reflect the intercept values to which the process converges after infinite time.
These values should also be 0.0 in the case of CoTiMA, where we use standardized
variables (correlations).

10 Variances in CoTiMA are typically slightly smaller than 1.0. They are computed with 7 — 1 in the
denominator. For example, in the case of two primary studies with both N =5 and variances = 1.0 (com-
puted with 4 as denominator), when merged the variance will be computed with 9 instead of 8 as denom-
inator, making the resulting estimate smaller than 1.0.
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row col Mean sd 2.5% 50% 97.5% Tvalues

TOMEANS_1_1 (invariant) 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
TOMEANS_2_1 (invariant) 2 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
LAMBDA 1_1 1 1 1.0000 0.0000 1.0000 1.0000 1.0000 Inf
LAMBDA 1 _2 1 2 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
LAMBDA 2 1 2 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
LAMBDA 2 2 2 2 1.0000 0.0000 1.0000 1.0000 1.0000 Inf
DRIFT V1toVl (invariant) 1 1 -0.7901 0.0695 -0.9409 -0.7904 -0.6691 -11.3683
DRIFT V2toVl (invariant) 1 2 0.3328 0.0575 0.2266 0.3323 0.4456 5.7878
DRIFT V1toV2 (invariant) 2 1 0.2253 0.0475 0.1311 0.2257 0.3208 4.7432
DRIFT V2toV2 (invariant) 2 2 -0.5528 0.0439 -0.6432 -0.5519 -0.4737 -12.5923
MANIFESTMEANS 1 1 (invariant) 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
MANIFESTMEANS 2 1 (invariant) 2 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
CINT_1_1 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
CINT_2_1 2 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
asymCINT 1 1 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
asymCINT 2 1 2 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
asymDIFFUSIONcov_1_1 1 1 1.0900 0.0517 0.9916 1.0896 1.1932 21.0832
asymDIFFUSIONcov_1_ 2 1 2 0.4900 0.0437 0.4138 0.4892 0.5779 11.2128
asymDIFFUSIONcov_2_ 1 2 1 0.4900 0.0437 0.4138 0.4892 0.5779 11.2128
asymDIFFUSIONcov_2_ 2 2 2 1.0780 0.0544 0.9780 1.0762 1.1872 19.8162
DIFFUSIONcov_1_ 1 (invariant) 1 1 1.3915 0.0887 1.2304 1.3873 1.5754 15.6877
DIFFUSIONcov_1 2 (invariant) 1 2 0.0534 0.0472 -0.0444 0.0534 0.1478 1.1314
DIFFUSIONcov_2_1 (invariant) 2 1 0.0534 0.0472 -0.0444 0.0534 0.1478 1.1314
DIFFUSIONcov_2_ 2 (invariant) 2 2 0.9679 0.0506 0.8742 0.9650 1.0735 19.1285
MANIFESTcov_1_1 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
MANIFESTcov_1_2 1 2 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
MANIFESTcov_2_1 2 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
MANIFESTcov_2_2 2 2 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
TOcov_1_1 (invariant) 1 1 0.9971 0.0401 0.9230 0.9978 1.0760 24.8653
TOcov_1_2 (invariant) 1 2 0.4390 0.0310 0.3804 0.4387 0.5018 14.1613
TOcov_2_1 (invariant) 2 1 0.4390 0.0310 0.3804 0.4387 0.5018 14.1613
TOcov_2_2 (invariant) 2 2 0.9941 0.0402 0.9198 0.9922 1.0801 24.7289
dtDRIFT 1 1 1 1 0.4735 0.0291 0.4164 0.4721 0.5285 16.2715
dtDRIFT_1_2 1 2 0.1720 0.0255 0.1227 0.1723 0.2194 6.7451
dtDRIFT_2_1 2 1 0.1164 0.0224 0.0712 0.1167 0.1586 5.1964
dtDRIFT_2_2 2 2 0.5960 0.0222 0.5519 0.5960 0.6373 26.8468

Figure 31. Results (Part 1) of a Full All-Invariant CoTiMA with Six Studies (ctmaFit)

Similarly, DIFFUSIONcov are the continuous time error variances (usually re-
ferred to as diffusion term in the literature), and asymDIFFUSIONcov reflect as-
ymptotic diffusion (error) variances and covariances. One might speculate that the
asymptotic diffusion (error) variances should be 1.0 since one cannot explain any
variance across infinite time. However, these estimates are based on internal trans-
formations, which are internally useful to reduce the time to fit the model but have
no inherent meaning.

MANIFESTcov is a matrix of variances and covariances among the manifest
variables at each measurement occasion. All values were fixed to 0.0 because we
had only a single manifest indicator per latent factor.
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Sminus21l
[1] 14072.99

$n.parameters
[1] 10

Sopt.lag.orig.time
[,11 [,2]

[1,1 NA 2

12,1 2 NA

Smax.effects

[,11 [,2]
(1,1 NA 0.1843
[2,] 0.1248 NA

Figure 32. Results (Part 2) of a Full All-Invariant CoTiMA with Six Studies (ctmaFit)

Part 2 of the results generated by the code in Figure 30 is shown in Figure 32. The
-2ll values and number of estimated parameters are reported first. Then the optimal
time interval according to Dormann and Griffin (2015) and the sizes of effects across
the optimal interval are reported'!.

7.1.2  Full CoTiMA as Regular Model (ctmaFit)

As noted in the last subsection, 2-wave studies with missing variables could be used,
but they require constraining all parameters to be invariant across primary studies.
Such strict assumptions are not necessary if variables (correlations) are not missing,
or if each variable in a primary studies is measured at least twice. When a variable
is available at two measurement occasions and a primary study comprises more than
two waves, it does not impose problems for CoTiMA if this variable is missing at
further waves. Only two measurements are required, whenever they were carried out
during multi-wave studies. This is demonstrated in the current section, where we
add such a study (Study 201), which is then used in subsequent examples as replace-
ment for Study 128.

The workflow for replacing Study 128 by Study 201 and conducting a full Co-
TiMA is shown in Figure 33. Study 201 comprised three waves of measurement,
and burnout was not measured at the third measurement occasion so that the corre-
lations were not available (NA). A new list of primary studies is compiled (Co-
TiMAstudyList 6 new), and the initial fitting of each primary study is re-done
with the fit stored in the object CoTiMAInitFit 6 new. CoTiMAInit-
Fit 6 new is then used as the ctmaInitFit argument to fit a regular full Co-
TiMA using ctmaFit.

' When performing a CoTiMA, the user will notice several empty slots displayed after the summary
function is applied (e.g., no random effects, no cluster effects). These represent additional functionalities
of CoTiMA that we introduce later.
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s but each variable measured at least

rimary Study 201 with missing variabl

empcov201l <- matrix(c(1.00, 0.43, 0.64, 0.32, 0.57, NA,
0.43, 1.00, 0.30, 0.61, 0.26, NA,
0.64, 0.30, 1.00, 0.48, 0.69, NA,
0.32, 0.61, 0.48, 1.00, 0.37, NA,
0.57, 0.26, 0.69, 0.37, 1.00, NA,
NA, NA, NA, NA, NA, NA), nrow = 6, ncol = 6)
variableNames201 <- c("Demands_1", "Burnout_1", "Demands_2", "Burnout_2",

"Demands_3", "Burnout_3")
dimnames (empcov201l) <- list(variableNames201l, variableNames201)
delta_t201 <- c(3, 3)
sampleSize201 <- 999
ageM201 <- 39.4
agesSD201 <- 10.55
malePercent20l <- .689
occupation201l <- c("different occupations")
country201l <- c("Switzerland")
demands201 <- c("Time Pressure")
burnout201 <- c("Exhaustion")
source20l1 <- c("Brauchli", "Schaufeli", "Jenny", "Fuellemann", "& Bauer", "2013")
moderator201 <- c(2, NA)

# Compiling a rev list of primary studies with Study 201 replacin
activeDirectory <- "../../" # SET A VALID PATH
CoTiMAstudyList_6_new <- ctmaPrep( selectedsS iies = c(1, 4, 313, 18, 32, 201),
ctiv ry = activeDirectory,
= c("demands", "burnout"),
moderatorLabels = c("Burnout Measure",
"Control at Work"),

lues = list(c ("1l = Emotional Exhaustion",

"2 = Exhaustion"),

"continuous"))

y studies
s = CoTiMAstudyList_6_new,

# Initial fitting of revised list
CoTiMAInitFit_6_new <- ctmalnit (p

/ = activeDirectory)
summary (CoTiMAInitFit_6_new)
# The full CoTiMA
CoTiMAFullFit 6 new <- ctmaFit(ctmaInitFit = CoTiMAInitFit_ 6_new, coresToUse = 2)

summary(CoTlMAFullF1t767new)

Figure 33. Workflow for Replacing Study 128 by Study 201 and Conducting a Full CoTiMA

The results of the full CoTiMA are shown in Figure 34 and Figure 35. The interpre-
tation of results is analogous to the interpretation of the all-invariant CoTiMA dis-
cussed in 7.1.1'2,

12 There is one notable difference. Whereas in the all-invariant CoTiMA estimated TO correlations and
diffusions apply to the full sample of primary studies, in Figure 33 they apply to the last of the primary
studies (i.e., Study 32). This is due to technical reasons inherent in the ct sem R-package used by Co-
TiMA. In ctsem, k - 1 dummy variables for the overall k£ primary studies are used as so-called time
independent predictors (TI), which modify (add or subtract values) the TO-correlations and the diffusion
parameters estimated for the kth primary study. However, TO correlations and diffusion parameters are
usually of very little interest to researcher applying CoTiMA, so these technical details are only important
in the probably rare case estimated TO correlations and diffusions should be reported in publications.
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row col Mean sd 2.5% 50% 97.5% Tvalues
TOMEANS_1_1 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
TOMEANS 2 1 2 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
LAMBDA 1_1 1 1 1.0000 0.0000 1.0000 1.0000 1.0000 Inf
LAMBDA 1 _2 1 2 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
LAMBDA 2 1 2 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
LAMBDA 2 2 2 2 1.0000 0.0000 1.0000 1.0000 1.0000 Inf
DRIFT V1toVl (invariant) 1 1 -0.1671 0.0090 -0.1857 -0.1669 -0.1507 -18.4741
DRIFT V2toVl (invariant) 1 2 0.0322 0.0090 0.0139 0.0325 0.0499 3.5902
DRIFT V1toV2 (invariant) 2 1 0.0489 0.0116 0.0276 0.0490 0.0708 4.1993
DRIFT V2toV2 (invariant) 2 2 -0.2010 0.0124 -0.2254 -0.2005 -0.1784 -16.2699
MANIFESTMEANS_1 1 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
MANIFESTMEANS_2 1 2 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
CINT_1_1 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
CINT_2_1 2 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
asymCINT 1 1 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
asymCINT 2 1 2 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
asymDIFFUSIONcov_1_1 1 1 1.3081 0.0538 1.2006 1.3065 1.4152 24.3253
asymDIFFUSIONcov_1_ 2 1 2 0.5871 0.0460 0.5022 0.5880 0.6753 12.7614
asymDIFFUSIONcov_2_ 1 2 1 0.5871 0.0460 0.5022 0.5880 0.6753 12.7614
asymDIFFUSIONcov_2_ 2 2 2 1.2270 0.0591 1.1109 1.2263 1.3386 20.7661
DIFFUSIONcov_1_1 1 1 0.3984 0.0113 0.3770 0.3985 0.4212 35.3336
DIFFUSIONcov_1_2 1 2 0.1122 0.0099 0.0930 0.1123 0.1317 11.3817
DIFFUSIONcov_2_ 1 2 1 0.1122 0.0099 0.0930 0.1123 0.1317 11.3817
DIFFUSIONcov_2_ 2 2 2 0.4344 0.0154 0.4059 0.4340 0.4645 28.1915
MANIFESTcov_1_1 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
MANIFESTcov_1_2 1 2 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
MANIFESTcov_2_1 2 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
MANIFESTcov_2_2 2 2 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
TOcov_1_1 1 1 0.9993 0.0312 0.9401 0.9995 1.0598 32.0630
TOcov_1_2 1 2 0.4287 0.0230 0.3852 0.4277 0.4746 18.6006
TOcov_2_1 2 1 0.4287 0.0230 0.3852 0.4277 0.4746 18.6006
TOcov_2_2 2 2 0.9972 0.0296 0.9400 0.9948 1.0567 33.6564
dtDRIFT_1_1 1 1 0.8468 0.0076 0.8311 0.8471 0.8606 111.6018
dtDRIFT_1 2 1 2 0.0268 0.0075 0.0116 0.0271 0.0414 3.5973
dtDRIFT_2_1 2 1 0.0406 0.0096 0.0230 0.0408 0.0588 4.2355
dtDRIFT_2_2 2 2 0.8186 0.0101 0.7987 0.8190 0.8375 81.2755

Figure 34. Results (Part 1) of a Regular Full CoTiMA with Six Studies (ctmaFit)

$minus211l
[1] 25440.1

$n.parameters
[1] 40

$opt.lag.orig.time
[,11 [,2]

(1,1 NA 6

2,1 6 NA

$max.effects

[,1] [,2]
[1,1 NA 0.0638
[2,] 0.098 NA

Figure 35. Results (Part 2) of a Regular Full CoTiMA with Six Studies (ctmaFit)

7.2 Partial CoTIMA (ctmaFit)

Figure 36 demonstrates some further possibilities for conducting a CoTiMA; addi-
tional capabilities are explained in Appendix B. The CoTiMA model specified in
Figure 36 fixes the effect of V2toV1 to 0.0 (which we do not generally recommend
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- let the evidence decide rather theoretical expectations), by labeling the according
drift 0 or "0". Further, only the effect V'1foV2 is invariant across primary studies as
defined in the invariantDrift argument (which could be reasonable — and
which could be decided based upon a statistical test see Subsection 7.3). The esti-
mated drift coefficients of this partial CoTiMA are shown in Figure 37.

activeDirectory <- "../../" # S A PATH
CoTiMAPart134Inv3Fit_6 <- ctmaFlt( tmalInitFit = CoTiMAInitFit_6_new,
rift = matrix(c("V1ltovl", 0,
"V1ltov2", V2tOV2 ) 6
row = 2, = 2, w = TRUE),
i tbrift = c("V1ltov2"),
resToUse = 2)
saveRDS (CoTiMAPart134Inv3Fit_6, paste0l(activeDirectory,"CoTiMAPartl134Inv3Fit_6.rds"))
summary (CoTiMAPart134Inv3Fit_6)

Figure 36. A Partial CoTiMA with a Subset of Primary Studies, with One Cross Effect Fixed
to 0.0 and Only One Effect Invariant Across Primary Studies (ctmaFit)

row col Mean sd 2.5% 50% 97.5% Tvalues
DRIFT Vl1toVl 1 1 -0.2066 0.0102 -0.2274 -0.2063 -0.1874 -20.2936
DRIFT V2toVl 1 2 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
DRIFT V1toV2 (invariant) 2 1 0.0497 0.0115 0.0268 0.0498 0.0722 4.3117
DRIFT V2toV2 2 2 -0.2501 0.0132 -0.2772 -0.2498 -0.2251 -19.0090
Sminus21l
[1] 25265.27

$n.parameters
[1] 49

Figure 37. Results of the Partial CoTiMA Specified in Figure 36 (ctmaFit)

7.3 CoTiMA with Equality Constraints (ctmaFit,
ctmaEqual, ctmaCompFit)

A -21I difference test can be applied whenever researchers want to compare two
model fits. Note, however, that the result is only valid if the two models are nested,
that is, the second model is derived from the first model by constraining parameters.
Such constraints are present, for example, if parameters are eliminated from a model
by constraining them to be 0.0 (like demonstrated in Figure 36), or by constraining
other parameters to be equal. To statistically test if two or more effects are equal is
a bit complex and requires three steps: (1) ensuring correct coding (polarity), (2)
fitting a partially invariant CoTiMA using ctmaFit, and (3) testing equality using
ctmaEqual.

First, (1) one has to take care that the effects to be compared have equal signs.
For example, consider a model with three latent variables such as demands, re-
sources, and burnout. Work-related resources, such as supervisor support, can be
supposed to reduce burnout whereas demands increase burnout. To compare the ef-
fect sizes, one would need to go back to square one and re-start the EPIC part of the
workflow. When preparing the correlations with ctmaEmpCov, one would need to
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use the recode argument to recode supervisor support so that it becomes lack of
supervisor support. Then, one has to use ctmaInit again for initial fitting.

In the second step (2), one could start testing the equality of the effect sizes of
supervisor support and of demands on burnout. This requires two CoTiMAs to be
performed. The first CoTiMA has to specify those two (or more) effects as invariant
across studies that should be tested for equality in the subsequent step. This is done
with ctmaFit. We call this the invariance model.

activeDirectory <- "../../" # SET A VALID PATH
CoTiMAFullInv23Fit_ 6 <- ctmaFit(ctmalnitFit = CoTiMAInitFit_6_new,
invari tDrift = c("V2tovl", "V1tov2"),
esToUse = 2)
saveRDS (CoTiMAFullInv23Fit_6, pastel(activeDirectory,
"CoTiMAFullInv23Fit_6.rds"))
summary (CoTiMAFullInv23Fit_6)

CoTiMAFullInvEQ23Fit 6 <- ctmaEqual (ctr vari tFit = CoTiMAFullInv23Fit_6,
esToUse = 2)
saveRDS (CoTiMAFullInvEqQ23Fit_6, paste0l(activeDirectory,
"CoTiMAFullInvEQ23Fit_6.rds"))

summary (CoTiMAFullInvEQ23Fit_6)
Figure 38. Two-Step Procedure for Testing the Equality of Two Cross Effects (ctmaFit,
ctmaEqual)

Third (3), the CoTiMA fit-object returned then serves as an argument for
ctmaEqual. The code for Step 2 and 3 is shown in Figure 38, in which VitoV?2
and V2toV1 are first declared to be invariant and then tested for equality. We do not
display all estimated drift parameters returned from summary (CoTiMAFull-
Inv23Fit_6) ina Figure here because it is sufficient to note that VitoV2 = .0444,
V2toV1 = .0307, -21] = 25253.17, and the number of estimated parameters = 50.
VitoV2 and V2toV1 were the only parameters that were aggregated, that is, invariant
across primary studies. This is recognized by ctmaEqual, which, in addition to
their invariance, constrains V/toV2 and V2toV1 to be equal. We call this the equality
model. Again, we do not display all estimated drift parameters returned from sum-
mary (CoTiMAFullEg23Fit 6) ina Figure here because it is sufficient to note
that VitoV2 = V2toV1 = .0364, -21] = 25253.89, and the number of estimated param-
eters = 49.

[1] "™  ##+# NEXT MODEL COMPARISON #H#"

[2] "Diff Minus2LL: 0.719788864123984"

[3] "Diff_df (= Diff n.params): 1"

[4] "prob: 0.396213174274355"

[5] "Messagel: A prob value < .05 indicates a significant difference."

Figure 39. Result of the -2/I Difference Test Comparing the Fit of the Invariance Model with
the Fit of the Equality to Test if Two Cross Effects are Equal (ctmaEqual)
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The -21I difference test examines if the fit (-21] value) of the equality model is not
statistically worse than the fit of the invariance model. If this would be the case, then
the hypothesis that both effects are equal has to be rejected and the alternative hy-
pothesis that one effect (V2toV'1 in this example) is significantly larger than the other
one (V1toV2 in this example), will be retained. The -2/ difference test is automati-
cally performed by ctmaEqual, too, it is displayed at the end of the sum-
mary (CoTiMAFullInv23Fit 6), and it is shown in Figure 39. In our exam-
ple, the -2l difference test was not significant. Thus, we could not reject the hypoth-
esis that VitoV2 = V2toV1.

Finally, we shall mention the ctmaCompFit function that comes with the
CoTiMA package. The ctmaCompFit function is automatically used by
ctmaEqual. It can also be applied whenever researchers want to compare two
model fits with a -2/l difference test by using ctmaCompFit (CoTiMAFit1,
CoTiMAFit2). Note, however, that the result is only valid if the two models are
nested, that is, the second model is derived from the first model by constraining
parameters. Such constraints are present, for example, if parameters are eliminated
from a model by constraining them to be 0.0, or by constraining other parameters to
be equal. The former is achieved by setting the desired drift effect to "0", and the
latter is achieved by assigning identical labels to the desired drift effects. This could
be done with the ctmaInit and ctmaFit functions. For example, the argument
drift = matrix(c("Vlitovli", 0, 0, "V1itoVvl"), nrow = 2,
ncol = 2, byrow = TRUE) could be used to fit a model that has no cross
effects and equal auto effects. This model is nested in a full CoTiMA model because
it is more constrained.

7.4 Moderated CoTiIMA (ctmaFit)

CoTiMA can handle multiple continuous moderators and multiple categorical mod-
erators, however, it is not yet possible to mix categorical and continuous ones. In
general, we recommend starting with a single moderator to foster understanding how
they operate before analyzing multiple moderators combined.

Recalling from Figure 20 that we entered information about two moderators.
The first was the type of burnout measure applied in a primary study, which was
either exhaustion or emotional exhaustion, and which was a categorical moderator.
If there were two or more categorical moderators, the moderator numbers and mod-
erator names would have to be provided as vectors (e.g., mod.number = c(1,
3), mod.names = c("Burnout Measure", "Study Quality")).
However, in the present example in Figure 40, we use the first potential moderator
variable only (mod.number = 1), which was categorial (mod.type =
"cat") representing two types of burnout measures (mod .names = "Burnout
Measure"). By default, CoTiMA does (!) standardize moderators from version
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0.5.3 onwards. In the present example, we did overwrite the default by including the
argument scaleMod = FALSE. Thus, the k£ - 1 dummy variables created from the
k categories of the moderator variable use values 0 and 1.

activeDirectory <- "../../" # SE \
CoTiMAModlonFullFit 6 <- ctmaFit(ctmalnitFit = CoTiMAInitFit 6 new,
- mod.number = 1, -
m .type = "cat",
m .names = "Burnout Measure",
resToUse = 2,
leMod = FALSE)

summary (CoTiMAModlonFullFit_6)
saveRDS (CoTiMAModlonFullFit 6, paste0 (activeDirectory,
"CoTiMAModlonFullFit_6.rds"))

Figure 40. A Full Moderated CoTiMA with a Single Categorical Moderator (ctmaFit)

Part of the results are shown in Figure 41. The drift effects shown in the Section
$Sestimates are those in the reference group, which is always the group with the
smallest category number. In the present example, these are the primary studies for
which the moderator value was 1 (and internally recoded to 0 by CoTiMA) meaning
they used an emotional exhaustion scale to measure burnout.

The Section $mod.effects in Figure 41 shows the effects belonging group
with the 2nd category number. In case there were more categories, one would find
here four additional rows starting with "3 (category wvalue)" etc. It is im-
portant to note that this section does not show the drift effects. Rather, it shows how
for primary studies of this category, which used an exhaustion compared to emo-
tional exhaustion scale to measure burnout, the drift effects change compared to the
reference group. Neither auto effects nor cross effects were significantly affected by
the type of burnout measure. Leaving lack of significance aside, the effect of de-
mands on burnout (V1toV2) was increased if an exhaustion scale was used in primary
studies and the effect of burnout on demands (V2toV 1) was reduced if an exhaustion
rather than emotional exhaustion scale was used. We call this a positive moderating
effect and a negative moderating effect of the exhaustion scale, respectively'®.

13 Plotting the moderator effects is straightforward because for each time interval the change in the drift
parameter introduced by the moderator can be depicted as shown in Figure 42. However, summarizing
the effect of a moderator in continuous time is not as straightforward because of the non-linearities in-
volved. To do so, the moderator effect is linearized at the mean of the drift effect, and this linearized
effect is reported in the $Smod.effects section.
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$estimates

row col Mean sd 2.5% 50% 97.5% Tvalues
DRIFT V1toVl (invariant) 1 1 -0.1884 0.0186 -0.2276 -0.1874 -0.1544 -10.1084
DRIFT V2toVl (invariant) 1 2 0.0488 0.0188 0.0124 0.0491 0.0851 2.6001
DRIFT V1toV2 (invariant) 2 1 0.0373 0.0190 -0.0008 0.0377 0.0757 1.9676
DRIFT V2toV2 (invariant) 2 2 -0.1882 0.0191 -0.2310 -0.1872 -0.1544 -9.8449
$minus211
[1] 25434.78

$n.parameters
[1] 44

$opt.lag.orig.time
[,11 [,2]

[1,] NA 5
(2,1 5 NA
$max.effects

[,1] [,2]
[1,] NA 0.0959
[2,] 0.0733 NA

$mod.effects

mean sd 2.5% 50% 97.5% Tvalues
(category value) of Burnout Measure_on_V1toVl 0.0328 0.0249 -0.0125 0.0305 0.0857 1.3166
(category value) of Burnout Measure_on_V2toVl -0.0226 0.0213 -0.0632 -0.0234 0.0198 -1.0620
(category value) of Burnout Measure_on_V1tov2 0.0173 0.0243 -0.0304 0.0167 0.0652 0.7110
(category value) of Burnout Measure_on_V2toV2 -0.0184 0.0237 -0.0593 -0.0199 0.0334 -0.7767

Figure 41. Part of the Results Moderated Full CoTiMA (ctmaFit)

[SENNNNN]

As always, the sizes of continuous time effects are virtually impossible to interpret.
For example, the effect VitoV2 is .0373 for emotional exhaustion and .0373 +.0173
= .0546 (linearized; see Footnote 13) for exhaustion. However, how these effects
unfold over time also depends on the other three effects VitoVi, V2toV2, and
V2toVl. We used plot (CoTiMAModlonFullFit 6, timeUnit =
"Quarters", timeRange = c(1, 36, 1)) toplotthe moderated discrete
time effects. For VitoV2, the course of the moderated effect over discrete time is
shown in Figure 42.
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Moderated Cross-lagged Effects of V1toV2
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Figure 42. The Cross-Lagged Effect VitoV2 Moderated by Type of Burnout Measure
(R =Reference Category: Emotional Exhaustion, 2 = Exhaustion) from 1 to 36 Quarters (the
Horizontal Location of the Category Indicators R (Reference Category) and 2 has no Inherent
Meaning; plot)

Since only two categories exist, catsToCompare = c (1, 2) isthe only viable
option in the present example. In the fitted model the moderating effects of Category
1 and Category 2 are restricted to be invariant. If this assumption is valid (i.e., mod-
erating effects are not different for the two categories), the -2// value of the restricted
model should not be significantly different from the -2/ value of the unrestricted
model. This is tested with the ctmaCompF1it function at the bottom of Figure 43,
which shows (not displayed in a figure) that the difference in the -2/ values given 4
degrees of freedom is not significant (A(-2/]) = 5.3201; A(df) = 4; p = 0.2560). In
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fact, with only two categories available, restricting their effects to be invariant is
conceptually identical to assuming there is no moderating effect. Hence, comparing
the (unrestricted) moderator model with the full CoTiMA model estimated earlier
(which had not moderator effect included), should yield virtually identical results,
and indeed ctmaCompFit (CoTiMAFullFit 6 new, CoTiMAModlon-
FullFit_ 6) yields (A(-2ll) =5.3201; A(df) = 4; p = 0.2560). However, with three
or more categories these two -2/ difference tests will yield diverging results'*

activeDirectory <- "../../" # SET A LII
CoTiMAModlonFullFit_ 6_catsl2 <- ctmaFlt( tm i it = CoTiMAInitFit_6_new,
. numk =1,
t "cat",
LT = "Burnout Measure",
pare = c(1,2),
= FALSE)

saveRDS (CoTiMAModlonFullFit_ 6 catsl2,
paste0 (activeDirectory, "CoTiMAModlonFullFit 6_catsl2.rds"))
ctmaCompFit (CoTiMAModlonFullFit_6_catsl2, CoTiMAModlonFullFit_6)

Figure 43. Comparing the Effect of two Categories of a Categorical Moderator (ctmaFit,
ctmaCompFit)

activeDirectory <- "../../" # SET A VALID PATH
tmpStudyList <- ctmaPrep(selectedSt s = c(l, 4, 313, 18),
wctiveDirectory = activeDirectory,
1ddElements = c("demands", "burnout"),
moderatorl 1 = c("Burnout Measure", "Control at Work"),
moderatorValues = list(c ("1 = Emotional Exhaustion",
"2 = Exhaustion"),
"continuous"))
CoTiMAMod20on23Fit_6 <- ctmaFit(ctmalnitFit = CoTiMAInitFit_6_new,
¢ = tmpStudyList,
mod.number = 2,
mod. ty "cont",
mc "Control",
mc ift = c("V1ltov2", "V2tovl"),
TRUE,
resToUse = 2)

summary (CoTiMAMod2on23Fit_6)
saveRDS (CoTiMAMod2on23Fit_ 6, pastel (activeDirectory,
"CoTiMAMod2on23Fit 6.rds"))

plot (CoTiMAMod20on23Fit_6, timeUnit = "Quarters", meRange = c(1, 36, 1))

Figure 44. A Partially Moderated CoTiMA with a Single Continuous Moderator (ctmaFit)

The code for a partially moderated CoTiMA with a single continuous moderator is
shown in Figure 44. Again, the types of primary studies we use in our example im-
pose a difficulty that is likely to occur in many practical circumstances: For some
studies the moderator variable is not available, and the moderator was therefore

" Instead of c (1, 2), it would also be possible to use indices such as ¢ (i, ) and then use a double
loop in R to compare all possible combinations of categories. For example:

for(i in 1: (numberOfCats-1)) { for(j in (i+1l) :numberOfCats) {
tmpFit <- ctmaFit(ctmalnitFit = CoTiMAInitFit_object, mod.number = 1,
mod.type = "cat", catsToCompare = c(i, j))
saveRDS (tmpFit, pasteO(activeDirectory, "CoTiMAModFit_cat", i, "_", j, ".rds"))}}
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coded as NA. In our example, this was the case for Study 201 and Study 32. How-
ever, instead of going back to square one and compiling a reduced study list followed
by applying ctmaInit again, we create a temporary study list using ctmaPrep,
which does no longer include Study 201 and Study 32 (tmpStudyList). We use
this temporary study list to specify an optional argument of the ctmaFit function
(i.e, primaryStudyList = tmpStudyList).

To conduct a moderated CoTiMA, further arguments have to be specified. In
the current example in Figure 44 only the cross effects are specified to be moderated.
It is recommended to standardize continuous moderators, which is achieved by
scaleMod = TRUE. When continuous moderators are standardized, the esti-
mated drift parameters are those for a prototypical study with a mean moderator
value (average effect). The summary (not shown) reveals that control does not sig-
nificantly reduce V2toV1 (i.e., the moderating effect) by -.0379 from the average
effect, which is V2toV1 = .0685 (i.e., the main effect).

The plot function shown in Figure 44 yields the plot shown in Figure 45.
Across all time intervals, for people who have low levels of control at work, effects
of demands on burnout are larger than for those with high levels of control. In most
empirical articles that visualize moderator effects for moderator values at +2SD and
-28D are not shown. This could be achieved by using mod.values = c(-1,
0, 1) asadditional argument for the plot function in Figure 44.
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Moderated Cross-lagged Effects of V2toV1
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Figure 45. The Cross-Lagged Effect V2toV1 Moderated (not Significantly) by Control at
Work from 1 to 36 Quarters. The Lines show the Effect of V2toV'1 for Control at -2SD Below
the Mean of Control (-2), -15D Below the Mean of Control (-1), at the Mean of Control (0),
+18D above the Mean of Control (1), and +25SD Above the Mean of Control (2). The Hori-
zontal Location of the SD Values has no Inherent Meaning.

8 Bias & Generalizability (ctmaBiG)

After finishing the EPIC part of the EPIC-BiG-Power workflow, we can now turn
to the first part of the BiG workflow, which is done by using ctmaBiG. It performs
Egger’s tests for drift coefficients (e.g., Sterne & Egger, 2001) and provides PET-
PEESE corrections of fixed effect estimates (Stanley & Doucouliagos, 2014). Ran-
dom effect estimates are also computed. Various measures of heterogeneity (cf.
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Borenstein et al., 2009) as well as measures of expected replications rates (ERR) and
expected discovery rates (EDR; Bartos & Schimmack, 2022; Brunner & Schim-
mack, 2020) are also provided by ctmaBiG. The return object of ctmaBiG can be
used to plot funnel plots and forest plots.

To proceed with ctmaBiG, we use the init fit file and data of primary stud-
ies published in the online repository of Dormann et al. (2020), which belongs to
their CoTiMA of job stressors and burnout. The file containing their init fit-object
can be retrieved from the website of the Open Science Foundations with the code
shown in Figure 46. Note that Guthier et al. (2020) used a preliminary CoTiMA
version that was based on the OpenMx R-package (Boker et al., 2011), whereas the
file we suggest downloading was created with the rstan R-package (Stan Develop-
ment Team, 2020). The latter samples parameter estimates from generated parameter
distribution and results thus slightly change from analysis to analysis (unless the
argument finishsamples is set to a large value, e.g., 10000). So, one could ex-
pect minor differences compared to the results reported in Guthier et al. (2020). On
the other hand, the init fit-object contains all information required to replicate all
their results with minor deviations'>. Note, however, computations could last a few
hours except ctmaBiG. This is the major reason why we did not use their init fit-
object before.

activeDirectory <- "../../" # & \TH

dl link <- "https://osf. lo/download/thae/'

target file <- paste0l(activeDirectory, "CoTiMAInitFit D _BO_stanct.rds")
download.file(dl_link, target_file) # Note on windows mputers add mode="wb"
CoTiMAInitFit D BO <- readRDS (target_ file)

saveRDS(CoTlMAInltFlt D_BO, paste0(activeDirectory, "CoTiMAInitFit D _BO.rds"))

Figure 46. Downloading the Init-Fit File of Guthier et al. (2020)

The analysis of bias and generalizability, summarizing the results, and plotting forest
plots and funnel plots is achieved with the code in Figure 47. First, results of fixed
effects analyses of single drift coefficients are displayed. Recall that in CoTiMA all
drift effects (full CoTiMA) or a subset (partial CoTiMA) is aggregated simultane-
ously, thereby taking the entire causal system into account. Thus, CoTiMA estimates
a set of fixed effects by constraining a set of drift effects to be invariant across groups
(i.e., primary studies). Estimation is based on minimization of the discrepancy be-
tween the model implied covariance matrices and their empirical counterparts.

1 In addition to the fitted ctsem models of each primary study, it is possible to extract all information
from an init fit-object that were originally complied with ctmaPrep by, e.g., originalStudyL-
ist <- initFitObjectS$primaryStudyList. Thus, replicability of CoTiMA results is easily
enabled by making one’s init fit-object available for download in a repository, for example, using the
Open Science Framework http://osf.io/
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activeDirectory <- "../../" # SET A VALID PATH
CoTiMABiG_D_BO <- ctmaBlG(CoTlMAInltFlt D_BO)
summary(CoTlMABlG D_BO)

plot (CoTiMABiG_D_BO, tiveDi y = activeDirectory)

Figure 47. Analysis of Bias and Generalizability, Summary of Results, and Plotting
(ctmaBiG)

Contrary, in terms of a traditional fixed and random effects analysis, the drift effects
of all primary studies, which resulted from the initial fitting of ctsem models one by
one rather than as a set, are analyzed. Estimation is based on the standard errors of
the drift effects rather than on minimizing discrepancies between implied and em-
pirical covariance matrices. The fixed effect estimates of the two cross effects re-
ported in the section $"Fixed Effects of Drift Coefficients’ of
Figure 48 were VitoV2 = .0024 (p <.001) and V2toV1 = .0053 (p <.001).

The next section in Figure 48 is SHeterogeneity. Here 77, H?, and I are
shown, of which P is usually of most interest. Note that estimates of zZ were small
so even four decimal places are not sufficient to show this. Consequently, between-
study heterogeneity as indicated by I° was large with the exception of the (small)
effect VitoV?2.

The third section ($ "Random Effects of Drift Coefficients’)
in Figure 48 displays the random effect estimates, their SE, confidence intervals
(Limit), and the z-values with their associated probability levels. In addition, pre-
diction intervals (LimitPT) also allow assessing the degree of heterogeneity. Pre-
diction intervals describe a region in which about 95% of the true study effects are
expected to be found (e.g., Guddat et al., 2012). The effects VitoV2 = .0061 (p <
.001) and V2toV1=.0114 (p < .001) were larger than their fixed effects counterparts
reported earlier. Note that the corresponding CoTiMA (fixed) effects reported by
Guthier et al. (2020) were VitoV2 =.0039 (p <.001) and V2toV1=.0084 (p <.001),
and they were right in the middle between the traditional fixed and random effects
estimates.
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Sestimates$ Fixed Effects of Drift Coefficients’
V1tovl V2toVl V1tov2 V2tov2
MeanOfDriftValues -0.0590 0.0219 0.0112 -0.0539
FixedEffect Drift -0.0219 0.0053 0.0024 -0.0133
FixedEffect DriftVariance 0.0000 0.0000 0.0000 0.0000
FixedEffect DriftSE 0.0004 0.0004 0.0003 0.0003
FixedEffect DriftUpperLimit -0.0211 0.0061 0.0030 -0.0128
FixedEffect DriftLowerLimit -0.0227 0.0046 0.0018 -0.0139
4 7
0 0
0
7
4
5

FixedEffect Driftz -54.3759 14.8119 .5051 -46.5553
FixedEffect DriftProb 0.0000 .0000 .0000 0.0000
tau2Drift 0.0001 0.0001 .0000 0.0001
Q Drift 772.8941 534.5197 217.5015 1235.3390
H2_Drift 16.4446 11.3728 L6277 26.2838
H2DriftUpperLimit 18.0378 12.6111 .2907 28.4719
H2DriftLowerLimit 14.9920 10.2560 4.0477 24.2639
I2 Drift 93.9190 91.2071 78.3910 96.1954
I2DriftUpperLimit 94.9458 92.8491 83.4677 96.7577
I2DriftLowerLimit 92.6835 89.1880 71.7552 95,5355

Sestimates$Heterogeneity

Vitovl V2toVvl Vl1tov2 V2tov2
tau2Drift 0.0001 0.0001 0.0000 0.0001
Q Drift 772.8941 534.5197 217.5015 1235.3390
H2 Drift 16.4446 11.3728 4.6277 26.2838

H2DriftUpperLimit 18.0378 12.6111  5.2907 28.4719
H2DriftLowerLimit 14.9920 10.2560  4.0477  24.2639
12 Drift 93.9190 91.2071 78.3910  96.1954
I2DriftUpperLimit 94.9458 92.8491 83.4677  96.7577
I2DriftLowerLimit 92.6835 89.1880 71.7552  95.5355

Sestimates$ Random Effects of Drift Coefficients’
V1tovl V2toVl V1toVv2 V2toVv2

RandomEffecttot Drift -0.0402 0.0114 0.0061 -0.0380
RandomEffecttot DriftVariance 0.0000 0.0000 0.0000 0.0000
RandomEffecttot DriftSE 0.0021 0.0017 0.0011 0.0021
RandomEffecttot DriftUpperLimit -0.0360 0.0147 0.0082 -0.0339
RandomEffecttot DriftLowerLimit -0.0444 0.0080 0.0039 -0.0420
RandomEffecttot DriftZz -18.8218 6.6937 5.5527 -18.2167
RandomEffecttot DriftProb 0.0000 0.0000 0.0000 0.0000
RandomEffecttot DriftUpperLimitPI -0.0169 0.0289 0.0153 -0.0149
RandomEffecttot DriftLowerLimitPI -0.0636 -0.0062 -0.0032 -0.0611

Figure 48. Part 1 of the Results of ctmaBiG

Part 2 of the results returned from ctmaBiG is shown in Figure 49. These results
address possible publication bias. Egger’s tests (e.g., Sterne & Egger, 2001) is a
statistical test of funnel plot asymmetry. Significant results indicate that small-N
studies produced larger effect sizes (i.e., more positive, if the true effect is positive
& more negative, if the true effect is negative), suggesting that the aggregated effects
are biased. Thus, the results in the $ "Egger’s tests’ part of Figure 49 suggest
that the cross effects are biased upwards, and the two auto effects are biased down-
wards. The latter means that demands and burnout in small-VN studies have smaller
carry-over effects than in large-N studies. This could have many reasons. For in-
stance, if job stress studies with small-N were based on single organizations or single
occupations, variance might be restricted, implying lower test-retest correlations
eventually resulting in smaller auto effects. However, this reasoning would also im-
ply smaller cross effects, which was not the case. Selective reporting might be a
more plausible reason here.
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Precision-effect test and precision effect estimates with standard errors (PET-
PEESE; Stanley & Doucouliagos, 2014) removes small sample bias (selective re-
porting) from the fixed effect estimates providing an “aggressive approach” (Stanley
et al., 2018, p. 1333). PET-PEESE involves a decision rule when PET or PEESE is
more important. The result of this decision is the PET PEESE Drift row in the
section $*PET-PEESE corrections’ of Figure 49. The WLS Drift esti-
mates of the auto effects VitoV1 and V2toV2, which are identical to the fixed effect
estimates in Figure 48 (but have more appropriate SE), are more negative compared
to their corrected PET PEESE Drift counterparts, but the differences are not
very large. This also applies to the V2foV1 cross effects, representing the effect of
earlier burnout on later burnout. However, PET-PEESE of VitoV2 = .0010, which
is less than 1/5 of the fixed effect. Hence, the true effect of earlier demands on later
burnout is probably much smaller than suggested by the fixed effect estimate.

Sestimates$ PET-PEESE corrections’
V1toVl V2toVl V1toV2 V2toV2

PET_Drift -0.0149 0.0031 0.0010 -0.0079
PET_SE 0.0014 0.0015 0.0008 0.0010
PEESE_Drift -0.0206 0.0048 0.0021 -0.0126
PEESE_SE 0.0013 0.0012 0.0007 0.0013
PET_PEESE_Drift -0.0206 0.0048 0.0010 -0.0126
PET_PEESE_SE 0.0013 0.0012 0.0008 0.0013
WLS_Drift -0.0219 0.0053 0.0024 -0.0133
WLS_SE 0.0016 0.0012 0.0007 0.0015

Sestimates$ Egger's tests’
V1toVl V2toVl V1toV2 V2toVv2
Egger's b0 -3.9450 1.4756 1.0961 -4.9811

SE (b0) 0.5038 0.5854 0.3512 0.5145
T -7.8297 2.5207 3.1211 -9.6814
P 0.0000 0.0152 0.0031 0.0000

Figure 49. Part 2 of the Results of ctmaBiG

Funnel plots and forest plots could be obtained with plot (CoTiMABiG D BO,
activeDirectory = activeDirectory). Before plotting, define the ac-
tiveDirectory (where to save results), which could then be used in all subse-
quent function calls. Funnel plots represent the graphical counterpart of Egger’s
tests, and they plot standard error of effects (an indicator of small-N bias; y-axis;
large at the bottom & low at the top) against the effect size (x-axis). Without small-
N bias, funnel plots would be symmetric. Conversely, funnel plot asymmetry indi-
cates small-N bias. The funnel plot of VitoV?2, for which Eggers’s test and PET-
PEESE indicated large bias, is shown in Figure 50. Effect sizes are clearly asym-
metrically distributed on the right-hand side, particularly at the bottom where effect
sizes of small-N studies (with large SE) are located.
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Funnel Plot for the Effect of V1toV2
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Figure 50. Funnel Plot of the Effect V1to}2 of the Fit-Object Returned by ctmaBiG (plot)

A better impression of the effects obtained in all primary studies is provided in forest
plots. The effects for each of the primary studies is represented by a square and their
confidence intervals are represented by horizontal lines through these squares. A
forest plot of the VitoV2 effect is shown in Figure 46. The squares vary in size de-
pending on their sample sizes, and they are sometimes small because sample sizes
varied considerably across primary studies. The diamond at the bottom shows the
aggregated fixed effect. There is no visible horizontal line for its confidence interval
because the overall SE was very small and, thus, the confidence interval is rather
narrow.
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Forest Plot for the Effects of V1toV2
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Figure 51. Forest Plot of the Effect V'1t0V2 of the Fit-Object Returned by ctmaBiG (plot)

9 Statistical Power (ctmaPower)

Finally, we can turn to the Power part of the EPIC-BiG-Power workflow, which can
be performed with ctmaPower. It conducts two types of analyses. First, it esti-
mates required sample sizes for a range of different time intervals to achieve a de-
sired statistical power. This is important for designing future studies. Second, it cal-
culates the expected power for all primary studies (sometimes also referred to as
post hoc power or retrospective power). This is important to know if past studies
might have failed to replicate effects with statistical significance because they were

under-powered.
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activeDirectory <- "../../" # SET A VALID PATH
CoTiMAPower D BO <- ctmaPower (ctmalnitFit = CoTiMAInitFit D BO,
tatisticalPower = c (.50, .80, .95)

resToUse = -1, # use all available cores except I
fini mples = 10000)

saveRDS (CoTiMAPower D BO, pasteO (activeDirectory, "CoTiMAPower D BO.rds"))

summary (CoTiMAPower_D_BO)

Figure 52. Calculating Expected (post hoc) Statistical Power for Three Different Probability
Levels and Required Sample Sizes (ctmaPower)

To calculate statistical power, a highly restrictive CoTiMA model is estimated. In
the regular full CoTiMA, all drift effects are constrained to be invariant across pri-
mary studies. To calculate statistical power, a more restrictive model is required that,
in addition, constraints the variance and covariances at TO as well as the diffusion
coefficients to be invariant. This all-invariant model was previously used to include
studies with two waves only and a missing variable (see Subsection 7.1.1). Stated
differently, it has to be assumed all samples analyzed in the primary studies were
drawn from the same population. There are several arguments that can be used with
ctmaPower, and they are enumerated in the Appendix B. In most cases, requesting
the desired levels of power in addition to the init fit-object is probably sufficient.

We used the code in Figure 52 for generating the subsequently discussed output
and the figures. Then, summary (CoTiMAPower D BO) creates a large output
on the console that we again discuss in parts. Figure 53 displays the parameter esti-
mates of the all-invariant-model. These are the parameter estimates that are regarded
as the true effects (mean of the distribution of true effects). In concert with the sam-
ple sizes and the time intervals of the primary studies (both are taken from Co-
TiMAInitFit D BO and do not need to be explicitly provided as arguments) the
true effects determine the statistical power of the primary studies to achieve signifi-
cance levels of @ = .05 and @ = .01. Further, across a range of time intervals (could
be provided with the argument t imeRange; otherwise, it is from 1 to 1.5 times the
longest interval used in primary studies), the true effects determine the required sam-
ple sizes to and achieve the requested levels of statistical power.

VitoVvl (SE) Tvalue V2toVl (SE) Tvalue
Fixed Effects Drift -0.0525 0.0009 -58.3333 0.0164 0.0008 20.5000
Fixed Effects Diffusion 0.0976 0.0013 75.0769 0.0096 0.0008 12.0000
Fixed Effects TOVar 0.9983 0.0087 114.7471 0.3757 0.0066 56.9242
Fixed Effects Drift V1itov2 (SE) Tvalue V2toV2 (SE) Tvalue
Fixed Effects Diffusion 0.0119 0.0007 17.0000 -0.0428 0.0007 -61.1429
Fixed Effects TOVar 0.0096 0.0008 12.0000 0.0818 0.0010 81.8000

Figure 53. Estimates of Drift Parameters Using an All-Invariant-Model with all Variances
and Covariances at TO, all Drift Effects, and all Diffusion Coefficients Invariant Across Pri-
mary Studies (ctmaPower)
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The next section in the generated output reports the expected power of primary stud-
ies. For the effect of VitoV2, this is displayed in Figure 54. Note that in Guthier et
al. (2020) we reported numerical problems in estimating the expected statistical
power across short time intervals — since then we solved this issue. We left out sev-
eral studies (6 to 23 & 28 to 47) for space reasons here. Assuming the aggregated
effects in Figure 53 are the true effects, the probability values in Figure 54 represent
the statistical power each primary study had to detect the focal true VitoV2 effect
(i.e., .0119; see Figure 53) with p < .05 and p <.01. For those studies with more than
two measurement occasions, the statistical power is reported for all adjacent time
intervals. At the bottom, median and mean statistical power across all primary stud-
ies is shown. For instance, the median statistical power was .5042 to find a signifi-
cant V2toV1 effect with p <. 05. As in most meta-analyses, this demonstrates that
many primary studies are heavily under-powered and finding a significant effect is
less likely than like getting heads-up when flipping a coin.

N Time Lag Power (o=.05) Power (o=.01) Time Lag Power (o=.05) Power (o=.01)

Study No 1 148 12.0 03253 0.1411 NA NA NA
Study No 2 188 12.0 0.3981 0.1893 NA NA NA
Study No_ 3 556 96.0 0.0683 0.0176 NA NA NA
Study No 4 261 12.0 0.5191 0.2832 NA NA NA
Study No 5 1378 18.0 0.9976 0.9861 NA NA NA
Study No 24 195 3.0 0.1926 0.0684 NA NA NA
Study No 25 999 12.0 0.9761 0.9132 12.0 0.9761 0.9132
Study No 26 668 12.0 0.8961 0.7390 12.0 0.8961 0.7390
Study No 27 370 12.0 0.6676 0.4258 12.0 0.6676 0.4258
Study No 48 171 3.0 0.1740 0.0595 NA NA NA
Mean NA NA 0,537 0.3684 NA NA NA
Median NA NA 0/.5042 0.2707 NA NA NA

Figure 54. Expected (post hoc) Power Across Primary Studies (ctmaPower)

The generated output further shows the required samples sizes for (future) studies to
obtain significant effects across different time intervals (Figure 55). Note again, that
in Guthier et al. (2020) we reported numerical problems in estimating the required
samples across short time intervals; this issue is now solved. For most effects and
most desired levels of statistical power, required sample sizes are lowest around 16-
18-month intervals. We show how to plot required sample sizes against time interval
later. Note that the output showing the required sample sizes would also display the
expected (discrete time) effect sizes, which we omitted from Figure 55.

The last interesting output deals with combinations of possible time intervals
and samples sizes, and it informs about the range of time intervals across which one
could expect significant effects. If neither a sample size (failSafeN)nor ap-level
(failSaveP)is provided as function argument, the average sample size of the pri-
mary studies is used (otherwise the values assigned to failSafeN) and p < .01
(otherwise the values assigned to failSaveP) are used. As the Sesti-
mates$ Range of significant effects’ section in Figure 56 reports,
with N corresponding to the average N = 549 across primary studies, one should
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select time intervals between 8-32 months to find a significant V2toV1 effect. With
the average N used in primary studies, one cannot expect finding a significant
VitoV2 effect across neither time interval.

V2toVl Power=0.5 V2toVl Power=0.8 V2toVl Power=0.95 V1toVv2

1 1704 3479 5759
1.5 1163 2374 3929
2 893 1823 3016
3 625 1274 2108
4 492 1003 1659
15 236 480 793
16 234 476 787
17 234 475 785
18 234 476 786
19 235 478 790
20 237 482 797
21 240 488 806
142 180113 368006 609274
143 192184 392668 650104
144 205069 418994 693691
Min N 234 475 785

Figure 55. Required Sample Sizes to Achieve Requested Levels of Statistical Power Across
a Range of Time Intervals from 1 to 144 Months (ctmaPower)

[1] "The shortest interval across which the effect (V2toVl) is significant with
p < 0.01 assuming N = 549 (= avg. N) is 8. The longest interval across which the
effect (V2toVvl) is significant with p < 0.01 assuming N = 549 (= avg. N) is 32.
Note that you have not provided an explicit time range for analysis of statisti-
cal power. The time intervals used ranged from 1 to 1.5 times the longest inter-
val used in the primary studies, using integer steps of 1.0. These intervals were
then augmented by time intervals found in primary studies that were non-inte-

gers."
[2] "There is no shortest interval across which the effect (V1toV2) is significant
with p < 0.01 assuming N = 549 (= avg. N). There is no longest interval across

which the effect (V1tov2) is significant with p < 0.01 assuming N = 549. Note
that you have not provided an explicit time range for analysis of statistical

power. The time intervals used ranged from 1 to 1.5 times the longest interval
used in the primary studies, using integer steps of 1.0. These intervals were

then augmented by time intervals found in primary studies that were non-inte-

gers."

Figure 56. Expected Range Across Which Significant Effects Could be Expected
(ctmaPower)

Finally, required sample sizes can be plotted. We used the code in Figure 57 to gen-
erate the plot displayed in Figure 58. This figure is based on the values previously
shown in parts in Figure 55.

activeDirectory <- "../../" # SET A VALID PA

plot (CoTiMAPower D BO, timeUnit = "Months",
ictiveDirectory = activeDirectory,
timeRange = c(1, 84, 1))

Figure 57. Plotting Required Sample Sizes (plot)
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Required Sample Size For the Effect of V1toV2
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Figure 58. Required Sample Sizes Across Time to Achieve a Statistical Power of .50, .80,
and .95 for Finding a Significant Effect of VitoV2 (plot)

10 Special Topics

In Chapter 10, several special topics are discussed. We start in Section 10.1 with
explaining how a CoTiMA fit-object could be used to go back to the P-Step of the
EPIC-Big-Power Workflow and obtain the list of primary studies, which was once
compiled using the ctmaPrep function. This could be useful for re-doing Co-
TiMAs with different setting across a team of authors because only the fit files need
to be shared, and it is achieved by the ctmaFitToPrep function. One possible
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reason why researchers want to do this is because they want to apply a CoTiMA to
a subset of studies, which we demonstrate in Section 10.2, where we also introduce
random intercept models (RI-CoTiMA) and four different specifications how ran-
dom intercept models can be fitted. Another good reason for re-doing CoTiMAs is
to check if results are replicable — sometimes initially obtained results differ slightly
depending on the operating systems, time scaling used etc. Therefore, in Section
10.3, we continue with demonstrating how the user could test if a better fit than
previously obtained could be achieved. This is useful to ensure that the previously
obtained did not suffer from the fitting algorithm being stuck in a local minimum,
and it is done with the function ctmaOptimizeFit. Optimizing model fit with
ctmaOptimizeFit could take a lot of time. However, once an optimal fit is ob-
tained, reproducibility of the optimal fit could be facilitated by extracting fitting pa-
rameters including starting values from the optimized fit, and by explicitly including
them in subsequent (and fast) fitting attempts. This is demonstrated in Section 10.4.
In Section 10.5, we deal with the relation between CoTiMAs with random intercepts
(RI-CoTiMA) and latent change score (LCS) models and we show how the results
of a RI-CoTiMA can be transformed into a continuous time dual latent change score
meta-analysis using the ctmaLCS function.

10.1 From Fit back to Prep (ctmaFitToPrep)

A fit-object created with ctmaInit or with ctmaFit could serve as argument of
the ctmaFitToPrep function to recover the original list of primary studies, and
to modify when necessary. The resulting object has one notable difference compared
to the original study list created during the P-Step of the EPIC process: the summary
function is not operational. In Figure 59, the previously (see Figure 46) downloaded
init fit file created by Guthier et al. (2020) is used to create a new study list.

activeDirectory <- "../../" # SET A VALID PATH
CoTiMAInitFit D BO <- readRDS(pasteO(actlveDlrectory, "CoTiMAInitFit D BO.rds"))
studyList_D_ BO <- ctmaFitToPrep (ctmaFit ect = CoTiMAInitFit_D_BO,

eUseEmp wData = TRUE)
Figure 59. Using ctmaFitToPrep to Create a new Study List to be used as Input for Sub-
sequent ctmaInit

The created study list (i.e., studyList D BO) could be directly used as argument
for ctmaInit or for ctmaFit, or it could be modified before. This requires some
R code and some experience with list objects in R. For example, the R code shown
in Figure 61 could be used to delete all primary studies with two waves only. Further,
Study 313 is also excluded even though it comprised three time points because it
could not be fitted properly, which we explain further below. The code in Figure 60
generates the output shown in Figure 61.
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studies3plus <- lapply(studyList_D BO$deltas, function(x) (length(x) > 1))
head (studies3plus)

targetPos <- which (unlist (studies3plus == TRUE)); targetPos

studyNumbers <- unlist (studyList_D BO$studyNumbers); studyNumbers
targetStudies <- c(studyNumbers[targetPos], 313); targetStudies
excludedStudies <- studyNumbers[! (studyNumbers %in% targetStudies)]
excludedStudies

study3pluslist <- ctmaPrep (ctmaPrepObjec
cludedstudie
unlist (study3plusList$studyNumbers)

Figure 60. R Code for Deleting all Studies with 2 Time Points from a ctmaPrep-Object
Using ctmaFitToPrep to Create a New Study List to be used as Input for Subse-
quent ctmaInit

= studyList_D_BO,
= excludedStudies)

Step 1: Create a list containing a FALSE for every primary study with only one
# time interval
[[11]

[1] FALSE

[[211

[1] FALSE

[[31]

[1] FALSE

[[41]

[1] FALSE

[[51]

[1] FALSE

[[611

[1] FALSE

# Step 2: identify the target list positions that contain a TRUE instead of a FALSE
[1] 22 25 26 27 38 39

# Step 3: Create a vector with all available studyNumbers

[1] 2 3 4 6 7 10 11 12 13 14 15 16 17 18 19 25 29 31 32
[20] 34 112 127 128 129 201 203 301 302 303 304 305 306 307 308 309 310 311 313
[39] 314 315 316 317 319 320 321 322 323 324

# Step 4: Use the vector of all studyNumb

[1] 127 201 203 301 314

s to identify the

/ numbers

sequent model fitting studies identified in Step 4 and the

C with the study number = 313

2 3 4 6 7 10 11 12 13 14 15 16 17 18 19 25 29 31 32
34 112 128 129 302 303 304 305 306 307 308 309 310 311 315 316 317 319 320
[39] 321 322 323 324 313

and check that it includes
[1] 127 201 203 301 314
Figure 61. Corresponding R Output for the Code used in Figure 60

As shown in Figure 61, first, a list is created that contains a FALSE for every primary
study that has only one time interval (i.e., 2 time points); the results for the first six
studies only is displayed on the console (all FALSE). Then we identify the target list
positions that contain a TRUE instead of a FALSE, which are six studies (22, 25,
etc.; note that these are the positions in the list of all 48 study numbers and not yet
the study number themselves). Further, we create a vector with all available
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studyNumbers, which is then used to identify the numbers of the target studies.
In the next step, we identify the study numbers that we want to exclude (exclud-
edStudies) in subsequent model fitting, which are the studyNumbers that are
not (indicated by !) included ($1n%) the targetStudies plus the study with the
study number = 313. Finally, we use ctmaPrep again and the excludedStud-
ies object to compile a new list of primary studies (study3plusList) and
check that it indeed includes the primary studies with three or more waves only.

10.2 Random Intercept CoTiMA (ctmaInit, ctmaFit)

In so-called static models (e.g., multi-level models (MLM); without autoregressive
effects), researchers are frequently interested in separating between-person differ-
ences in mean levels of variables from changes over time within-persons. In dy-
namic models with autoregressive structures, between-person differences could be
modelled by allowing the intercepts in the model equations to vary between persons.

So far, we have not yet dealt much with continuous time intercepts. Since Co-
TiMA is based on standardized variables (i.e., correlations instead of covariances),
the mean levels of variables are 0.0 at all time points. Therefore, the mean intercepts
are also 0.0 at all time points. This is because the intercepts are added to the values
predicted by earlier states of the variables, and positive intercepts would therefore
cause the mean level of the variables to become increasingly larger over time instead
of staying at 0.0.

The fact that mean intercepts are 0.0 does nevertheless allow for individual
differences in intercepts, which is also known as random intercepts (RI). Individuals
with a positive intercept in one of the variables show an increasing trend in this
variable over time, and individuals with negative intercepts exhibit a decreasing
trend. Hence, dynamic random intercept models including CoTiMA control for dif-
ferences in possible linear trends or growth factors over time (Hamaker et al., 2018;
Voelkle et al., 2012).

Still, CoTiMA could also be used to control for stable interpersonal differences
(traits) instead of controlling for differences in trends. In this case, the intercepts are
assumed to be invariant across persons, whereas the mean levels of the manifest
variables are assumed to vary randomly. It is important to note that both methods,
that is, assuming random intercepts (RI) or random manifest means (RMM), lead to
identical drift parameter estimates.

A CoTiMA using RI estimates the variance of the random intercepts, their co-
variances, and their covariances with the latent variables at Time 0. A CoTiMA us-
ing RMM estimates the variance of the random manifest means, their covariances,
and their covariances with the latent variables at Time 0. In both cases, for example,
in the case of two latent variables, 4 x 4 covariance matrices are reported, but the
interpretations differ as explained above.
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In the case of initial fitting with ctmaInit, using Rl or RMM should yield
identical fit and identical drift parameter estimates. In practice, this is frequently not
the case, and one should generally trust the model with the smallest -2// value and
report the drift effects and other parameter estimates of this model (see also Section
10.3 on optimizing model fit). When a RI model fits better than a RMM model, but
it is desired to report the variances and covariances of the trait factors (manifest
means) rather than growth factors (intercepts), fortunately, the ctmaMMtoCINT
function could be used to convert trait covariances into intercept covariances and
vice versa, which is shown later.

In case of a full or a moderated CoTIMA with RI or RMM performed with
ctmaFit, two further alternatives exist. One could either assume that the variance
covariance matrix of the RI/RMM is invariant across primary studies, or that each
primary study has its own variance covariance matrix. The former, thus, could be
considered to be a restricted version of the later.

The restricted version, in which only a single covariance matrix of RI/RMM is
estimated, is implemented by using the argument indvVarying="CINT" for RI
models and indVarying="MANIFEST" for RMM models. The indVarying
argument is typically used in three cases. First, the estimated single covariance ma-
trix of RI/RMM allows interpreting how, on average, the traits/intercepts impacting
on the meta-analyzed variables vary and covary in the population. Second, estimat-
ing traits/intercepts covariance matrices for each primary study separately is only
possible if each primary study comprises of at least three time points, whereas the
argument indVarying could be used even if only ‘some’ primary studies have
three or more waves of measurements. Third, even when all primary studies com-
prise three or more waves, models may not properly converge when estimating
traits/intercepts covariance matrices for each primary study separately.

The unrestricted full CoTiMA with RI or RMM using traits/intercepts covari-
ance matrices for each primary study separately is implemented by using the argu-
ment randomIntercepts="CINT" (for RI) and randomInter-
cepts="MANIFEST" (for RMM). These models have a complex internal model
structure which could challenge the fitting algorithm. In case the model with ran-
domIntercepts has the smallest -2// value and no estimation problems are re-
ported, these results should be preferred over the model using indvarying. When
this is not the case, see Section 10.3 on optimizing model fit.

Note, again, that using the argument randomIntercepts requires that all
primary studies have at least three time points each. This is because the covariance
matrix of random intercepts, which is estimated for each study, cannot be estimated
when only two time points are available. With the argument indvVarying, only
“some” primary studies have to have three or more time points because a single
covariance matrix of random intercepts is estimated across all studies. There have
been no Monte Carlo simulation studies yet to suggest how many “some” primary

55



studies should be; however, a rough estimate probably is 15%. Typically, the fit
achieved with the argument randomIntercepts is better, but fitting an addi-
tional model with the argument indvVarying, could be useful to check for con-
sistency of results.

So overall there are four different alternatives to control for individual differ-
ences when conduction and full or moderated CoTiMA. Sometimes one alternative
is numerically easier to fit and leads to better model convergence than the other al-
ternatives. This is demonstrated in Figure 62, where we use the list of primary stud-
ies (study3plusList) created in Section 10.1.

As mentioned earlier, Rl and RMM models are very useful because they allow
investigating within-person processes, and at least three time points have to be avail-
able for mathematical reasons. Otherwise, a random intercept model is not identified.
However, sometimes even three time points are insufficient for numerical reasons,
and the four different ways to model random intercepts may not yield consistent
results. When inconsistency is high, that is, when the resulting estimates vary much,
one should treat them with care.

There are multiple ways to check the trustworthiness of results delivered by
ctmaInit. We recommend applying all four alternatives and comparing their -2//
values and the resulting estimates. In case estimates of a model with poor -2// values
are very different from estimates of models with better and similar -2// values, the
former could be ignored, and the latter could eventually be trusted.

activeDirectory <- "../../" # SET A VALID PATH
CoTiMAInitFit_D BO_3plus_IV <-
ctmalnit (activeDirector = activeDirectory, primaryStudies = study3pluslist,
latent = 2, leTime = 1/12, esToUse = 2,
indVaryi = "CINT")

CoTiMAInitFit_D BO_3plus_IV_mm <-
ctmalnit (activeDirector = activeDirectory, primaryStudies = study3plusLlist,
latent = 2, leTime = 1/12, esToUse = 2,
indVaryi = "MANIFEST")

CoTiMAInitFit_D BO_3plus_RI <-
ctmalnit (activeDirector = activeDirectory, primaryStudies = study3plusLlist,
latent = 2, leTime = 1/12, esToUse = 2,

I mIntercepts = "CINT")

CoTiMAInitFit_D BO_3plus_RI_mm <-
ctmalnit (activeDirector = activeDirectory, primaryStudies = study3pluslist,
latent = 2, leTime = 1/12, esToUse = 2,

1 T tercepts = "MANIFEST")
Figure 62. Four Different Ways to Model Stable Interpersonal Differences with ctmaInit
(saveRDS and summary Functions not Shown for Reasons of Space)

The R code shown in Figure 62 demonstrates one way to compare -2/I values and
check for consistency of estimates. Figure 63 shows the corresponding output. First,
the -2/ values of the four models fitted in Figure 62 are displayed. This shows that
the models using random manifest means instead of random continuous time
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intercepts yielded better fit (44407.06 & 44407.06 compared to 44434.48 &
44416.57). As mentioned earlier, probable reason is that it is numerically easier for
the fitting algorithm to find a proper solution. In particular, what is sometimes
considered as the default way to fit a model with random intercepts (i.e., by
indVarying = "CINT") yielded to worst fit, that is, the largest -2/I value.

#Step 1: Display the -211 values of the four models fitted in Figure 62

c(CoTiMAInitFit D BO 3plus_IVS$summary$minus21l, CoTiMAInitFit7D7B073blusilvimm$summary$minusZll,
CoTiMAInitFit D BO 3plus RI$summary$minus21l, CoTiMAInitFit D BO 3plus_RI_mm$summary$minus21l)

¢ Step 2

fits <- list (CoTiMAInitFit D BO 3plus_IV, CoTiMAInitFit D BO 3plus_IV mm,
CoTiMAInitFit D BO 3plus RI, CoTiMAInitFit D BO 3plus RI mm)
allDrift <- as.data.frame((do.call (rbind, lapply(fits, function (x)
x$summary$drift estimates_original time scale[1:4,]1))))
allDrift[order (allDrift([,1],d a = FALSE),][,2:9]

Figure 63. R code to compare -2// values of the four models fitted in Figure 62 and check for
consistency of estimates

r 1ding output for Step 1
[1] 44434.48 44407.06 44416.57 44407.06

# x onding output for Step 2

Vitovl SE V2toVl SE.1 V1tov2 SE.2 V2toVv2 SE.3
Study.No.127 -0.2332 0.0459 0.0147 0.1445 0.0426 0.0913 -0.2461 0.0899
Study.No.127.1 -0.0294 0.0048 -0.0114 0.0116 0.0094 0.0083 -0.0542 0.0157
Study.No.127.2 -0.0383 0.0058 0.0152 0.0092 0.1197 0.0844 -0.2609 0.1376
Study.No.127.3 -0.0294 0.0049 -0.0117 0.0115 0.0095 0.0083 -0.0546 0.0155
Study.No.201 -0.1068 0.0198 -0.0118 0.0161 0.0072 0.0174 -0.1276 0.0223
Study.No.201.1 -0.1067 0.0199 -0.0117 0.0159 0.0076 0.0177 -0.1282 0.0223
Study.No.201.2 -0.1062 0.0197 -0.0120 0.0161 0.0072 0.0174 -0.1277 0.0222
Study.No.201.3 -0.1065 0.0200 -0.0120 0.0160 0.0073 0.0176 -0.1282 0.0225
Study.No.301 -0.1013 0.0203 0.0579 0.0134 0.0507 0.0148 -0.0720 0.0165
Study.No.301.1 -0.1014 0.0204 0.0582 0.0136 0.0510 0.0150 -0.0711 0.0165
Study.No.301.2 -0.1013 0.0199 0.0576 0.0131 0.0504 0.0146 -0.0715 0.0165
Study.No.301.3 -0.1009 0.0203 0.0580 0.0131 0.0510 0.0151 -0.0712 0.0158
Study.No.203 -0.1847 0.0283 -0.0272 0.0241 0.0019 0.0238 -0.1789 0.0265
Study.No.203.1 -0.1843 0.0281 -0.0273 0.0243 0.0023 0.0239 -0.1791 0.0270
Study.No.203.2 -0.1841 0.0280 -0.0273 0.0241 0.0021 0.0237 -0.1791 0.0270
Study.No.203.3 -0.1845 0.0281 -0.0269 0.0241 0.0022 0.0234 -0.1786 0.0268
Study.No.314 -0.5725 0.7090 -0.1815 1.0214 -0.2335 1.3111 -0.8973 1.1202
Study.No.314.1 -0.1819 0.0601 -0.1027 0.0300 -0.1323 0.0152 -0.2518 0.1011
Study.No.314.2 -0.2502 0.0848 -0.1784 0.0854 -0.2320 0.0774 -0.3686 0.1667
Study.No.314.3 -0.1919 0.0995 -0.1035 0.0584 -0.1335 0.0723 -0.2718 0.1698

Figure 64. Corresponding R Output for the Code used in Figure 63 (Suspicious Estimates are
Shown in Bold Face)

Despite the differences in -2/I values, the estimates shown in Figure 64 were mostly
consistent across the four models; in particular, this applies to the two models using
randomly varying manifest means, which also had the best -2// values. Some
supicious estimates are marked in bold face. Our decision to mark effects as
supicious was based on the size of effects, in particular we regarded large effects
and standard errors in models with large -2// values as supicious. Overall, for a
subsequent full CoTiMA, we should chose the "MANIFEST" options, which seems
to work well for all primary studies, and we should use it together with the arugment

57



randomIntercepts = "MANIFEST" ratherthan with indVarying, which
would be more restrictive.

Fitting a full CoTiMA with randomly varying manifest means is demonstrated
in Figure 65. Not shown here, we obtained -2// = 44568.95 with 89 estimated pa-
rameters. More important, a warning was issued: "Warning: ***General-
ized inverse required for Hessian inversion -- standard
errors not trustworthy". This indicates problems in proper model conver-
gence. Section 10.3 shows how this and similar problems could be dealt with.

activeDirectory <- "../../" # SET A VALID PATH
CoTiMAFullFit_D BO_3plus_RI <-
ctmaFit ( tivel ectory = activeDirectory,
tmaInitFit = CoTlMAInltFlt D BO 3plus RI,

leTime = 1/12 e
Inter g = MANIFEST)

Figure 65. Flttlng a Full CoTiMA with Randomly Varying Manifest Means (ctmaFit;
saveRDS and summary Functions not Shown for Reasons of Space)

2,

10.3 Optimizing Fit (ctmaOptimizeFit)

The CoTiMA package offers a couple of possibilities for automatically varying cer-
tain fitting parameters during a series of fit attempts. For example, the time scale
chosen may not be well-suited for the build-in starting values, which may prevent
proper convergence.

Automatically varying certain fitting parameters during a series of fit attempts
possibilities are implemented in the function, ctmaOptimizeF1it, which gener-
ates a series of model fits (either using ctmaInit or ctmaFit), in which different
time scales could be used. For example, the argument randomScaleTime =
c(1l/24, 1/2), would vary the original time scale in subsequent model fits by
multiplying it with a randomly selected factor between 1/24 and 1/2.

Whereas the argument randomScaleTime could be used both when opti-
mizing using ctmalInit or ctmaFit, there are arguments that apply either to op-
timizing with ctmaFit or ctmaInit. A first, but not much obvious way to facil-
itate model fit, is to vary the order of primary studies that were previously used with
ctmaInit. Recall that in case of k primary studies, £ — 1 dummy variables are
internally used to control for the nested data structure (persons in studies). The last
study in the list of & studies is used as the reference study for which no dummy
variable is created. With the argument shuffleStudyList = TRUE the original
order of the primary studies could be randomly changed in subsequent fit attempts
with ctmaFit, which may also facilitate model convergence. Note that this argu-
ment has no impact when a single model fit should be optimized with ctmaInit.

A second way to facilitate fit is to standardize the dummy variables (time in-
dependent predictors, Tlpreds, in ctsem terminology), so that they are no longer 0 or
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1, but rather 0 on average with a standard deviation = 1.0. While this will not change
the interpretation of the estimated drift coefficients, it may facilitate model conver-
gence, too, and it is achieved by randomScaleTI = TRUE, which randomly
switches between standardized and unstandardized dummy variables in subsequent
fit attempts.

The ctmaOptimizeFit function could be used also to optimize the fit for a
single primary study using ctmaInit. For this purpose, one could use the argu-
ment, for example, problemStudy = 3, which re-fits the third study in the study
list subsequently using varying fitting parameters. We do not present this in a Figure
here. Rather, we focus on optimizing a full CoTiMA.

activeDirectory <- "../../" # SET A VALID PATH
CoTiMAFullFit D BO 3plus _RI_opt <-
ctmaOptlmlzeFlt( tiveDirectory = activeDirectory,
tmaFitFit = CoTiMAFullFit D_BO_ 3plus_RI,
InitFit = CoTiMAInitFit D BO 3plus_RI,
fir mples = 10000, resToUse = 2,
ndomScaleTime = c(1/24, 1/2),
uffleStudyList = TRUE,

veModelFits = "/OptFitFiles/3plusRIopt",
eFits = 50)

Figure 66. Optimizing a Full CoTiMA with Random Intercepts Modelled as Randomly Var-
ying Manifest Means (ctmaOptimizeFit; saveRDS and summary Functions not
Shown for Reasons of Space)

Figure 66 demonstrates how to optimize the full RI-CoTiMA fitted as shown in Fig-
ure 65. Note that the model setup is not changed, and the arguments (e.g., random-
Intercepts = "MANIFEST") is taken from the ctmaFitFit object pro-
vided. In Figure 66, we requested 10,000 finishsamples to get precise estimates, we
let the time scale factor randomly vary between 1/24 and 1/2 (of the original time
scale, which was 1 month), we shuffle the list of primary study in subsequent fit
attempts, we re-fit the model 50 times, and each fit is saved for inspecting the re-
spective estimates later. Without providing the saveModelFits argument, the
ctmaOptimizeFit function would return only the estimates of the best fitting
model. The saveModelFits argument also prevents that already computed fits
are lost in case very poor fitting parameters were randomly chosen, which may cause
the abortion of ctmaOptimizeFit.

The R code shown in Figure 67 can be used to compare -2// values and check
for consistency of estimates for the optimized models re-fitted in Figure 70. Figure
68 shows the corresponding output. At the top of Figure 68, the rounded -2/I values
of all 50 fit-attempts are displayed. Seven attempts yielded -2// values < 44474. And
the index (no.) of these fit-attempts is determined next. Then, the fit files of these
indexed fit-attempts are read, the estimated drift effects are extracted, sorted, and
displayed. There is very little variation in any of the four drift effects and their asso-
ciated standard errors across the seven fit files. Hence, one would regard these results
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as trustworthy. Interesting to note in passing is the fact the neither of the two cross
effects is significant, which would lead to the conclusion that once random intercepts
are statistically modelled, there is no evidence for an effect of workload on exhaus-
tion nor vice versa from exhaustion to workload.

# Step 1: Display - ues of all 50 fit attempts
table (round (CoTiMAFullFit D BO 3plus_RI opt$all minus211,0))

# Step 2: Determine the index (no.) of the best fit attempts (he = < 44474)
index <- which(CoTiMAFullFit D BO 3plus RI optS$all minus2ll < 44475)
index

of the indexed fi T

ttempts are read, the estimated drift
sort

AR BN

activeDirectory <-

fits <- list()
for (i in l:length(index)) { fits[[i]] <-

readRDS (paste0 (activeDirectory, "/OptFitFiles/3plusRIopt ", index[i], " .rds"))}
allDrift <- as.data.frame((do.call (

rbind, lapply(fits, function(x) x$summarySestimates original time scale[1:4,]))))
allDrift <-round(allDrift, 4)
allDrift[order(allDrift[,1], allDrift([,2], decreasing = FALSE),]

Figure 67. R Code to Compare -2/l values for the Best-Fitting Models Optimized and Re-
Fitted in Figure 66 and their Resulting Drift Estimates

# Corresponding output for Step 1

44474 44486 44521 44528 44566 44569 44574 44592 44614 44622 44630 44631 44668 44680 44686
7 1 9 1 1 2 2 11 3 1 3 4 1 2 2

# Corresponding output for Step 2

[1] 13 14 33 35 37 41 50

ponding output

Mean sd 2.5% 50% 97.5% Tvalues

DRIFT V1toVl (invariant) 1 1 -0.1382 0.0126 -0.1645 -0.1377 -0.1149 -10.9936
DRIFT V1toVl (invariant)l 1 1 -0.1378 0.0127 -0.1640 -0.1374 -0.1146 -10.8915
DRIFT V1toVl (invariant)2 1 1 -0.1377 0.0126 -0.1634 -0.1373 -0.1139 -10.8977
DRIFT V1tovl (invariant)3 1 1 -0.1380 0.0127 -0.1636 -0.1376 -0.1142 -10.9018
DRIFT V1toVl (invariant)4 1 1 -0.1378 0.0127 -0.1639 -0.1374 -0.1147 -10.8690
DRIFT V1toVvl (invariant)5 1 1 -0.1380 0.0127 -0.1639 -0.1375 -0.1141 -10.9006
DRIFT V1toVl (invariant)é6 1 1 =0.1378 0.0125 =0.1635 =0.1372 =0.1145 =11.0153
DRIFT V2toVl (invariant) 1 2 -0.0012 0.0100 -0.0207 -0.0012 0.0184 -0.1235
DRIFT V2toVl (invariant)l 1 2 -0.0007 0.0101 -0.0201 -0.0006 0.0195 -0.0693
DRIFT V2toVl (invariant)2 1 2 -0.0008 0.0100 -0.0204 -0.0008 0.0190 -0.0769
DRIFT V2toVl (invariant)3 1 2 -0.0006 0.009% -0.0202 -0.0006 0.0189 -0.0608
DRIFT V2toVl (invariant)4 1 2 -0.0007 0.0100 -0.0209 -0.0006 0.0190 -0.0715
DRIFT V2toVl (invariant)5 1 2 -0.0015 0.0100 -0.0210 -0.0014 0.0182 -0.1469
DRIFT V2toVl (invariant)é6 1 2 -0.0006 0.0101 -0.0207 -0.0005 0.0192 -0.0620
DRIFT V1toV2 (invariant) 2 1 0.0106 0.0108 -0.0106 0.0106 0.0320 0.9817
DRIFT V1toV2 (invariant)l 2 1 0.0108 0.0108 -0.0100 0.0110 0.0317 1.0053
DRIFT V1toV2 (invariant)2 2 1 0.0107 0.0106 -0.0100 0.0108 0.0317 1.0101
DRIFT V1tov2 (invariant)3 2 1 0.0108 0.0106 -0.0102 0.0108 0.0316 1.0156
DRIFT V1toV2 (invariant)4 2 1 0.0107 0.0108 -0.0103 0.0106 0.0318 0.9931
DRIFT V1tovV2 (invariant)5 2 1 0.0105 0.0107 -0.0106 0.0105 0.0317 0.9802
DRIFT V1toV2 (invariant)é6 2 1 0.0106 0.0107 -0.0102 0.0105 0.0317 0.9915
DRIFT V2toV2 (invariant) 2 2 =0.1341 0.0129 =0.1609 =0.1335 =0.1104 =10.4019
DRIFT V2toV2 (invariant)l 2 2 -0.1328 0.0126 -0.1585 -0.1325 -0.1096 -10.5301
DRIFT V2toV2 (invariant)2 2 2 =0.1328 0.0126 =0.1585 =0.1325 =0.1087 =10.5499
DRIFT V2toV2 (invariant)3 2 2 -0.1330 0.0125 -0.1588 -0.1326 -0.1098 -10.6058
DRIFT V2toV2 (invariant)4 2 2 -0.1326 0.0127 -0.1590 -0.1322 -0.1088 -10.3982
DRIFT V2toV2 (invariant)5 2 2 -0.1340 0.0126 -0.1600 -0.1336 -0.1101 -10.6008
DRIFT V2toV2 (invariant)é6 2 2 =0.1328 0.0127 50.15927 0.1322 =0.1095 =10.4617

Figure 68. Corresponding R Output for the Code used in Figure 67
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Thus far, it was quite a long way from initial fitting with ctmaInit to get trust-
worthy results for a full RI-CoTiMA. With the open science-movement, however,
not only replicability of findings but also reproducibility of results became im-
portant. Facilitating reproducibility is demonstrated next.

10.4 Facilitating Reproducibility of Results by Providing Start
Values

Reproducibility of findings could be facilitated much by using the best fitting model
so far, extract starting values and other fitting parameters, and provide them as ar-
gument to the ctmaFit function. How this can be done is shown in Figure 69.

# Step 1: Extracting modelling parameter scaleTime
scaleTime <- CoTiMAFullFit D _BO_3plus_RI_opt$usedTimeScale; scaleTime

# Step 2: Extracting modelling parameter scal
scaleTI <- CoTiMAFullFit D BO_3plus_RI_optSusedScaleTI; scaleTI

# Step 3: Extracting st alues (inits)
inits <- CoTiMAFullFit_D_BO 3plus RI _opt$bestFit$studyFitList$stanfitSrawest
round (inits, 4)

# Step 4: Create the object imaryStudylist, hich is used in Figure 71 below
prlmaryStudyLlst <= CoTlMAFullFlt D_BO 3plus RI Opt$usedStudyLlst
Figure 69. R Code for Extracting Modelling Parameters and Starting Values (inits) from

the Best Fitting Model Obtained by Using the Code in Figure 66

# Corresponding output Step

[1] 0.29

# Correspond output for Step 2

[1] TRUE

# Cor 1ing output for Step 3

[1] 0.0000 0.0000 0.0000 0.0000 0.6587 -0.0047 0.0365 0.6759 -1.4039 0.3049 -1.4064
[12] -0.9191 0.3693 -0.9200 -0.1402 -0.0790 -0.8780 -0.0935 -0.1274 0.7232 -0.8852 0.0000
[23] 0.0000 0.0000 0.0000 0.0000 -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
[34] 0.0000 0.0001 0.0000 0.0000 -0.0399 0.0132 -0.0568 -0.0040 -0.0371 -0.0820 -0.0618
[45] -0.0674 0.0096 0.0636 0.0102 0.0553 0.0047 -0.0001 -0.0270 -0.0080 -0.1384 -0.0594
[56] -0.0427 0.0653 0.0245 0.0120 -0.0131 0.0304 -0.0613 0.0075 -0.0233 0.0229 0.0957
[67] 0.0398 0.0480 -0.0312 0.0241 -0.0068 0.0245 0.0052 0.1288 0.0063 0.0243 -0.0706
[78] -0.0418 0.0496 0.0159 0.0186 -0.2078 -0.0375 -0.0749 0.0271 -0.0009 -0.0381 -0.0033

[89] -0.0261

Figure 70. Corresponding R Output for the Code used in Figure 69

The values for scaleTime (0.29) and scaleTI (TRUE) as well as the entire
set of inits displayed in Figure 70 are now used in a final call of the ctmaFit
function in Figure 71. By this, the optimal fit should be recovered, and this is usually
achieved much faster than without proper starting values.
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activeDirectory <- "../../" # SET A
CoTiMAFullFit_D BO 3plus RI_fin <-
ctmaFlt( veDirectory = actlveDlrectory,
1its = c( 0.0000, 0.0000, 0.0000, 0.0000, 0.6587,-0.0047, 0.0365, 0.6759,
-1.4039, 0.3049,-1.4064,-0.9191, 0.3693,-0.9200,-0.1402,-0.0790,
-0.8780,-0.0935,-0.1274, 0.7232,-0.8852, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000,-0.0001, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0001, 0.0000, 0.0000,-0.0399, 0.0132,-0.0568,
.0040,-0.0371,-0.0820,-0.0618,-0.0674, 0.0096, 0.0636, 0.0102,
.0553, 0.0047,-0.0001,-0.0270,-0.0080,-0.1384,-0.0594,-0.0427,
.0653, 0.0245, 0.0120,-0.0131, 0.0304,-0.0613, 0.0075,-0.0233,
.0398, 0.0480,-0.0312, 0.0241,-0.0068, 0.0245,
.0052, 0.1288, 0.0063, 0.0243,-0.0706,-0.0418, 0.0496, 0.0159,
.0186,-0.2078,-0.0375,-0.0749, 0.0271,-0.0009,-0.0381,-0.0033,

cocoocoooo

e} o
N
N
©
o
o
©
%)
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= "MANIFEST",
CoTlMAInltFlt D BO 3plus RI,
t = prlmaryStudyLlst,

samples
. = TRUE,
bresToUse = 2)

Figure 71. Model Specification for a Full CoTiMA with Random Intercepts Modelled as Ran-
domly Varying Manifest Means with Optimized scaleTime, scaleTI, and inits Ar-
guments (ctmaOptimizeFit)

100000,

The results are shown in parts in Figure 72 and Figure 73. Figure 72 is limited to the
first out of the five studies. The section $randomIntercepts$popcov_mean
shows the covariance matrix of the random intercepts for the first study, and the
section $randomIntercepts$popcov sd shows their standard errors. The
covariances could be easily transformed into correlations by using the cov2cor
function available in R (e.g., cov2cor (..$popcov_mean[[1]])), and T-
values to assess the significance of the covariances could be obtained by dividing
the two matrices (e.g., ..Spopcov_mean[[1]]/..$ popcov_sd[[1]])

$randomIntercepts$popcov_mean
$randomlntercepts$popcov7mean[[1]]

[,1] [,2] [,3] [,4]
[1,1 0.75544101 0.20699384 -0.06486421 -0.05119978
[2,] 0.20699384 0.69241780 -0.06442819 -0.07796963
[3,]1 -0.06486421 -0.06442819 0.77227645 0.39082200
[4,] -0.05119978 -0.07796963 0.39082200 0.84741154

$randomIntercepts$popcov_sd
$randomlntercepts$popcovisd[[l]]

[,11 [,2] [,3] [,4]
[1,] 0.01487585 0.01418275 0.01443790 0.01489576
[2,] 0.01418275 0.01407399 0.01435217 0.01521140
[3,]1 0.01443790 0.01435217 0.01525741 0.01646765
[4,] 0.01489576 0.01521140 0.01646765 0.01824070

Figure 72. Part 1 of Selected Results of the Partial CoTiMA Specified in Figure 36
(ctmaFit)
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The section $estimates original time scale atthe bottom of Figure 73
reveals estimates that are very close to those previously obtained when optimizing

the fit. This also applies to the fit, which was -21] = 44473.94.

Sestimates
row col

DRIFT V1toVl
DRIFT V2toVl
DRIFT V1toVv2
DRIFT V2toVv2

invariant)
invariant)
invariant)
invariant)

NN e
NN

(
(
(
(

dtDRIFT_1_1
dtDRIFT_1_2
dtDRIFT_2_1
dtDRIFT_2_2

NN e
NN e

$minus21l
[1] 44473.94

$n.parameters
[1] 89

$opt.lag.orig.time
[,11 [,2]

[1,] NA 7

(2,1 7 NA

$opt.lag.scaled.time
[,11 [,2]
ol NA 2.03
2,] 2.03 NA

$max.effects

[,11 [,21]
[1,] NA 0.0017
[2,] 0.0293 NA
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Figure 73. Part 2 of Selected Results of the Partial CoTiMA Specified in

(ctmaFit)

8566
0612
0046
4782

Figure 36

10.5 The Relation between RI-CoTiMA and Latent Change-
Score Models (LCS)

Both the autoregressive continuous time cross-lagged panel model used for Co-
TiMA, and latent change score models (LCS) are dynamic models. There is a close
relation between them (Voelkle & Oud, 2015), in particular between CoTiMA and
multivariate dual LCS models. Continuous time models, however, are less restrictive
than LCS model. LCS model use difference equations as an approximation of the
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differential equations that is applied by CoTiMA and that are typically used to de-
scribe changes across time in a variety of disciplines such as physics or econometry.
Further, LCS typically require equally spaced time points whereas CoTiMA does
not.

Like in CoTiMA, when applying LCS models, researchers are typically inter-
ested in the rate of change across a particular time interval. In dual change LCS
models, there are individual differences in rate of change, which are conceptually
related to random intercepts (see Section 10.2), but the former is frequently referred
to as a latent slope whereas the latter as a trait of intercept (cf. Voelkle & Oud,
2015). Still, as we noted earlier, the trait could also be interpreted as a growth factor
(see Section 10.2).

When all time intervals were invariant across people, time points, and primary
studies, the “true” rate of change, the individual differences in growth, and the un-
explained variance in latent factors can be expected to be identical for continuous
time and dual LCS models across this particular time interval (Voelkle & Oud,
2015). Nevertheless, the metrics in which the estimated parameters are presented are
different, as well is the terminology. Instead of cross effects, LCS results frequently
contain estimated coupling parameters, and instead of auto effects, LCS results fre-
quently contain estimated proportional effects. Further, when the assumption of in-
variant time intervals is violated, continuous time models could yield unbiased ef-
fects only. These unbiased effects, fortunately, could be translated into what could
have been expected under ideal conditions with LCS modeling.

Since dual LCS model have latent slopes, in order to be translated into dual
LCS effects, an appropriate CoTiMA model has to include traits, that is, random
intercepts, too. At this stage, it is the indVarying argument that is helpful rather
than the randomIntercepts argument because a single overall covariance ma-
trix of intercepts is required rather than covariance matrices of intercepts for each
primary study. In other words, the LCS model is more restrictive than the RI-Co-
TiMA model used with the argument randomIntercepts.

To obtain an optimally fitting CoTiMA model with the argument indvary-
ing = "CINT", we need to go through the same series of steps used in Figure 65,
Figure 66, Figure 67, Figure 69 and Figure 71. First, we create a fit-object with
ctmaFit, then, second, an optimized fit-object with ctmaOptimizeFit, and
finally, third, check if the results are reproducible in a final fit-object named Co-
TiMAFullFit D BO 3plus_ IV_fin (see Figure 74).

Dual LCS results are eventually obtained by applying the ctmaLCS function
to the final fit-object, that is, ctmaLCS (CoTiMAFull-
Fit D BO 3plus_ IV fin). This is shown in Figure 75 . The results are dis-
played in Figure 76.
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activeDirectory <- "../../" # SET A

# Step 1: Create a fit-object

CoTiMAFullFit D BO 3plus IV <-
ctmaFit (act irectory = activeDirectory,

ctmaInitFit = CoTiMAInitFit D BO_ 3plus_1IV,

leTime = 1/12, coresTol 2, ying = "CINT"

# Step 2: Create an optimized fit-object
CoTiMAFullFit_D BO_3plus_IV_opt <-
ctmaOptimizeFit (activeDirectory = activeDirectory,
tFit = CoTiMAFullFit D BO 3plus_IV,
“tmaInitFit = CoTiMAInitFit D BO_3plus_1IV,
10000, coresT 25
= c(l/24, 1/2), shuffleStudyList = TRUE,
= "/OptFitFiles/3plusIVopt”,

# Step 3: Compare -211 values for the best-fitting models optimized and re-fitted
table (round (CoTiMAFullFit_D BO_3plus_IV_opt$all minus211,0))
index <- which (CoTiMAFullFit D BO_3plus_IV_optS$all minus2ll < 44664)
index
fits <- 1list()
for (i in l:length(index)) { fits[[i]] <-

readRDS (paste0l (activeDirectory, "/OptFitFiles/3plusIVopt ", index[i], " .rds"))}
allDrift <- as.data.frame((do.call(rbind, lapply(fits, function (x)

x$summary$estimates_original time_scale[1:4,]))))

allDrift <- round(allDrift, 4)
allDrift[order(allDrift[,1], allDrift[,2], decreasing = FALSE),

# Step 4: Extracting modelling parameters and starting values (inits)
scaleTime <- CoTiMAFullFit_ D BO_3plus_IV_optSusedTimeScale; scaleTime
scaleTI <- CoTiMAFullFit D BO_3plus_IV_optSusedScaleTI; scaleTI

inits <- CoTiMAFullFit_D BO_3plus_IV_opt$bestFit$studyFitList$stanfitS$rawest
round (inits, 4)

primaryStudyList <- CoTiMAFullFit D_BO_3plus_IV_optSusedStudyList

length (primaryStudyList)

# Step 5: Check if the results are reproducible in a final fit-object named Co-
TiMAFullFit D BO 3plus_IV_fin
CoTiMAFullFit D BO 3plus IV fin <-

ctmaFit (ac Directory = activeDirectory,

n = c( 0.0000, 0.0000, -0.3146, -0.1116, 0.1541, -0.3786,
-1.0016, 0.3125, -0.9842, 0.0000, 0.0000, -0.6265,
-0.6265, -0.3338, -0.3334, 0.4358, 0.8459, 0.2513,
0.3288, 0.8568, 0.6563, 0.0401, 0.0365, -0.0312,
0.0522, 0.1388, 0.1669, 0.0304, 0.0748, 0.0253,
-0.0260, -0.0084, 0.0352),
indvarying = "CINT"
ctmaInitFit = CoTiMAInitFit D BO_3plus_1IV,

primaryStudylList = primaryStudylList,

Figure 74. R Code to Obtain an Optimally Fitting CoTiMA Model with the Argument
indVarying = "CINT"
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activeDirectory <- "../../" # SET
resultsLCS <- ctmaLCS(CoTlMAFullFlt D BO 3plus IV fin)

readRDS (resultsLCS, pasteO(actlveDlrectory, "LCSiD7B073plu571V7fin.rds"))
resultsLCS

Figure 75. R Code for the Dual LCS Results Obtained in Figure 76

est SD LL UL
1 InitialMean_etal 0.0000 0.0184 -0.0361 0.0362
2 InitialMean_eta2 0.0000 0.0185 -0.0361 0.0361
3 ManifestMean_etal 0.0000 0.0000 0.0000 0.0000
4 ManifestMean_eta2 0.0000 0.0000 0.0000 0.0000
5 SlopeMean Cint_etal 0.0003 0.0370 -0.0727 0.0729
6 SlopeMean Cint_eta2 -0.0002 0.0374 -0.0736 0.0731
7 CTauto_Vl1toVl -0.1263 0.0114 -0.1495 -0.1048
8 CTauto_V2tov2 -0.1365 0.0124 -0.1618 -0.1130
9 CTcross_V1tov2 0.0090 0.0103 -0.0111 0.0292
10 CTcross_V2toVl -0.0070 0.0096 -0.0256 0.0118
11 Proportion_etal -0.1186 0.0100 -0.1389 -0.0995
12 Proportion_eta2 -0.1275 0.0108 -0.1494 -0.1068
13 Autoregressions_etal (Delta=1) 0.8814 0.0100 0.8611 0.9005
14 Autoregressions_eta2 (Delta=1) 0.8725 0.0108 0.8506 0.8932
15 Coupling V1toVv2 0.0079 0.0090 -0.0097 0.0255
16 Coupling V2toVl -0.0061 0.0084 -0.0225 0.0103
17 CrossLagged_V1toV2 (Delta=1) 0.0079 0.0090 -0.0097 0.0255
18 CrossLagged_V2toVl (Delta=1) -0.0061 0.0084 -0.0225 0.0103
19 Diffusion_etal 0.0964 0.0058 0.0856 0.1083
20 Diffusion_eta2 0.1028 0.0066 0.0905 0.1162
21 Diffusion_eta2_etal 0.0292 0.0046 0.0203 0.0384
22 DynErrVar_etal (Delta=1) 0.0850 0.0043 0.0768 0.0937
23 DynErrVar_eta2 (Delta=1) 0.0901 0.0048 0.0810 0.0998
24 DynErrCov_eta2_etal (Delta=1) 0.0257 0.0034 0.0191 0.0325
25 measurementErrorVar_etal 0.0000 0.0000 0.0000 0.0000
26 measurementErrorVar_eta2 0.0000 0.0000 0.0000 0.0000
27 measurementError V2 _with V1 0.0000 0.0000 0.0000 0.0000
28 Initialvar_etal 0.9987 0.0515 0.9008 1.1028
29 Initialvar_eta2 0.9988 0.0517 0.9004 1.1027
30 InitialCov_eta2_etal 0.4333 0.0400 0.3570 0.5132
31 SlopeVariance TraitVariance_etal 3.0095 0.6087 1.9895 4.3619
32 SlopeVariance_TraitVariance_eta2 3.0127 0.6314 1.9524 4.4286
33 SlopeCov_TraitCov_eta2 etal 1.7176 0.4849 0.8426 2.7439
34 SlopeCor_TraitCor_eta2_etal 0.5686 0.1021 0.3435 0.7419
35 Minus2LL 44663.8705 NA NA NA
36 NumEstParams 33.0000 NA NA NA
Figure 76. LCS Results and CoTiMA Results of a CoTiMA Model with the Argument
indVarying = “CINT” Created in Figure 74 and Figure 75(etal = demands; eta2 =

burnout; ctmalLCS)

Figure 76 shows that the initial means of the two latent variables, that is the mean
latent scores at Time 0, were 0.0 for both variables. The same applies to the mean of
their manifest indicators because we deal with standardized variables here.

As noted earlier, what is termed a (linear) slope in dual LCS models corre-
sponds to the continuous time intercepts in CoTiMA. The slopes/intercepts are also
0.0 for both variables because variables are standardized.

The next four lines #7 to #10 show the continuous time auto and cross effects.
Their sizes were very similar to those presented at the bottom of Figure 73, even
though the ones presented here were based on a more restrictive CoTiMA.
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Lines #11 to #14 each show the carry-over effects of latent variables over time
and their mutual influences, respectively, over a time interval of 1 (= one month).
The proportional effects represent the carry-over effects in LCS terminology, and
the autoregressions the counterpart in discrete time cross-lagged panel models.
Whereas continuous time auto effects and LCS proportional effects are typically
negative, discrete time autoregressive effects usually are positive.

Lines #15 to #18 each show the mutual influences of latent variables over time.
Like the continuous time cross effects in lines #9 and #10, the coupling effects and
cross-lagged effects were not significant either.

Prediction errors are shown next. Lines #22 to #24 display the continuous time
covariance of the innovation terms as summarized in the diffusion matrix, and lines
#22 to #24 the discrete time dynamic error covariances.

Although it is possible to separate prediction error from measurement error in
CoTiMA, this typically requires more than three time points in practice. Therefore,
the measurement error covariances matrix was fixed to 0.0 (default in CoTiMA) and
line #25 to #27 contain only zeros.

Lines #28 to #30 displays the Time 0 covariance matrix of the two latent vari-
ables. Since we deal with standardized variables, this is actually a correlation matrix.

Finally, lines #31 and #32 show the variances of the slopes in LCS parlance or
the variance of the continuous time intercepts in CoTiMA terminology, respectively.
Further, lines #33 and #34 display the covariance and correlation of the slopes/inter-
cepts of the two latent variables. Thus, this is the between-person covariance/corre-
lation of demands and exhaustion, which is positive and significant, and which has
been demonstrated in literally thousands of studies.

67



11 References

Bartos, F., & Schimmack, U. (2022). Z-curve 2.0: Estimating Replication and Discovery
Rates. Meta-Psychology, 2022, vol 6, MP.2021.2720.
https://doi.org/10.15626/MP.2021.2720

Boker, S. M., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T, . . ., & Fox, J. (2011).
OpenMx: An open source extended structural equation modeling framework. Psy-
chometrika, 76, 306-317. https://doi.org/10.1007/s11336-010-9200-6

Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2009). Introduction to
meta-analysis. John Wiley & Sons Inc.

Brunner, J., & Schimmack, U. (2020). Estimating population mean power under conditions
of heterogeneity and selection for significance. Meta-Psychology, 4, MP.2018.874,
https://doi.org/10.15626/MP.2018.874

Carpenter, B., Hoffman, M. D., Brubaker, M., Lee, D. D, Li, P., & Betancourt, M. (2015).
The Stan Math Library: Reverse-Mode Automatic Differentiation in C++. CoRR
abs/1509.07164

Childs, J. H., & Stoeber, J. (2012). Do you want me to be perfect? Two longitudinal studies
on socially prescribed perfectionism, stress and burnout in the workplace. Work &
Stress, 26, 347-364. http://dx.doi.org/10.1080/02678373.2012.737547

Dormann C., & Homberg, M. (2022). CoTiMA. GitHub repository, https://github.com/Co-
TiMA/CoTiMA

Dormann, C., & Griffin, M. A. (2015). Optimal time lags in panel studies. Psychological
Methods, 20, 489 —505. http://dx.doi.org/10.1037/met0000041

Dormann, C., Guthier, C., & Voelkle, M. (2020). CoTiMA Burnout. Retrieved from
osf.io/e92jd

Driver, C. C., Oud, J. H. L., & Voelkle, M. C. (2017). Continuous Time Structural Equation
Modeling with R Package ctsem. Journal of Statistical Software, 77(5), 1-35.
https://doi.org/10.18637/jss.v077.105

Driver, C. C., & Voelkle, M. C. (2018). Hierarchical Bayesian continuous time dynamic
modeling. Psychological Methods, 23(4), 774-799.
http://dx.doi.org/10.1037/met0000168

Guddat, C., Grouven, U., Bender, R., & Skipka, G., (2012). A note on the graphical presen-
tation of prediction intervals in random-effects meta-analyses. Systematic Reviews, 1,
1-34. https://doi.org/10.1186/2046-405

Grund, S., Liidtke, O., & Robitzsch, A. (2022). Using Synthetic Data to Improve the Repro-
ducibility of Statistical Results in Psychological Research. Psychological Methods.
Advance online publication. http://dx.doi.org/10.1037/met0000526

Guthier, C., Dormann, C., & Voelkle, M. C. (2020). Reciprocal effects between job stress-
ors and burnout: A continuous time meta-analysis of longitudinal studies. Psychologi-
cal Bulletin, 146(12), 1146-1173. https://doi.org/10.1037/bul0000304

Hamaker, E. L., Kuiper, R. M., & Grasman, R. P. P. P. (2015). A critique of the cross-
lagged panel model. Psychological Methods, 20, 102-116.
http://dx.doi.org/10.1037/a0038889

Hamaker, E. L., Asparouhov, T., Brose, A., Schmiedek, F., & Muthén, B. (2018). At the
Frontiers of Modeling Intensive Longitudinal Data: Dynamic Structural Equation

68



Models for the Affective Measurements from the COGITO Study. Multivariate Be-
havioral Research, 53, 820-841. https://doi.org/10.1080/00273171.2018.1446819

R Core Team (2020). R: A language and environment for statistical computing. R Founda-
tion for Statistical Computing. http://www.R-project.org/

Posit team (2024). RStudio: Integrated Development for R. Posit Software PBC.
http://www.posit.co/

Spearman, C. (1904). The proof and measurement of association between two things. The
American Journal of Psychology, 15(1), 72—-101. JSTOR 1412159

Stan Development Team (2020). RStan: the R interface to Stan. R package version 2.21.2.

http://mc-stan.org/

Stanley, T. D., & Doucouliagos, H. (2014). Meta-regression approximations to reduce pub-
lication selection bias. Research Synthesis Methods, 5(1), 60-78.
http://dx.doi.org/10.1002/jrsm.1095

Stanley, T. D., Carter, E. C., & Doucouliagos, H. (2018). What meta-analyses reveal about
the replicability of psychological research. Psychological Bulletin, 144(12), 1325—
1346. http://dx.doi.org/10.1037/bul0000169

Sterne, J. A., & Egger, M. (2001). Funnel plots for detecting bias in meta-analysis: Guide-
lines on choice of axis. Journal of Clinical Epidemiology, 54(10), 1046-1055.
http://dx.doi.org/10.1016/S0895-4356(01)00377-8

Venables W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S, Fourth edition.
Springer. http://www.stats.ox.ac.uk/pub/MASS4/

Voelkle, M. C., & Oud, J. H. L. (2015). Relating latent change score and continuous time
models. Structural Equation Modeling: A Multidisciplinary Journal, 22, 366-381.
DOI: 10.1080/10705511.2014.935918

Voelkle, M. C., Oud, J. H., Davidov, E., & Schmidt, P. (2012). An SEM approach to contin-
uous time modeling of panel data: Relating authoritarianism and anomia. Psychologi-
cal Methods, 17, 176-192. http://dx.doi.org/10.1037/a0027543

69



12 Appendix A: Release Notes

Functions described in this guide bevor are available via the R package CoTiMA
downloaded from CRAN. Additional functions and new arguments are continuously
developed and can be installed in the beta version from our GitHub repository (Dor-
mann & Homberg, 2022). Therefore, after the devtools R package is installed (in-
stall.packages ("devtools")), the latest version of the R package Co-
TiMA can also be installed using the code shown in Figure 77.

library (devtools)
install_github ("CoTiMA/CoTiMA")
library (CoTiMA)

Figure 77. Installing CoTiMA from GitHub
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13 Appendix B:
Overview of CoTiMA Functions and their Arguments

Argument Default Possible Explanation
Values
. . Performs fixed effect analysis, random effect analysis, and analy-
ctmaBiG (EPIC-BiG-Power) sis of publication bias (Egéer’s tests, PET-PEESEycorrections, zy-
curve analysis).
ctmaInitFit NULL CoTiMA fit-object | CoTiMA fit-object created with ctmaInit.
activeDirectory NULL character string Specifies the directory where required files are found and saved.
Should end with " /". For example, " /Users/GDC/Co~
TiMA/".
activateRPB FALSE FALSE/TRUE Messages (warning, finished fitting) could be sent to mobile
phone if set to TRUE.
digits 4 value > 0 Rounding used in output.
PETPEESEalpha .10 values between 0 Probability level (condition) below which to change from PET to
and | PEESE.
undoTimeScaling TRUE FALSE/TRUE Uses the time scale used in the Extract-Step (i.e., as defined in the
delta ti objects when TRUE).
zcurve FALSE FALSE/TRUE Performs z-curve analysis. Could fail if too few studies (e.g.,
around 10) are supplied.
dT NULL value > 0 Performs all analyses for one discrete time interval, too, using the
interval assigned to dT.
Argument Default Possible Explanation
Values

Compares the fit of two nested CoTiMA models (liberal modell

ctmaCompF it (EPIC-BiG-Power) on the left, restricted model2 on the right) via -2/ difference test.
Note that the nested structure of the two models is assumed to be

given and is not checked.
modell NULL CoTiMA fit-object | CoTiMA fit-object created with ctmaInit, ctmaFit, or
ctmaEqual.
model2 NULL CoTiMA fit-object CoTiMA fit-object created with ctmaInit, ctmaFit, or
ctmaEqual.
Argument Default Possible Explanation
Values

ctmaCorRel (EPIC-BiG-Power)

Corrects (disattenuates) correlation matrix for unreliability.

alphas NULL vector of the same
length as dimen-
sionality of emp—
cov

empcov NULL symmetric correla-
tion matrix
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Argument

Default

Possible
Values

Explanation

ctmaEmpCov (

EPIC-BiG-Power)

Changes a full correlation matrix by selecting target variables, re-
code them, combine them (add), and add rows/columns with NA
if focal variables are missing.

combineVariables c() list of (vectors of) Creates composite variables (i.e., means of one or more varia-
variable positions bles). Variables that should be combined have to be listed in a
vector. Variables that should not be combined have to be listed,
too. For example, 1ist (1, c(2, 3), 4, c(5, 6)) com-
bines the 2nd and 3rd as well as the 5th and 6th variables of emp-
covi. and leaves the 1st and 4th variable untouched. Instead of
positions, variable names could be used if they were also used in
the argument targetVariables.
CombineVariable- c() vector variable not yet operational
sNames names for com-
bined variables
empcov NULL symmetric correla- Correlation matrix reported in a primary study.
tions matrix
n.latent NULL value > 0 The number of (latent) variables. Actually, it is the number of all
variables at TO. A distinction between latent and manifest varia-
bles is not made here.
missingVariables c() vector of variable Augments empcovi and pairwiseNi by rows and columns
positions containing NA in order to create matrices of the desired dimen-
sion. For example, if the desired matrix should contain correla-
tions of the four variables xo, yo, x1 and y1, but a primary study did
not measure y1, then the 4th variable is missing and the correlation
matrix returned by ctmaEmpCov will be a4 X 4 empcovi and a
4 x4 pairwiseNi with NA in the 4th row and in the 4th col-
umn, respectively.
pairwiseN NULL symmetric matrix A matrix with sample sizes for each correlation of empcovi.
of same dimen-
sions as empcov
containing possi-
ble pairwiseN.
recodeVariables c() vector of variable Recodes desired variables in empcov i (i.e., changes the signs of
positions or varia- the correlations). For example, c (1, 4) changes the signs of the
ble names correlations in the 1st and 4th row of empcov 1. Instead of posi-
tions, variable names could be used if dimnames were assigned
to empcov i. Note that if numbers are used, they should corre-
spond to the positions in the targetVariablesi object rather
than the rows/columns in the empcov i object (i.e., recoding is
done after targetVariablesi were selected from emp—
covi).
sampleSize NULL value > 0 The sample size. It does not need to be specified if pairwiseNi
is provided instead.
targetVariables NULL vector of variable Selects desired variables in empcov 1 (i.e., deletes those variables
positions or that should not be analyzed). For example, c (1, 2, 4, 5) de-
variable names letes the 3rd and 6th row and column in a 6 x 6 empcovi. In-
stead of positions, variable names could be used if dimnames
were assigned to empcovi.
Tpoints NULL value > 1 The number of time points.
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Argument

Default

Possible
Values

Explanation

ctmaEqual (E

PIC-BiG-Power)

Statistically tests if the two or more invariant drift parameters in
the CoTiMA fit-object supplied are equal.

activateRPB

FALSE

FALSE/TRUE

Messages (warning, finished fitting) could be sent to mobile
phone if set to TRUE.

activeDirectory

NULL

path to directory

Specifies the directory where required files are found and saved.
Should end with " /™. For example, " /Users/GDC/Co-
TiMA/".

coresToUse

value >0 or <0

The number of cores (threads) to be used for fitting. If a negative
value is provided, the value is subtracted from available cores,
else the value sets the number of cores to be used.

ctmaInvariantFit

NULL

CoTiMA fit-object

CoTiMA fit-object that was returned by ctmaFit. In most cases
this is probably the fit of a model in which two effects were speci-
fied with the invariantDrift argument (e.g., two cross ef-
fects).

digits

value > 0

Rounding used in output.
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Possible

Argument Default Explanation
Values

ctmaFit (EPIC-BiG-Power) Fits a CoTiMA model.

activateRPB FALSE FALSE/TRUE Messages (warning, finished fitting) could be sent to mobile

phone if set to TRUE.
activeDirectory NULL path to directory Specifies the directory where required files are found and saved.
Should end with " /". For example, " /Users/GDC/Co~
TiMA/".
allInvModel FALSE FALSE/TRUE Whether or not a model should be tested in which all (!) parame-
ters are assumed to be invariant across primary studies. If set to
TRUE, other specifications (e.g., specified with the equalDrift
argument) will be ignored. An all-invariant model is also used by
ctmaPower.
binaries NULL vector consisting Experimental argument. The vector of 0 (for continuous) and 1
of 0and 1 (for dichotomous) defines the scale of manifest variables. May re-
quire many (e.g., > 30) time points for valid results.
catsToCompare NULL vector of cate- This argument is the 2nd out of 3 used to specify contrast among

gories' values that categorical moderators. Compared to an unconstrained moderator

should be com- model, the effects of the categories of the vector specified are set

pared equal. This will reduce the fit (i.e., increase the -2// value), which
can be used for comparing it with the unconstrained model. A sig-
nificant difference indicates that the categories' effects are not
equal. For example, catsToCompare = c (2, 3) setsthe
drift effects (see below) for categories 2 and 3 equal. Note that the
smallest category selected will become the new comparison cate-
gory (instead of the lowest of all category numbers) and the out-
put will be labelled accordingly.

chains NULL value > 0 and < The chains argument is passed to ctStanFit and defines the

=2) available cores number of chains to be used for Bayesian estimation.

CINT 0 string vector of Usually, CoTiMA assumes that standardized variables (correla-
names of means of tions) are analyzed, which should result in estimates of mani-
continuous time festMeans (and TOmean) to be 0.0. To facilitate convergence,
intercepts these parameters are set to 0.0 by default. They can be set free by

providing names. Note that this is automatically done if
indvVarying = "CINT" is specified.

cluster NULL vector of same Vector with cluster variables (e.g., countries), e.g.,c (1, 1, 1,
length as number 3, 3, 6, 7, 8).Hastobe setup carefully. Will be included
of primary studies in ctmaPrep in later developmental stages of the CoTIMA

package.

coresToUse 2 value >0 or <0 The number of cores (threads) to be used for fitting. If a negative

value is provided, the value is subtracted from available cores,
else the value sets the number of cores to be used.

CoTiMAStanctArgs NULL list of further fit- All fitting parameters that are allowed in ct StanFit can be
ting parameters specified here, too.

ctmalnitFit NULL CoTiMA fit-object Object to which all single ctsem fits of primary studies has been

assigned to (i.e., what has been returned by ctmaInit).
customPar FALSE FALSE/TRUE If set to TRUE some starting values usually used by ctStanFit

will be used by CoTiMA specific settings. Not recommended to

be used in combination with Bayesian estimation. It was intro-

duced to improve handling of large values used in delta ti.

Setting it to FALSE and use scaleTime instead could be a bet-

ter alternative if estimation problems will nevertheless occur.
digits 4 value > 0 Rounding used in output.

drift NULL vector (1) of row- Labels for drift effects that should or should not be included.

(=all) wise drift matrix Have to be either of the type VItoV2 or 0 for effects to be ex-

elements

cluded, which is usually not recommended, e.g., c ("V1toV1l",
"vV2tovl", 0, "V2tov2").
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.. continued

driftsToCompare

NULL

string vector of
drift names

This argument is the 3rd out of 3 used to specify contrasts among
categorical moderators. The strings in the vector define which
drift effects is analyzed for possible differences among categories
of the moderator(s). For example, driftsToCompare =
c("V1tov2") together with catsToCompare = c (2,

3) and modsToCompare = 2 fits a model in which the effect
of category 2 and 3 on the drift parameter V/to¥2 of the second
moderator is set equal.

equalDrift

NULL

vector of 0 or 2 or
more drift effects

Labels for drift effects that should be set equal. Have to be of the
type VitoV2,e.g., c("V2toVl", "V1toV2"). Constrains all
listed effects to be equal (e.g., equalDrift =

c("V1tov2", "V2toV1")). Note that this is not required for
testing the assumption that two effects are equal in the population.
Use the invariantDrift argument and then ctmaEqual to
fit second model.

finishsamples

NULL
(=1000)

values > 0

The finishsamples argument is passed to ctStanFit. It
specifies the number of samples to draw for final results computa-
tion. Larger (e.g., 10.000) values make results more exactly repli-
cable. Larger values are recommended before manuscripts are
submitted. Very large values (e.g., 100.000) might be helpful if
very small effects (e.g., 0.0002) result from estimation.

fit

TRUE

FALSE/TRUE

If set to FALSE only compiled data frame and ctsem model is re-
turned. Useful for customizing ctsem model.

ind.mod.names

NULL

string vector of
names

Vector of names for individual level (!) moderators used in out-
put. Can only be used with primary studies providing raw data.

Individual level moderators are usually provided as last columns
in raw data files, and this is the specified in rawDatai objects

by adding the number of individual level moderators, e.. g
rawbData2 <- list(fileName = paste0(activeDirectory, "raw
Data2.txt"), studyNumbers = 6, missingValues = c(-99), standardize
= TRUE, header = TRUE, dec = ".", sep = " ", n.ind.mod = 2)

However, individual level moderators can also be added later to
existing fit-objects created with ctmaInit. In the following ex-
ample, raw data are extracted from an existing fit-object created
with ctmaInit, then the mean of all time intervals per individ-
ual is computed, which is then added to a copy of the fit-object
created with ctmaInit and saved. Time interval length as
study-level of individual-level moderator could indicate that qual-
itatively different processes are captured by different sets of dis-

crete time points.

CoTiMAINitFit <- readRDS(paste0 (activeDirectory.
“CoTiMAInitFit.rds”))

ind.mod.List <- list()

for (i in 1: length1CoTlMAInltFltSstudyFltLlst))

wide <- CoTiMAInitFit$studyFitList([[i]]$empraw

dtCols <- grep(“dI”, colnames (wi; u))

naPos <- which(wide[ ,dtCols] <= .001, arr.ind = TRUE
wide[,dtCols] [naPos] <- NA # replace missing (coded as <.001) by
NA

ind.mod.List[[i]] <- data.frame(matrix(NA, ncol = 1, nrow =

nrow (wide)))

colnames (ind. mod List[[i]]) <- “TI

ind.mod.List[[1]]$TI1 <- c(apply(as.matrix(wide[, dtCols], nrow =
nrow (wide)), 1, mean, na.rm = TRUE)

i

COTiMAINitFit_iml <- COTiMAINitFit
CoTiMAINitFit_iml$ind.mod.List <- ind.mod.List

saveRDS (CoTiMAInitFit_iml, paste0(activeDirectory.

“CoTiMAInitFit iml.rds”))

ind.mod.number

NULL

vector of positions
of moderators

‘Which moderator (in the vector of individual level (!) moderators)
shall be used (e.g., 2 for a single moderator or 1:3 for 3 modera-
tors simultaneously). Can only be used with primary studies

providing raw data.
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ind.mod. type "CONT" "cont" or "cont" or "cat" of the individual level (!) moderators (mixing
"cat" them in a single model not yet possible). Can only be used with
primary studies providing raw data.
indVarying FALSE FALSE/TRUE/ Specifies a restricted random intercept (RI) model, however, with-
"CINT" out allowing the variance of the intercepts to vary between studies
(see argument randomIntercepts). RI models could be spec-
ified using individually varying ct intercepts (indVarying =
"CINT") or individually varying manifests (indvVarying ==
TRUE). In case n-manifest = n.latent, both models are
algebraically identical. However, numerically, models with indi-
vidually varying manifests are easier to fit. Note that random in-
tercept models are referred to as fixed effect models in the econo-
metric literature. Is set to FALSE if the argument randomIn-—
tercepts is provided.
indVaryingTO NULL FALSE/TRUE Deprecated
inits NULL vector of raw inits Typical use is to provide raw parameter estimates of a previous fit
(of an identical model). Could ensure replicability of results and
reduces computation time. Raw estimates could be extracted from
previous fit stored in, e.g., previousFit, by
inits <- previousFit$studyFitList$stanfit$rawest
invariantDrift NULL vector of drift ef- Labels for drift effects that should be aggregated. Have to be of
(=all) fects or "none" the type VitoV2,e.g.,c ("V2toVl").
iter NULL values > 0 The iter argument is passed to ctStanFit. It specifies the
(= 1000) number of iterations used for Bayesian estimation, half of which
will be devoted to warmup.
lambda NULL n.latent x Matrix with pattern of fixed (= 1) or free (any string) loadings.
(= iden- n.manifest
tity ma- matrix
trix)
manifestMeans 0 string vector of Usually, CoTiMA assumes that standardized variables (correla-
names of means of tions) are analyzed, which should result in estimates of mani-
manifest variables festMeans (and TOmean) to be 0.0. To facilitate convergence,
these parameters are set to 0.0 by default. They can be set free by
providing names. Note that this is automatically done if
indvarying = TRUE is specified. When many waves of data
exist, it could be possible to separate latent means from manifest
means by setting either of them free.
manifestVars 0 Oorn.mani- Lower triangular matrix with error(co-)variances of manifest indi-

fest Xn.man-
ifest matrix
with values or
strings

cators. Usually, CoTiMA assumes that a single indicator is used
per latent. This typically requires assuming error variances to be
0.0 if only few waves are available. Alternatively, they can be as-
signed a particular value, e.g., 1- Cronbach's alpha. In cases where
many waves of observation are available, the error variance of
single manifest indicators can be estimated, too. This is achieved
by assigning labels.
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mod.names NULL (vector of) charac- Names used to label moderators in the output.
ter object(s)
mod.number NULL vector of positions The position(s) of the moderator(s) in the vector of moderator val-
of moderators ues compiled with ctmaPrep, which should be used in a moder-
ated CoTiMA, e.g., c (1, 3).
mod. type "cont" "cont" or Type of moderator(s). Categorical and continuous moderators
"cat" could not be used in combination, but more than one continuous
or more than one categorical moderator is possible.
moderatedDrift NULL vector of drift ef- Labels for drift effects that should be moderated. Have to be of
(=all) fects the type VitoV2, e.g., c ("V2tov1"). Is only used if moderators
are specified.
modsToCompare NULL vector of positions This argument is the Ist out of 3 used to specify contrast among
of selected (!) categorical moderators. The values define the position(s) of the
moderators moderator(s) in the vector of moderator values selected with the
mod. number argument (see above). For example, if mod . num-
ber = c(1, 4, 6) wasspecified before, nodsToCompare
= 2 specifies that subsequent contrasts will be performed for the
moderator at the 4th position of the moderator(s) in the vector of
moderator values compiled with ctmaPrep.
nopriors TRUE FALSE/TRUE Deprecated
optimize TRUE FALSE/TRUE The optimize argument is passed to ctStanFit. If FALSE,
Bayesian estimations is used. The chosen sampler is conditional
on the priors argument. Note that this works differently than
the optimise argument of ctStanFit.
primaryStudyList NULL list of primary A list of primary studies compiled with ctmaPrep that contains
studies a subset of studies included in ctmaInit. Useful to exclude
studies without the need to use ctmaInit again.
priors FALSE FALSE/TRUE Replaces previously used and now deprecated nopriors argu-
ment. Consequences of TRUE or FALSE are conditional on the
optimize argument. optimize = TRUE & priors =
FALSE implies maximum likelihood estimation, optimize =
TRUE & priors = TRUE implies maximum a posteriori esti-
mation, optimize = FALSE & priors = TRUE implies
Bayesian estimation using NUTS (No U-Turn Sampler).
randomIntercepts FALSE FALSE/TRUE/ Implements an unrestricted random intercepts model where either
"MANIFEST" the intercepts (TRUE) or the manifest indicator* ("MANIFEST")
vary within and between primary studies. Sometimes difficult to
fit. It requires that all (!) primary studies have 3 or more waves!
sameInitialTimes FALSE FALSE/TRUE Useful argument when raw data are used. When set to FALSE

(default), all initial times points with fully missing data are elimi-
nated from raw data frames, which is prevented when set to
TRUE. Could be useful when it is desired to interpret continuous
time intercepts as growth factors with the same initial starting

point (e.g., school enrolment).
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scaleClus

TRUE

FALSE/TRUE

The argument scaleClus = TRUE leads to centering of
dummy variables representing different clusters.

If the argument scaleClus = FALSE is used, the resulting
drift effects are those for the reference cluster. The reference clus-
ter either is a cluster that consists of all cluster values that are
unique (see main text for explanation) or the cluster with the larg-
est number.

If the argument scaleClus = TRUE is used, the internally cre-
ated dummy variables are centered (but not standardized). The re-
sulting drift effects are no longer those for the reference cluster.
Rather, they represent the average effect across all studies and all
clusters. The effect of the centered cluster dummies now repre-
sents the mean difference between studies belonging to a particu-
lar cluster and all other studies. Since one is usually interested in
both the size of a drift effect for a particular cluster, we recom-
mend not centering the dummy variables representing clusters
(i.e., the argument scaleClus = FALSE should be used).

scaleMod

TRUE

FALSE/TRUE

Whether or not continuous moderators should be standardized or
categorical moderators should be centered. Recommended for
continuous moderators.

With categorical moderators, the argument scaleMod = TRUE
leads to centering rather than standardization, which requires
some explanation. Categorical moderators are internally trans-
formed into dummy variables. The smallest category value repre-
sents the reference category. For instance, if 1 & 2 are unused, 3
is <19 yrs old, 4 = 19-60 yrs, 5 = all ages mixed, two dummy var-
iables are created. Dummy 1 is 1 if a primary study included peo-
ple aged 19-60 only, and Dummy 1 is 0 in all other cases. Dummy
2 is 1 if a primary study included people with ages mixed, and
dummy 2 is 0 in all other cases.

If the argument scaleMod = FALSE is used in combination
with categorical moderators, the resulting drift effects are those
for the reference category, that is, for studies including people <
19 yrs only. The effect of Dummy 1 the represents the changes
that result if a study includes people aged 19-60 rather than < 19
yrs. If this effect is significant, the interpretation is that the effect
is significantly different compared to the effect found in studies
using people < 19 yrs only. Correspondingly, the effect of
Dummy 2 the represents the changes that result if a study includes
people with all ages mixed rather than < 19 yrs.

If the argument scaleMod = TRUE is used in combination
with categorical moderators, the internally created dummy varia-
bles are centered (but not standardized; see the argument trans—
fMod to circumvent this default behavior and standardize them
anyway). The resulting drift effects are no longer those for the ref-
erence category. Rather, they represent the average effect across
all studies and all moderator categories. The effect of the centered
Dummy 1 now represents the mean difference between studies in-
cluding people aged 19-60 and all other studies. If the effect of
Dummy 1 is significant, its interpretation is that this category has
a significantly different effect compared to all other categories. It
does, however, no longer inform about the sizes of the drift effects
resulting for this category.

Since one is usually interested in both the size of a drift effect for
a particular category and if it is significantly different, we recom-
mend not centering the dummy variables representing categorical
moderators (i.e., the argument scaleMod = FALSE should be
used). See the argument catsToCompare to analyzed differ-
ence between categories anyway.
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scaleTI

TRUE

FALSE/TRUE

With the move from the omx (OpenMX) version of ctsem to the
stanct (stan) version, CoTiMA moved from fitting a multi group
model to a model in which the groups are represented by dummy
variables. These are internally handled as time independent (TT)
predictors, and scaleTI specifies whether or not these dummy
variables should be standardized. Recommended since version
0.5.3.1 and set to TRUE. Note that standardizing dummies for pri-
mary studies does not affect estimation of aggregated effects.
However, without standardization the study-specific effects (in
which meta-analysist are usually not interested in) cannot be inter-
preted as within-study effects.

scaleTime

NULL
(=FALSE)

value > 0

This argument can facilitate model convergence. It internally
changes the time scale assigned to delta_ti. For example,
scaleTime = 1/12 could change the time scale from months
to years. It is usually recommended to avoid delta_ti larger
than 6.

transfMod

NULL

character vector
applying R func-
tions to X

Can be used as a replacement of scaleMod if more than one
moderator is analyzed and standardization is not desired for all
moderators. Then, it could take the form

transfMod = c("scale(x)", "x", "scale(x)").
Alternatively, users can define their own functions, e.g.,
transfMod= (" (x - mean(x))");

this function centralizes a single moderator without standardiza-
tion. Another example is

transfMod=("scale (x) - min(x)"),

which standardizes x and then shift values to a scale beginning
with 0.0. This yields the (unmoderated) drift effects for the refer-
ence group with them smallest moderator value.

TOmeans

string vector of
names of means of
TO latent variable

Usually, CoTiMA assumes that standardized variables (correla-
tions) are analyzed, which should result in estimates of TOmean
(and manifestMeans) to be 0.0. To facilitate convergence,
these parameters are set to 0.0 by default. They can be set free by
providing names. Note that this is automatically done if
indvVarying = TRUE is specified.

TOvar

"auto"

NULL/"auto"/
lower triangular
matrix

Could be used to specify the Time 0 covariance matrix by setting
certain elements free or fixing them to particular values. Usually
not recommended.

useSampleFraction

NULL

value <1

To speed up debugging. Provided as fraction (e.g., 1/10).

verbose

0,1,0r2

The verbose argument is passed to ct StanFit. Higher values
print more information during model fit.

WEC

FALSE

FALSE/TRUE

Required if it is intended to estimate the reduction in heterogene-
ity of effects achieved by introducing study-level moderators.
‘When set to TRUE, weighted effect coding of the TIpreds repre-
senting the dummies of the primary studies is applied. Returns
drift matrices for all primary studies. Should be used once in con-
junction with the argument scaleTI = FALSE, and in a sec-
ond fit with scaleTI = FALSE plus additional moderators.
The two returned fit-objects then serve as input for the
ctmaRedHet function. The first of these two models mimics the
ctmaInit function and, like ctmaInit, provides estimates for
all primary studies. Fitting this model requires a rather complex
internal model setup, and it is therefore highly recommended to
compare the estimates with those provided by ctmaInit. When
there are large differences in estimates and the -2// value returned
by ctmaInit is smaller than the -2// value returned by
ctmaFit with WEC = TRUE, the latter results cannot really be
trusted.
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Argument Default Explanation
£ Values P
ctmaFitList ( plott 1 ng) Informs the plot function that more than a single CoTiMA fit-ob-
ject should be plotted.

CoTiMA fit- Everything provided as argument within () will be put into a list
objects separated because the plotting function requires list as arguments. For ex-
by commas ample, ctmaFitList (objectl, object2).
Possible Val- .

Argument Default Les Explanation

ctmaGetPub (

Retrieves publication and citation indices for authors from Google
Scholar, which could be further processed with ctmaPub.

authorList

NULL

List of vectors
with 2 elements

Contains information about authors' names and their Google
Scholar https address (or their user ID), e.g.,

list( c("Wilmar B.; Schaufeli",
"https://scholar.
google.de/citations?hl=en&user =
wltHcj4AAAAJ"), c("Maureen; Dollard", "user
= J60H3rgAAAAJ") ) ).

Authors' surnames are separated from given names or initials by a
semicolon!

flush

FALSE

FALSE/TRUE

Argument is handed over to scholar R package. If set to TRUE,
the cache will be cleared, and the data reloaded from Google
Scholar. Google Scholar will limit the retrieval of information or
even suspend it for a while if the cache is flushed too frequently.

yearsToExclude

NULL

(vector of) years to
exclude

Recommended to leave as NULL. Years could be excluded later

when using ctmaPub.
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Values

ctmalInit (EPIC-BiG-Power) Fits a ctsem model to a list of primary studies prepared by

ctmaPrep.

activateRPB FALSE FALSE/TRUE Messages (warning, finished fitting) could be sent to mobile

phone if set to TRUE.

activeDirectory NULL character string Specifies the directory where required files are found and saved.

Should end with " /". For example, " /Users/GDC/Co~
TiMA/".
chains NULL values > 0 The chains argument is passed to ct StanFit and specifies
(=2) the number of chains to be used for Bayesian estimation.
checkSingle TRUE FALSE/TRUE If set to TRUE, displays estimates from single study ctsem models

StudyResults and waits for user input to continue. Useful to check estimates be-

fore they are saved.

CINT 0 string vector of Usually, CoTiMA assumes that standardized variables (correla-
names of means of tions) are analyzed, which should result in estimates of mani-
continuous time festMeans (and TOmean) to be 0.0. To facilitate convergence,
intercepts these parameters are set to 0.0 by default. They can be set free by

providing names. Note that this is automatically done if
indvarying = "CINT" is specified.

coresToUse 2 value>0or<0 The number of cores (threads) to be used for fitting. If a negative

value is provided, the value is subtracted from available cores,
else the value sets the number of cores to be used.

CoTiMAStanctArgs NULL list of further fit- All fitting parameters that are allowed in ct StanFit can be
ting parameters specified here, too.

customPar FALSE FALSE/TRUE If set to TRUE some starting values usually used by ctStanFit

will be used by CoTiMA specific settings. Not recommended to
be used in combination with Bayesian estimation. It was intro-
duced to improve handling of large values used in delta ti.
Setting it to FALSE and use scaleTime instead could be a bet-
ter alternative if estimation problems will nevertheless occur.
diff NULL string vector of Labels for diffusion effects. Have to be either of the character

names of diffu- strings of the type "diff etal" or "diff eta2 etal" (=

sions freely estimated) or values (e.g., 0 for effects to be excluded,
which is usually not recommended).

digits 4 value > 0 Rounding used in output.

doPar 1 integer value > 0 Deprecated.

drift NULL vector (1) of row- Labels for drift effects that should or should not be included.

(=all) wise drift matrix Have to be either of the type V1to¥2 or 0 for effects to be ex-
elements cluded, which is usually not recommended, e.g., c ("V1toVl",
"V2tovl", 0, "V2tov2").
experimental FALSE FALSE/TRUE
finishsamples NULL values > 0 The finishsamples argument is passed to ctStanFit. It
(= 1000) defines the number of samples to draw for computation of final
results. Larger (e.g., 10.000) values make results more exactly
replicable. Larger values are recommended before manuscripts
are submitted. Very large values (e.g., 100.000) might be helpful
if very small effects (e.g., 0.0002) result from estimation.
fit TRUE FALSE/TRUE ‘When set to FALSE, ctmaInit does not fit the data to the
model and returns the data and the ctsem model only, which could
be used to make desired adaptations before using ctStanFit.
indvarying FALSE FALSE/TRUE Specifies a random intercept RI model. Works only if all primary

studies have 3 or more waves and no missing values (i.e., varia-
bles) exist! Note that contrary to ctmaFit indVarying =

"CINT" is identical to randomIntercepts = TRUE, and
indVarying = TRUE is identical to randomIntercepts

= "MANIFEST".
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ctmaInit (EPIC-BiG-Power) . continued
indVaryingTO TRUE FALSE/TRUE Deprecated.
iter NULL values > 0 The iter argument is passed to ctStanFit. It specifies the
(= 1000) number of iterations used for Bayesian estimation, half of which
will be devoted to warmup.
lambda NULL n.latent x Matrix with pattern of fixed (= 1) or free (any string) loadings.
(= iden- n.manifest
tity ma- matrix
trix)
loadSingleStudy c() string vector with Load the fit of single study ctsem models, e.g.,
ModelFit filename followed loadSingleStudyModelFit = c("myModel", 1, 4,
by the numbers of 5, 6:100).
studies for which This is useful, e.g., if primary studies are added to the pool of pri-
the fit is saved mary studies. Only the added studies will be fitted, the previously
fitted models are loaded, and all is then stored in the fit-object cre-
ated with ctmaInit.
manifestMeans 0 string vector of Usually, CoTiMA assumes that standardized variables (correla-
names of means of tions) are analyzed, which should result in estimates of mani-
TO latent variables festMeans (and TOmean) to be 0.0. To facilitate convergence,
these parameters are set to 0.0 by default. They can be set free by
providing names. Note that this is automatically done if
indvVarying = TRUE is specified.
manifestVars NULL Oorn.mani- Lower triangular matrix with error(co-)variances of manifest indi-
fest X n.man- cators. Usually, CoTiMA assumes that a single indicator is used
i fest matrix per latent. This typically requires assuming error variances to be
with values or 0.0. Alternatively, they can be assigned a particular value, e.g., 1-
strings Cronbach's alpha. In cases where many waves of observation are
available, the error variance of single manifest indicators could be
estimated, too. This is achieved by assigning labels.
n.latent NULL value > 0 Number of latent variables.
n.manifest 0 value > Number of manifest variables.
(=nla- n.latent
tent)
optimize TRUE FALSE/TRUE The optimize argument is passed to ctStanFit. If FALSE,
Bayesian estimations is used. The chosen sampler is conditional
on the priors argument. Note that this works differently than
the optimise argument of ctStanFit.
primaryStudies NULL list A list created with ctmaPrep that contains all information (e.g.,
empcovi,delta_ti, sampleSizei etc.) relevant for
ctmaInit and subsequent analyses.
priors FALSE FALSE/TRUE Replaces previously used and now deprecated nopriors argu-

ment. Consequences of TRUE or FALSE are conditional on the
optimize argument. optimize = TRUE & priors =
FALSE implies maximum likelihood estimation, optimize =
TRUE & priors = TRUE implies maximum a posteriori esti-
mation, optimize = FALSE & priors = TRUE implies

Bayesian estimation using NUTS (No U-Turn Sampler)..
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ctmaInit (EPIC-BiG-Power) . continued
randomIntercepts FALSE FALSE/TRUE Specifies a random intercept RI model. Works only if all primary

studies have 3 or more waves without missing values (i.e., varia-
bles) exist! Note that contrary to ctmaFit, indVarying =
"CINT" isidentical to randomIntercepts = TRUE,and
indVarying = TRUE is identical to randomIntercepts

= "MANIFEST". The difference between the arguments ran-
domIntercepts and indVarying is the internal model setup
(as processes vs. intercepts), which should yield identical fit.
However, sometimes one of the two models is numerically easier
to fit, and the fit with the smaller -2// value should be preferred.

saveRawData list () list A list with required information to save generated pseudo raw
data. Might be useful for methodological research questions. For
example:

list ("saveRawData$studyNumbers = c(1: 20),
"saveRawData$fileName" = "pseudoRaw",
"saveRawData$row.names FALSE,
"saveRawData$col.names"
"saveRawDataS$Ssep"
"saveRawData$dec" = ".")

sameInitialTimes FALSE FALSE/TRUE Useful argument when raw data are used. When set to FALSE
(default), all initial times points with fully missing data are elimi-
nated from raw data frames, which is prevented when set to
TRUE. Could be useful when it is desired to interpret continuous
time intercepts as growth factors with the same initial starting
point (e.g., school enrolment).

saveSingleStudy c() vector with file- Save the fit of single study ctsem models (could save a lot of time
ModelFit name followed by afterwards if the fit is loaded, e.g.,
the numbers of saveSingleStudyModelFit = c("myModel", 1, 4,
studies for which 5, 6:100)
the fit is saved
scaleTI NULL FALSE/TRUE ‘Whether or not the to standardize the TI predictors that represent
(= TRUE) the primary study dummies.
scaleTime NULL value > 0 Whether or not the time scale used for delta_ti should be
(= FALSE) changed. For example, scaleTime = 1/12 could change the

time scale from months to years. It is usually recommended to
avoid delta ti larger than 6.

silentOverwrite FALSE FALSE/TRUE ‘Whether or not to prompt user preventing undesired overwriting
of existing single study fit files (requested via saveSingleS-
tudyModelFit).

TOmeans 0 string vector of Usually, CoTiMA assumes that standardized variables (correla-

names of means of tions) are analyzed, which should result in estimates of TOmean
TO latent variables (and manifestMeans) to be 0.0. To facilitate convergence,
these parameters are set to 0.0 by default. They can be set free by

providing names.

TOvar "auto" Oorn.mani- Could be used to specify the Time 0 covariance matrix by setting
fest X n.man- certain elements free or fixing them to particular values. Usually
ifest matrix not recommended.
with values or
strings

useSV FALSE FALSE/TRUE If set to TRUE provided starting values will be used.

verbose 0 0,1,0r2 The verbose argument is passed to ct StanFit. Higher values

print more information during model fit.
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Argument

Default

Possible
Values

Explanation

ctmaLCS (-)

Takes a CoTiMA fit-object or CTSEM fit and transforms estimates
into those estimates typically reported when fitting (dual) latent
change score (LCS) models. The fit-object has to include random in-
tercepts (either randomly varying ct intercepts obtained with
indvarying = "CINT" or with or randomly varying manifest
means obtained with indVarying = TRUE). The function could
also be used to transform estimates produced with indvarying =
TRUE into estimates that would be obtained with indVarying =
"CINT".

CoTiMAFit

NULL

CoTiMA fit-object
(or ctsem fit ob-
ject)

Object to which all CoTiMA fit-object has been assigned to (i.e.,
what has been returned by ctmaFit). The ctmaLCS function also

takes fit-objects delivered by CTSEM.

undoTimeScaling

TRUE

FALSE/TRUE
or any value

Undoes possible time scaling achieve in ctmaInit or ctmaFit
by setting the argument scaleTime. When a number is provided
instead of a logical argument, the number is used to multiply the ob-
tained effects (e.g., when time is scaled in days in a study, and
scaleTime = 30.5 is used, the returned effect corresponds to
1-month intervals).

activateRPB

FALSE

FALSE/TRUE

Messages (warning, finished fitting) could be sent to mobile phone
if set to TRUE.

digits

integer value > -1

Rounding used in output.
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Argument

Default

Possible
Values

Explanation

ctmaOptimizeFit
(EPIC-BiG-Power)

Repeated initial fitting (i.e., applies ctmaInit) to a primary
study or repeated full fitting (i.e., applies ctmaFit) several
times to capitalize on chance for obtaining a hard-to-find optimal
fit. Certain fitting parameters can be specified to randomly vary
across fitting attempts.

activateRPB

FALSE

FALSE/TRUE

Messages (warning, finished fitting) could be sent to mobile
phone if set to TRUE.

activeDirectory

NULL

character string

Specifies the directory where required files are found and saved.
Should end with " /". For example, " /Users/GDC/Co~
TiMA/".

coresToUse

value >0 or <0

The number of cores (threads) to be used for fitting. If a negative
value is provided, the value is subtracted from available cores,
else the value sets the number of cores to be used.

CoTiMAStanctArgs

NULL

list of further fit-
ting parameters

Al fitting parameters that are allowed in ctStanFit can be
specified here, too.

ctmaFitFit

NULL

CoTiMA fit-object
created with
ctmaFit

The CoTiMA Full fit-object of which the fit should be improved.

ctmaInitFit

NULL

CoTiMA fit-object
created with
ctmalnit

The CoTiMA Init fit-object that was used when creating the Co-
TiMA Full fit-object.

customPar

NULL

FALSE/TRUE

If set to TRUE some starting values usually used by ctStanFit
will be used by CoTiMA specific settings. Not recommended to
be used in combination with Bayesian estimation. It was intro-
duced to improve handling of large values used in delta ti.
Setting it to FALSE and use scaleTime instead could be a bet-
ter alternative if estimation problems will nevertheless occur.

finishsamples

NULL
(=1000)

values > 0

The finishsamples argument is passed to ctStanFit. It
specifies the number of samples to draw for final results computa-
tion. Larger (e.g., 10.000) values make results more exactly repli-
cable. Larger values are recommended before manuscripts are
submitted. Very large values (e.g., 100.000) might be helpful if
very small effects (e.g., 0.0002) result from estimation.

iter

5000

values >0

Number of iterations allowed.

primaryStudies

NULL

list()

A list created with ctmaPrep that contains all information (e.g.,
empcovi,delta ti, sampleSizei etc.). Relevant for
ctmaInit only. In a typical workflow, one would create new
list with ctmaPrep that only contains the primary studies that
were previously identified to yield improper fits.

problemStudy

NULL

value > 0

Number of the study (not the position) in the primaryStudies list
that should be re-fitted.

randomPar

FALSE

FALSE/TRUE

If set to TRUE, it overrides the customPar argument used to
create the CoTiMA Full fit-object. Instead, customPar varies
randomly between TRUE and FALSE during the number of fit at-
tempts specified with reFits.

randomScaleTI

FALSE

FALSE/TRUE

If set to TRUE, randomly varies randomly between TRUE and
FALSE for scaling the time independent predictors (TIpreds) rep-
resenting primary studies. Only relevant if ctmaOptimizeFit
is used to re-fit primary studies (i.e., when poor fit was obtained
with ctmaFit).

randomScaleTime

c(l,1)

a pair of positive
values

From a uniform distribution within the provided lower and upper
limits a value (rounded to 2 decimals) is drawn for each refit at-
tempt.

reFits

NULL

value > 0

How many reFits should be done.

saveModelFits

FALSE

FALSE/TRUE

Saves each fitted model into the activeDirectory using the name
"saveModelFitsi.rds", with i representing the number of
the current fit attempt. Could be useful if out-of-range estimates
interrupt the re fit attempts.

scaleTI

TRUE

FALSE/TRUE

Scales the dummy coded (0, 1) time independent predictors (TI-
preds) representing the k — 1 primary study. May help to achieve

improved model convergence and better model fit.

Table continues ...
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Possible .
Argument Default Explanation
Values
ctmaOptimizeFit
(EPIC-BiG-Power) - continued
shuffleStudyList FALSE FALSE/TRUE Usually, the last primary study in the primaryStudyList is
the reference study, for which no dummy variable exists. Some-
times, changing the reference study makes fitting easier, and the
argument shuffleStudyList randomly shuffles the order of
the primary studies (and save the current order in the returned fit
file for replication).
verbose 0 0,1,0r2 The verbose argument is passed to ct StanFit. Higher values

print more information during model fit.
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Argument Default Possible Explanation
Values

ctmaPlotCtsemMod (-) Auxiliary function to plot moderator effects estimated with the
ctsem package using ctStanFit.

ctStanFitObject NULL CTSEM Fit-object created with ctStanFit, in which a single moderator

(ctStanFit) fit- (= time independent predictor; TIpred) moderates drift effects.
object

fitSummary NULL Summary object Object containing the summary of the fit-object. Saves time by

of CTSEM preventing repeatedly applying the summary function on the fit-
(ctStanFit) fit- object.
object

activeDirectory NULL path to directory Specifies the directory where required files are found and saved.
Should end with " /™. For example, " /Users/GDC/Co-
TiMA/".

TIpred.pos 1 values > 0 The time-independent predictor (TIpred) that represents the mod-
erator. Could be more than one in case dummy variables made
from of categorical moderators (e.g., TIpred.pos =
c(3,4)).

saveFilePrefix "Mod- character string Prefix used for saving plots.

erator
Plot "

scaleTime 1 value > 0 Factor to increase or decrease the time scale (e.g., 1/12 if esti-
mates were based on yearly intervals and figure should show
monthly intervals).

mod.sd.to.plot -1:1 vector The standard deviation values of the moderator, for which the
drift effects are plotted. The argument is ignored if the moderator
is represented by dummy variables made from a categorical varia-
ble.

digits 4 value > 0 Rounding used in output.

timeUnit "not character string Label for the x-axis.

speci-
fied"

timeRange NULL vector with 3 val- The range across which discrete time effects are plotted, e.g.,

ues: ¢(xMin, c (10, 20, .01) would plot effects from 10 units of time to
xMax, stepwidth) 20 using steps of .01. Note that a stepwidth < 1 could be specified
to obtain more fine-grained figures.

yLimitsFor values vector with 2 val- The min and max values for the y-axis. Setting explicit values

Effects slightly ues: ¢(yMin, could be better than relying on the automatically determined

exceeding yMax) range, for example, to ensure identical y-axis across a larger set of
min and plots.
max em-
pirical ef-
fect sizes
mod. type "cont" "cont" or The type of moderator.
"cat"

no.mod.cats NULL value > 0 Need to be specified if type = "cat". The number of catego-
ries should usually be equal the number of dummy variables used
to represent the categorical moderator + 1.

n.x.labels NULL value > 0 How many values to be used for indicating time points on the x-
axis (0 is automatically added and should not be counted).

plot TRUE FALSE/TRUE Plots figures if set to TRUE (default) otherwise only return moder-
ated drift matrices.

plot.xMin value = 0 Smallest x value (time interval) to plot.

plot.xMax value > 0 Largest x value (time interval) to plot.

plot.yMin value Smallest y value (cross effect) to plot.

plot.yMax value Largest y value (cross effect) to plot.

plot..type Any letter that can Two dots (..) should be used. Points, lines, both etc.

be used to repre-
sent the type of
plot in R

plot.lty 1 Any letter that can solid, dotted, dashed etc. lines.

be used to repre-
sent the type of
lines in R

Table continues ...
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Argument

Default

Possible
Values

Explanation

ctmaPlotCtse

mMod (-

)

... continued

plot.col

Tgrey"

Any color names
or color number
that can be used to
represent the type
of lines in R

Line color.

plot.lwd

1.5

value > 0

Line width.

dot.plot.

type

I

Any letter that can
be used to repre-
sent the type of
plot in R

Sets the type of symbol used to show the moderator values along
their trajectories.

.plot.

col

"black"

Any color names
or color number
that can be used to
represent the type
of lines in R

Sets the color of the symbol used to show the moderator values.

.plot.

lwd

value > 0

Sets the size of the symbol used to show the moderator values.

.plot.

1ty

Any letter that can
be used to repre-
sent the type of
lines in R

solid, dotted, dashed etc. lines.

.plot.

pch

16

Any integer that
can be used to rep-
resent the type of
lines in R

Sets the shape of the symbol used to show the moderator values.

.plot.

cex

value > 0

Magnifier for the symbol used to show the moderator values.
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Argument

Default

Possible
Values

Explanation

ctmaPower (E

PIC-BiG-Power)

Performs analysis of post hoc statistical power and required sam-
ple sizes to achieve a desired level of statistical power.

ctmaInitFit

NULL

CoTiMA fit-object

Object to which all single ctsem fits of primary studies has been
assigned to (i.e., what has been returned by ctmaInit).

activeDirectory

NULL

path to directory

Specifies the directory where required files are found and saved.
Should end with " /™. For example, " /Users/GDC/Co-
TiMA/".

statisticalPower

vector

Vector of requested statistical power values, e.g. c(.95, .80).

failsafeN

value > 0

A sample size used to determine across which time intervals ex-
pected effects become not significant. If not specified, the average
sample size of primary studies will be used.

failsafeP

NULL

value between 0
and |

A p-value used to determine across which time intervals expected
effects become not significant. If not specified .01 will be used.

timeRange

c(0,
1.5*ma
xDelta

vector with 3 val-
ues

Specifies the time range across which statistical power etc. will be
computed. A vector with 3 values: starting point, end point, step
width, e.g., c (0, 50, 1).When timeRange is not specified,
maxDelta is determined by taking the largest delta found in the

primary studies.

useMBESS

FALSE

FALSE/TRUE

If set to TRUE, the MBESS package is used to calculate statistical
power (slower). Otherwise, use the internal CoTiMA function
(faster).

coresToUse

value >0 or <0

The number of cores (threads) to be used for fitting. If a negative
value is provided, the value is subtracted from available cores,
else the value sets the number of cores to be used.

digits

value > 0

Rounding used in output.

indVarying

FALSE

FALSE/TRUE

Specifies a random (manifest) intercept model. Works only if all
primary studies have 3 or more waves and no missing values (i.e.,
variables) exist.

activateRPB

FALSE

FALSE/TRUE

Messages (warning, finished fitting) could be sent to mobile
phone if set to TRUE.

silentOverwrite

FALSE

FALSE/TRUE

‘Whether or not to prompt user preventing undesired overwriting
of existing fit files (requested via saveAl1InvFit or
saveAllInvWOSingFit).

loadAllInvFit

character string

Load the fit of a CoTiMA model with all effects invariant across
primary studies, e.g., LloadAllInvFit = c("myAllIn-
variantModel") .

saveAllInvFit

character string

Save the fit of a CoTiMA model with all effects invariant across
primary studies, e.g., saveAllInvFit = c("myAllIn-
variantModel") .

loadAllInv
WOSingFit

character string

not yet operational.

saveAllInv
WOSingFit

character string

not yet operational.

skipScaling

FALSE/TRUE

If set to FALSE, combined raw data are standardized again. Alt-
hough pseudo raw data for each primary study have variance =
1.0, this is not the case if they are combined into the single data
set that is used to compute the model with all effects being invari-
ant. This is because variance is computed with denominator N - 1.
Could be corrected by setting skipScaling = FALSE, but
usually has little practical consequences.

useSample
Fraction

NULL

value between 0
and 100

Analyze only a fraction of the overall sample. Could help speed-
ing up debugging. Provided as percent (e.g., useSampleFrac-
tion = 30 uses 30% of the overall sample size).

optimize

TRUE

FALSE/TRUE

The optimize argument is passed to ctStanFit. If set to
FALSE, Bayesian estimations is used. The chosen sampler is con-
ditional on the priors argument. Note that this works differently
than the optimise argument of ctStanFit.

nopriors

TRUE

FALSE/TRUE

Deprecated.

Table continues ...
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Argument

Default

Possible
Values

Explanation

ctmaPower

(E

PIC-BiG-Power)

... continued

priors

FALSE

FALSE/TRUE

Replaces previously used and now deprecated nopriors argu-
ment. Consequences of TRUE or FALSE are conditional on the
optimize argument. optimize = TRUE & priors =
FALSE implies maximum likelihood estimation, optimize =
TRUE & priors = TRUE implies maximum a posteriori esti-
mation, optimize = FALSE & priors = TRUE implies
Bayesian estimation using NUTS (No U-Turn Sampler).

finishsamples

NULL
(= 1000)

values > 0

The finishsamples argument is passed to ctStanFit. It
specifies the number of samples to draw for final results computa-
tion. Larger (e.g., 10.000) values make results more exactly repli-
cable. Larger values are recommended before manuscripts are
submitted. Very large values (e.g., 100.000) might be helpful if
very small effects (e.g., 0.0002) result from estimation.

iter

NULL
(=1000)

values > 0

The iter argument is passed to ctStanFit. It specifies the
number of iterations used for Bayesian estimation, half of which
will be devoted to warmup.

chains

NULL
=2)

values > 0

The chains argument is passed to ctStanFit and defines the
number of chains to be used for Bayesian estimation.

verbose

NULL

0,1,0r2

The verbose argument is passed to ct StanFit. Higher values
print more information during model fit.

customPar

FALSE

FALSE/TRUE

If set to TRUE some starting values usually used by ctStanFit
will be used by CoTiMA specific settings. Not recommended to
be used in combination with Bayesian estimation. It was intro-
duced to improve handling of large values used in delta ti.
Setting it to FALSE and use scaleTime instead could be a bet-
ter alternative if estimation problems will nevertheless occur.

scaleTime

NULL

This argument can facilitate model convergence. It internally
changes the time scale assigned to delta_ti. For example,
scaleTime = 1/12 could change the time scale from months
to years. It is usually recommended to avoid delta_ti larger

than 6.
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Possible

Argument Default Explanation
Values
Augments ctmaGetPub. Returns NEPP (= the number of stud-
ies published by the authors of the primary studies supplied until
the year when the primary study was published), NEPPRecency
(like NEPP, but limited to the number of years before the publica-
ctmaPub (-) tion as specified with the recency argument). It also returns the
Meaning of NEPP and Meaning of NEPPRecency, which explain
what "number" exactly means (e.g., could be the mean of the
sum of each author's publication, or the sum of the maximum pub-
lications per year of the authors).
getPubObj NULL Object created Publication (and citation) information of authors.
with
ctmaPubGet
primaryStudyList NULL list of primary A list of primary studies compiled with ctmaPrep that contains
studies a subset of studies included in ctmaInit. Useful to exclude
studies without the need to use ctmaInit again.
yearsToExclude 0 (vector of) years to Years to be excluded from computations. For example, the current
exclude year might be excluded because publication information might not
be very reliable. Early years (e.g., 1900-1960) might be excluded
because they would cause invalid publications (sometimes this
happens in Google Scholar).
targetYear NULL value > 0 If left NULL, all publications before the year of the authors' publi-
(= publi- cation count.
cation
year)
recency 5 value > 0 ctmaPub computes two indices. For the first one (NEPP), all
years before targetYear count. For the second one (NEPPre-
cency), the years between targetYear and targetYear -
recency count.
indFUN "sum" any of: "mean", Specifies the function used to aggregate an individual author's
"sum", "max", publication numbers, e.g., "sum" (recommended) computes the
"min", "var" sum of an author's publication before targetYear, and "var"
computes the variance of the number of publications for an au-
thor's first year of publication to targetYear.
CcolFUN "mean" any of: "mean", Specifies the function used to aggregate a group of authors (col-
"sum", "max", lective) publication numbers, e.g., "mean" computes the mean of
"min", "var" all authors' publication scores (created with indFUN, e.g., the
sums) before targetYear, and "max" takes largest of all au-
thors' publication scores (created with indFUN, e.g., the sums) to
targetYear.
addAsMod FALSE FALSE/TRUE Cun’entlx disabled.
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Argument

Default

Possible
Values

Explanation

ctmaPrep (EP

IC-BiG-Power)

Combines information of primary studies into a list-object and re-
turns this list.

selectedStudies

NULL

vector with
integers

Vector of primary study numbers (numeric values with no leading
0; e.g., "2" but not "02").

excludedElements

NULL

vector with
integers

Could be used to exclude some predefined objects from the results
reported. Note that some predefined objects are strongly defined;
they have to be used in a special way because they are actually
used in subsequent analyses. Some other objects could be used at
the researcher's convenience (information is just collected).
Strongly predefined objects are delta_t (should be of the type
c(NA, NA) incases when raw data are provided, with the num-
ber of NAs corresponding to the number of time intervals), sam—
plesize (single number), pairwiseN (matrix of pairwise N;
could be used if correlation matrix is based on pairwise N),
empcov (correlation matrix), moderator (vector of numbers;
could be continuous or categorical), alphas (vector of reliability
estimates of the variables of a primary study), startvValues
(vector of start values), rawData (information about file name
and structure of raw data), empMeans (means for variables; usu-
ally 0), and empVars (variances for variables; usually 1.0).
Weakly predefined objects are studyNumber (intended as a
special number used for the outputs of subsequently fitted Co-
TiMA models), source (intended as vector of authors' names
and publication year), ageM value intended for indicating the
mean age of participants in a primary study, malePercent (in-
tended as value indicating the percentage of male participants in a
primary study), occupation (intended as vector of character
strings representing the occupations of participants in a primary
study), country (intended as single character string representing
the country in which a primary study was conducted), and tar-
getVariables (intended as vector of character strings repre-
senting information about the variables used).

activeDirectory

NULL

path to directory

Specifies the directory where required files are found and saved.
Should end with " /". For example, " /Users/GDC/Co~
TiMA/".

addElements

NULL

vector of character
strings

Could be used to add user-defined objects that are handled as the
weakly predefined objects. The major purpose is to collect infor-
mation a researcher regards as important, e.g., ¢ (" Im-
portant", "Interesting").

digits

value > 0

Rounding used in output.

moderatorLabels

NULL

vector of character
strings

Vector of names used to label moderators in the output e.g.,
c("Modl", "Control").

moderatorValues

NULL

list of vectors

List of vector of names (assignments) used to label moderators in
the output e.g., List (c ("1 = Emotional Exhaustion",
"2 = Exhaustion"), "continuous").

newRawDataDirec-
tory

NULL

path to directory

Change paths for all raw data files. The original directory is in-
cluded in the rawData 1 objects (as part of the file name), which
could be replaced by newRawDataDirectory.

summary

TRUE

FALSE/TRUE

Requests summary table and xlsx workbook in return object.
Could be set to FALSE to avoid reporting errors.

ctmaPrepObject

NULL

Object created
with ctmaPrep

Object previously created with ctmaPrep, from which studies
should be excluded. Only works in combination with the argu-
ment excludedStudies.

excludedStudies

NULL

vector of integers

Studies to be excluded from a previously created ctmaPrep ob-
ject.
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Argument

Default

Possible
Values

Explanation

ctmaRedHet

(EPIC-BiG-Power)

Computes the reduction in heterogeneity of drift effects after
moderators are added. The function takes two CoTiMA fit-objects
as arguments. Both models should mimic the ctmaInit fit func-
tion by using ctmaFit with the argument WEC = TRUE. The
first model should yield exactly the same fit (-2//) as the
ctmaInit fit because it is algebraically identical (all drift ef-
fects are moderated by dummy variables representing the primary
studies). Estimation problems may occur, however (see explana-
tion of the WEC argument of ctmaFit). The second model in-
cludes additional moderator variables. Mimicking ctmaInit by
using ctmaFit is necessary because moderators are study-level
variables that cannot be modelled if each primary study is fitted
separately as in ctmaInit. For example,
fitl <- ctmaFit (ctmalnitFit = fitObject,

WEC = TRUE))
and
fit2 <- ctmaFit (ctmalnitFit = fitObject,

WEC = TRUE,

mod.numer = 1,

mod.type = "cont")
and then
results <- ctmaRedHet (ctmaFitObject = fitl,

ctmaFitObjectMod = fit2)

summary (results)
Interpreting (reduction in) heterogeneity of single continuous time
drift coefficients could be challenged because they operate in con-
cert. This is different for discrete time drift coefficients, and the
argument dt could be used to request (reduction of) heterogeneity
across a set of different time intervals.

activateRPB

FALSE

FALSE/TRUE

Messages (warning, finished fitting) could be sent to mobile
phone if set to TRUE.

activeDirectory

NULL

character string

Specifies the directory where required files are found and saved.
Should end with " /". For example, " /Users/GDC/Co~
TiMA/".

ctmaFitObject

NULL

CoTiMA fit-object

A CoTiMA fit-object created with ctmaFit using the argument
WEC = TRUE.

ctmaFitObjectMod

NULL

CoTiMA fit-object

A CoTiMA fit-object created with ctmaFit using the argument
WEC = TRUE and at least one moderating effect.

digits

value > 0

Rounding used in output.

dt

NULL

vector of
values >0

Could be used to request (reduction of) heterogeneity across a set
of different time intervals.

undoTimeScaling

TRUE

FALSE/TRUE or
any value

Undoes possible time scaling achieved in ctmaFit by setting the
argument scaleTime. When a number is provided instead of a
logical argument, the number is used to multiply the obtained ef-
fects (e.g., when time is scaled in days in a study, and
scaleTime = 30.5 is used, the returned effect corresponds to
1-month intervals).
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Argument Default Possible Explanation
Values
ctmaShapeRawData
( EPIC-BiG-Power ) Transform raw data into the form required by ctsem or CoTiMA.

dataFrame NULL R data frame An (typically pre-processed) R object containing data. For exam-
ple, using the foreign R-package a SPSS data file can be imported
using:
"tmpData <- data.frame (read.spss(X.sav"),
use.value.labels = FALSE))",
by which time stamps are translated into number of seconds since
October 14, 1582 (i.e., the internal SPSS format). The time scale
can be change with the argument scaleTime (see below).

id NULL character string The identifier (i.e., variable label) of subjects if data are in long
format.

inputDataFrame NULL "wide" or Specifies if the dataFrame object contains data in wide or long

Format "long" format.

inputTimeFormat "time" "time" or ‘Whether time points ("time™) or time intervals ("delta™) are

"delta" included in the dataFrame object.

missingValues NA single value Value that indicates missing values in the dataFrame object.

n.manifest NULL single value > 0 Number of process variables in the dataFrame object (i.e., ex-
cluding possible moderators (for CoTiMA) or time dependent
(TDpreds) and time independent (TIpreds; for ctsem) per time
point. Possibly 2 for CoTiMA in most instances (i.e., a bivariate
model).

manifest.per. NULL The number of manifest variables per latent factor. In most in-

latent stances there probably is only 1 manifest per latent, but e.g.
c(2,3,1) also possible for 6 manifest variables loading on 3 la-
tent factors.

Tpoints NULL single value > 0 Number of time points in the dataFrame object.

allInput NULL vector of character Vector of all process variable names, time dependent predictor

VariablesNames strings names, time independent predictor names, and names of
times/deltas. Only required if the dataFrame does not have col-
umn names. Used to identify the variables that should be selected
later.

orderInput NULL "names" or When "names" is specified, the process variables are expected

VariablesNames "time" to be in the order X1, X2, X3, Y1, Y2, X3 etc. When "time" is
specified, the expected order is X1, Y1, X2, Y2, etc. For
ctsem/CoTiMA, the output file will order them by time.

targetInput NULL vector of character The process variables in the dataFrame that should be used (in

VariablesNames strings "names" orin "times" order as specified with the argument
orderInputVariablesNames). This is used to delete varia-
bles from the data frame that are not required.

targetInput NULL vector of character Not important for CoTiMA, but perhaps for fitting ctsem models.

TDpredNames strings The vector of character strings should contain the actual TDpreds
labels, e.g., 3, or 6, or 9, ... names if Tpoints = 3. Each of the
3, 6, etc. represents one TDpred. One typically does not have TD
predictors in a CoTiMA.

targetInp NULL vector of character Time independent (TI) predictor names in dataFrame. One typ-

TIpredNames strings ically does not have TI predictors in CoTiMA except it uses raw
data, where TIpreds are available for individual cases. (in case
data are prepared for CoTiMA, TIpreds could be present as mod-
erator variables, which have to be specified using ctmaPrep),
In case data are prepared for ctsem, having TIpred is feasible, and
the vector of character strings should contain the actual TIpred la-
bels in the dataFrame object.

targetTime NULL vector of character The labels of the time variables and time variables in data-

VariablesNames strings

Frame that should be used, e.g., c ("time2", "time4") or

c("dTo", "dri").

Table continues ...

94




Argument

Default

Possible
Values

Explanation

ctmaShapeRawData
(EPIC-BiG-Power)

... continued

outputData
FrameFormat

"Tong"

"long" or
"wide"

The output format of the returned R object. Should be usually
"wide" for CoTiMA and "long" for ctsem.

output
VariablesNames

vector of character
strings

The default value "Y" will result in variable labels Y1_TO,
Y2_TO0, Y3_TO etc. with numbers representing the n.manifest
variables. When, e.g., n.manifest = 3 one could also spec-
ify, e.g., c ("X", "Y", "z"),which will resultin Y_TO,

X T0,Z TO etc.

output
TDpredNames

NULL

vector of character
strings

Not really important for CoTiMA, but perhaps for fitting ctsem
models. The default value "TD" will result in TDpred labels
TD1_TO0, TD2_TO, TD3_TO etc. with numbers representing the
number of TDpred. When, e.g., three TD labels per time point are
specified with the argument target InputTDpredNames, one
could also specify, e.g., c ("A", "B", "C"), which will result
in A T0O, B T0, C TO etc.

output
TIpredNames

NULL

vector of character
strings

Not really important for CoTiMA, but perhaps for fitting ctsem
models. The default value "TI" will result in TIpred labels TII,
TI2, TI3 etc. with numbers representing the number of TDpred.

outputTime
VariablesNames

"Lime"

character string

Not really important for CoTiMA, but perhaps for fitting ctsem
models. The default value "time" will result in time variables
labeled time0, timel, time2 etc.

outputTimeFormat

"Lime"

"time" or
"delta"

‘Whether time is stored in absolute time or deltas (time intervals).
Note the CoTiMA requires "delta" (and "wide" format),
whereas ctsem requires "time" (and "long" format).

scaleTime

any positive value

Scales time in the returned data frame by a scalar that is used to
multiply the time variable. Typically used to rescale primary
study time to the time scale use in other primary studies. For ex-
ample, scaleTime = 1/(60 x 60 x 24 x 365.25) re-
scales time provided in seconds (frequent case when imported
from SPSS) into years (60sec x 60min x 24hrs x 365.25 days incl.
leap years).

minInterval

0.0001

single value >
.00001

Set to smaller values than any possible observed measurement in-
terval, but larger than 0.0001. The value is used for indicating un-
available time interval information (caused by missing values) be-
cause NA is technically not possible for time intervals.

minTolDelta

NULL

single value > 0

The shortest time interval to be tolerated. Could be useful to elim-
inate invalid data, e.g., because primary researchers coded time
wrongly or participants filled in invalid values to time questions
or did not adhere to the research protocol. For example, assuming
time is coded in months in a study that was supposed to have ap-
proximate 12-month (1-year) intervals, a value of 6 would delete
values at a time point that was closer than 6 months to the preced-
ing time point.

Note that minTolDelta applies to the time intervals after the
scaleTime argument has applied (i.e., scaleTime may need
adaptation for each primary study, but minTolDelta does not).

maxTolDelta

NULL

single value > 0

The longest time interval to be tolerated. Could be useful to elimi-
nate invalid data, e.g., because primary researchers coded time
wrongly or participants filled in invalid values to time questions
or did not adhere to the research protocol. For example, assuming
time is coded in months in a study that was supposed to sample 6
times within a 6-month (1/2-year) time frame, a value of 6 would
delete values at all (!!) time points that were farer away from any
other one than 6 months.

Note that maxTolDelta applies to the time intervals after the
scaleTime argument has applied (i.e., scaleTime may need
adaptation for each primary study, but maxTolDelta does not).

Table continues ...
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Argument Default Possible Explanation
Values
ctmaShapeRawData
(EPIC-BiG-Power) . continued
negTolDelta FALSE FALSE/TRUE ‘When the default setting (FALSE) is used, cases that have at least
one negative delta are excluded (may indicate unreliable respond-
ing). Use the argument minTolDelta to delete certain variables
only.
min.val.n.Vars 1 any integer value Specifies the minimum no. of valid variables (i.e., non-NA) that
between 0 and has to be available per participant. Default = 1 (retains cases with
number of mani- only 1 valid variable), 0 would retain cases will all variables miss-
fest variables ing (not very useful). Retaining participants who provide a single
valid variable is technically possible, but these participants con-
tribute to the estimation of the variance/mean of this variable
only. Since variance/mean are 1/0 in most CoTiMA applications,
this is not very informative but at the cost of additional computa-
tional burden. Settingmin.val.n.Vars = 2 isrecom-
mended.
min.val.Tpoints 1 any integer value Minimum no. of valid time points (i.e. time points where
between 1 and min.val.n.Vars is met). Default = 1 retains participants with
number of availa- full set of valid variables at least at one single time point (which
ble time points will become T0). Settingmin.val.Tpoints = 2 or higher
values retains participants which provide longitudinal infor-
mation. Since TO covariances are usually not too interesting,
min.val.Tpoints = 2 may be more reasonable than the de-
fault = 1.
standardization "none" Any of "none", Different ways to standardize raw data are possible ("within-

"within-
TimeA",
"within-
TimeB",
"withinCol-
umn",
"withinPer-
son",or "over—
all"

TimeA" standardizes within time points and deletes cases with
missing TO data. "withinTimeB" standardizes within time
points and does not delete cases, and in subsequent ctsem or Co-
TiMA applications the user is advised to use the argument
sameInitialTimes = TRUE. This argument probably han-
dles raw data in the way primary studies do when computing pair-
wise correlation matrices. "withinColumn" standardizes vari-
ables after arranging them in wide format. Since time points with-
out valid data are eliminated for each case (i.e., values are moved
from later to earlier time points), this makes the difference to
"withinTimeA" and "withinTimeB". "withinPerson"
standardizes all variables within person. "overall" standard-
izes all variables across all persons.
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Possible

Argument Default Values

Explanation

ctmaSV (EPIC-BiG-Power)

Computes new start values and returns an augmented list of pri-
mary studies that has inits elements containing these start values.
This list can then be used for the primaryStudies argument
in subsequent ctmaInit applications. Starting values are ob-
tained by using lavaan to fit discrete time SEM to the primary
studies provided. The discrete time estimates are then transformed
into their continuous time counterparts and some specific transfor-
mations are applied (required by ctsem) before returned. In case
of models with 3 or more waves of data, continuous time effects
are computed for each interval and then averaged.

ctmaInitFit NULL CoTiMA fit-object | CoTiMA fit-object created with ctmaInit.
activeDirectory NULL path to directory Specifies the directory where required files are found and saved.
Should end with " /". For example, " /Users/GDC/Co~
TiMA/".
coresToUse 1 value>0or <0 The number of cores (threads) to be used for fitting. If a negative
value is provided, the value is subtracted from available cores,
else the value sets the number of cores to be used.
primaryStudies NULL CoTiMA fit-object In cases in which the CoTiMA fit-object assigned to ctmaInit-
created with Fit (possibly old fit files) does not contain the primaryStud-
ctmaPrep ies object created with ctmaPrep it could be added by assign-
ing it to the primaryStudies argument.
replaceSV TRUE FALSE/TRUE The computed starting values could either replace exiting starting
values in the returned list of primary studies or save them as an
additional list element inits.
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The plot function, which is described next, works slightly different than other Co-
TiMA functions. Like all other CoTiMA functions, some arguments could be used
as always. However, in addition, it is important to note that several plotting param-
eters ("fitAddSpecs") have to be assigned to the CoTiMA fit-object before plot-
ting it, rather than providing plotting parameters as arguments to the plot function
(e.g.,CoTiMAInitFitObject$xMax <- 200). This is because the arguments
have different effects conditional on the type of fit-object. The number of plotting
parameters that can be changed in this way is still limited; we are working on exten-
sions. Further, user-defined plotting parameters differ for fit-objects created with
ctmaBiG versus ctmaInit and ctmaFit). Finally, if problems with plot are
encountered, we recommend trying ctmaPlot instead of plot.
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Possible

Argument Default Explanation
Values
plOt / ctmaPlot Generates plots.
ctmaFitObject NULL CoTiMA fit object | A CoTiMA fit-object created by ctmaInit, ctmaFit, or
ctmaBiG.
activeDirectory NULL path to directory Specifies the directory where required files are found and saved.
Should end with " /". For example, " /Users/GDC/Co~
TiMA/".
saveFilePrefix "ctmaP vector of character Labels for the generated plot, which might be automatically aug-
lot™ strings mented by further information (e.g., "ctmaplot
V1toVl.png").
activateRPB FALSE FALSE/TRUE Messages (warning, finished fitting) could be sent to mobile
phone if set to TRUE.
plotCrossEffects TRUE FALSE/TRUE Affects plotting of ctmaInit or ctmaFit fit-objects only.
Plotting of discrete time cross effects can be suspended.
plotAutoEffects TRUE FALSE/TRUE Affects plotting of ctmaInit or ctmaFit fit-objects only.
Plotting of discrete time auto effects can be suspended.
timeUnit "timeU vector of character Affects plotting of ctmaInit or ctmaFit fit-objects only. La-
nit strings bel used for the x-axis of discrete time plots.
(not
speci-
fied)"
timeRange c() vector with 3 Affects plotting of ctmaInit or ctmaFit fit-objects only. The
=0to 1.5 values: range across which discrete time effects are plotted, e.g., ¢ (10,
times the c(xMin, xMax, 20, .01) would plot effects from 10 units of time to 20 using
longest stepwidth) steps of .01. Note that a stepwidth < 1 could be specified to obtain
interval more fine-grained figures.
used in
primary
studies
yLimits values vector with 2 Affects plotting of ctmaInit or ctmaFit fit-objects only. The
ForEffects slightly values: min and max values for the y-axis. Setting explicit values could
exceeding c(yMin, yMax) be better than relying on the automatically determined range, for
min and example, to ensure identical y-axis across a larger set of plots.
max em-
pirical ef-
fect sizes
mod.values -2:2 vector with Affects plotting of ctmaFit fit-objects only. The moderator val-
numbers ues for which plots of continuous moderators should be generated.
Corresponds to the standard deviations below and above the mean
value if the continuous moderator was standardized with scale-
Mod = TRUE. Does not affect plotting of categorical modera-
tors.
mod. number 1 value > 0 The number of the moderator effect that is plotted if more than a
single moderator is included in the fit-object created with
ctmaFit. Note that mod. number does not select the dummies
used for categorical moderators (all dummy effects are plotted);
rather it refers to the 1st, 2nd etc. continuous or categorical mod-
erator of an analysis.
aggregateLabel " (= character(s) Affects plotting of ctmaF1i t fit-objects only. Symbol to be at-
nothing) tached to the discrete time plot of a ctmaFit fit-object. In the
case of ctmaInit fit-objects, each study is usually identified in
the plot with a dot inside which the study number is shown. In the
case of a ctmaFit fit-object with aggregated effects, one could
use a symbol, e.g., aggregateLabel = "I".
xLabels NULL vector with Affects plotting of ctmaFit fit-objects only. The numbers indi-
numbers cating the time intervals on the x-axis are usually determined au-
tomatically. They could also be directly defined, and the values
provided are equally distributed across the time range used to plot
the discrete time effects, e.g.,c (1, 3, 5, 7, 9).
undoTimeScaling TRUE FALSE/TRUE Undoes possible time scaling achieve in ctmaInit or ctmaFit

by setting the argument scaleTime.
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In the following tables, named list elements rather than function arguments are
shown. These list elements have to be explicitly assigned to fit-objects to change the
output of the plot function.

Named List Possible .
Default Explanation
Element U Values xp
fitAddSpecs for
ctmaBias
fit-objects
CoTiMAFit$xMin 0 value >0 Internally, the x-axis ranges from 0 to 300 (the values shown in

the plot are irrelevant). Setting xMin > 0 creates a plot where the
left part is left out. For example, if one wants to leave out the first
quarter (i.e. 0 to 300/4 = 0 to 75) you could set
CoTiMAFit$xMin <- 75.If one wants extra space on the
right-hand side of the plot, one could lift xMax to values larger
than 300, e.g., COTiMAFit$SxMax <- 400.
CoTiMAFit$xMax 300 value > 0 See above.
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Named List
Element

Default

Possible
Values

Explanation

fitAddSpecs for
ctmalInit & ctmaFit

fit-objects

CoTiMAFitS$col "grey" R-type color code Defines the color of the curve showing the discrete time affects
& across time, e.g., COTiMAFit$col <- "red"
"black"
for ctma-
Init &
ctmaFit
fit-objects,
respec-
tively.
CoTiMAFit$lwd 1.5& value >0 Defines the line width of the curve showing the discrete time af-
2.5 for fects across time, e.g., COTIMAFitSlwd <- 4
ctma-
Init &
ctmaFit
fit-objects,
respec-
tively.
CoTiMAFit$lty 1 & 2 for R-type integer Defines the line type of the curve showing the discrete time af-
ctma- value >0 fects across time, e.g., COTiIMAFitSlty <- 1,with,e.g, 1=
Init & solid, 2 = dashed, and 3 = dotted.
ctmaFit
fit-objects,
respec-
tively.
CoTiMAFit$xMin min of integer values Limits the displayed range of the discrete time effects plotted.
time Should only be used in combination with the xLabels argu-
Range ment. Overrides other setting if multiple fit-objects are supplied.
This is still experimental; it is recommended to set t imeRange
instead.
CoTiMAFit$xMax max of integer values Limits the displayed range of the discrete time effects plotted.
time Should only be used in combination with the xLabels argu-
Range ment. Overrides other setting if multiple fit-objects are supplied.
This is still experimental; it is recommended to set t imeRange
instead.
CoTiMA "b" R-type characters Type of the plot. Use "p" for points, " 1" for lines, "b" for both,
Fit$dot.type "c" for the lines part alone of "b" etc.
... to be continued
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