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2 Abstract
Package dmm estimates a variety of genetic and environmental (co)variance components from pedigree data.
It can transform these to genetic parameters, and to estimates of response to selection. The statistical method
used is an heirarchical mixed model with the first level a monadic fixed effects model of individuals, and the
second level a dyadic model, that is a model which equates dyadic covariances (ie covariances between pairs
of individuals) to their expectations. The dyadic model is linear and therefore reduces variance component
estimation to a linear regression problem. The fixed effects model equations can be solved by OLS or GLS.
The random effects dyadic model equations can be solved by standard regression techniques (OLS via qr or lm
functions and FGLS via an iterative algorithm) to estimate (co)variance components as regression coefficients.
The package also offers robust regression (lmrob function) and principal component regression (pls package)
as experimental alternative varince component estimation options.

The type of (co)variance component estimate obtained depends on

• whether the monadic fixed effects equations are solved by OLS or GLS

• whether the dyadic random effect equations are solved by OLS, FGLS, or robust regression

Table 1 shows that (co)variance component estimates from dmm can be MINQUE, bias-corrected ML (BCML)
, REML, or robust MINQUE (R-MINQUE) or robust BCML (R-BCML), depending on how the fixed and
dyadic model equations are solved

Table 1: Types of (co)variance component estimates obtained by dmm, according to how fixed effect equations
and dyadic model equations are solved

Dyadic (random effect) equations Fixed Effect Equations solved by
solved by OLS GLS
OLS (qr or lm) MINQUE BCML
FGLS REML REML
Robust regression R-MINQUE R-BCML
PLS restricted MINQUE restricted BCML

Note that it does not matter how fixed effects are estimated when using FGLS to get REML estimates.
That is in line with REML theory, any set of error contrasts can be used for a REML iteration.

Estimating variance components in this way is feasable only for datasets of less than around 10000 indi-
viduals ( less than that in the REML case). The package may therefore be useful for modest sized research
datasets, but not for extensive field data. The variance component estimates obtained by directly solving the
dyadic model equations by OLS are equivalent to MINQUE estimates if the fixed model is fitted with OLS
(ordinary least squares), and are equivalent to bias-corrected-ML (BCML) estimates if the fixed model is fitted
with GLS (generalised least squares). To get REML estimates the dyadic model equations must be solved by
FGLS, and this is only feasable for very small datasets. The REML estimates are therefore only a demon-
stration of correctness of the method rather than of any practical use with large datasets. The dmm package
includes a number of test data sets which are useful to demonstrate correctness of its calculations, and to
illustrate its capabilities.
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3 Introduction
Quantitative genetic analysis uses what we can infer from a pedigree about the genetic relationship between
pairs of individuals, to analyse variation among a sample of individuals in metric traits, and to make inferences
regarding the causes of variation in the population from which individuals have been sampled. In dmm() pairs
of individuals are called dyads, and a dyadic model is used for variance component estimation. The dmm
package sets up dyadic model equations (DME’s) from relationship matrices and observations. DME’s equate
observations on a dyad to their expectation (in terms of genetic and environmental (co)variance components).
Estimates of (co)variance components are derived by solving the DME’s directly (eg using the QR method).
dmm() does not form Henderson’s mixed model equations, and does not require inverses of relationship matri-
ces. dmm() then computes genetic parameters ( ie proportions of variance and correlations), from the estimated
variance components. There is also a facility to post-compute genetic response to selection.

The approach taken by dmm() is suited to small to medium multi-trait datasets; typically research data
rather than field data, of less than around 10000 individuals. dmm() is less compute intensive than iterative
likelihood-based techniques, such as REML, and extends easily to multiple traits and multiple (co)variance
components, but has a high computer memory requirement.

Research datasets are likely to have a pedigree design which permits estimation of individual and maternal
components for additive, non-additive, or sex-linked genetic (co)variances. dmm() allows estimation of any
or all of the above genetic components, including all possible cross-effect genetic covariances. The number
of components estimated has little effect on compute intensity. dmm() includes an experimental approach
to dealing with multicollinearities among the variance components, using principal component regression.
dmm() also includes an FGLS method of solving the dyadic model equations , which leads to REML estimates.
Unfortunaltely FGLS on the DME’s is only feasable with very small datasets. It may be useful one day when
we get quantum computers.

Research datasets may also have one or more environmental factors. dmm() allows the usual estimation
of fixed effects in a mixed model, either by OLS or GLS. dmm() also allows a specific environmental factor
called cohort to be defined, and allows cohort to be fitted as an environmental variance component, and thus
to be part of phenotypic variance. The cohort concept represents a different approach to the issue of ’common
environmental variance’.

The pro’s for dmm() are that it is simple (has a low compute requirement), flexible (will fit any combination
of variance components), multi-trait (will handle more traits without increased complexity), and yields esti-
mates which are unbiased and the same as aov estimates for balanced designs. Because dmm() uses standard
regression techniques for variance component estimation, it has access to well known and tested methods for
obtaining standard errors.

The con’s for dmm() are that it is very demanding of computer memory (not suited to large datasets), and
yields estimates which are MINQUE or bias-corrected-ML (BCML)(depending on whether fixed effects are
fitted by OLS or GLS respectively). These will only be the same as REML estimates for balanced designs,
although they are likely to be similar if the degree of unbalance is not severe. dmm() will do valid REML
estimates by using FGLS on the DME’s , but it can only do it for small datasets.

5



4 Getting started with dmm
Before using the dmm package in an R session its library must be loaded with the statement

> library(dmm)

If you get the message

Error in library(dmm) : there is no package called `dmm'

this indicates that the dmm package has not been installed on your system. You need to look at the in-
structions for downloading and installing an R package. Try the manual R Installation and Administration
which deals with add-on packages in Chapter 6, and is located at any CRAN mirror site (start at https://www.r-
project.org and choose CRAN, then choose a mirror site, then choose Packages).

To use dmm one first must put the dataset to be analysed into an R workspace as a dataframe object. The
minimum requirement is for a dataframe with columns labelled :

Id Identifier for each individual

SId Identifier for the sire of each individual

DId Identifier for the dam of each individual

Sex Sex code for each individual

Fixed factors Codes for levels of each fixed factor

Observations Numeric values for each observation or trait

We start by having a look at an example dataframe. We shall use the dataset sheep.df which is part of the
dmm package. So load the dataset

> data(sheep.df)

and get an overview of its contents using the str() function

> str(sheep.df)

'data.frame': 42 obs. of 9 variables:

$ Id : Factor w/ 42 levels "0a4441","0a4712",..: 39 3 5 9 10 41 42 40 2 4 ...

$ SId : Factor w/ 5 levels "0a4721","1a4123",..: NA NA NA NA NA NA NA NA NA NA ...

$ DId : Factor w/ 15 levels "0a4712","0a4713",..: NA NA NA NA NA NA NA NA NA NA ...

$ Year: int 1981 1982 1983 1983 1984 1981 1981 1981 1982 1982 ...

$ Tb : Factor w/ 2 levels "S","T": 1 1 1 2 1 1 1 2 1 1 ...

$ Sex : Factor w/ 2 levels "F","M": 2 2 2 2 2 1 1 1 1 1 ...

$ Cww : num NA NA NA 4.2 4.7 4.1 4.4 3.8 5.1 4.9 ...

$ Diam: num NA NA NA 21.7 21.1 20 21.6 20.1 22 21.1 ...

$ Bwt : num NA NA NA 50 45 51 53 43 45 48 ...

>

The dataframe sheep.df has the columns Id,SId,DId,Sex noted above and it has Year and Tb which are
potential fixed effects, and it has three traits Cww,Diam,Bwt.

Another way of getting an overview is to print the first few rows

> sheep.df[1:5,]

Id SId DId Year Tb Sex Cww Diam Bwt

1 9a4003 <NA> <NA> 1981 S M NA NA NA

2 0a4721 <NA> <NA> 1982 S M NA NA NA

3 1a4123 <NA> <NA> 1983 S M NA NA NA

4 1a4371 <NA> <NA> 1983 T M 4.2 21.7 50

5 2a4127 <NA> <NA> 1984 S M 4.7 21.1 45

>
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The first few individuals have unknown parents, coded as NA.
There are two immediately obvious problems with the way this dataset has been setup

• The pedigree columns (Id,SId,DId) contain alphanumeric codes. For dmm the codes must be numeric
and the Id code must be sequential.

• The Year column is not a factor. If we want to use it as a fixed effect with discrete levels, it should be a
factor.

Therefore we first need to use the mdf() function to convert this dataframe to a suitable format. We may also
wish to use the mdf() function to setup relationship matrices required to estimate various genetic (co)variance
components: it depends on our genetic model - if we just require the additive genetic relationship matrix,
dmm() will calculate this ’on the fly’, but if we require non-additive or sex-linked relationship matrices, these
must be pre-calculated with function mdf(). In the present example we will use just the additive relationship
matrix and let dmm() calculate it inline.

To learn to use mdf() we need to look at its help page

> help(mdf)

... help page should appear on screen here

>

We need to define the pedigree columns with the pedcols argument, define Sex, Year and Tb as factors
with the factorcols argument, and define the traits with the ycols argument. We also need to say how Sex is
coded, using the sexcode argument. We do not want to make relationship matrices , so the relmat argument is
left NULL.

> sheep.mdf <- mdf(sheep.df,pedcols=c(1:3),factorcols=c(4:6),

ycols=c(7:9),sexcode=c("M","F"))

Pedigree Id check:

No of rows with Id in original dataframe = 42

No of sex codes not in sexcode[] so changed to NA = 0

No of rows with Sex == NA removed from dataframe = 0

No of rows with Id == NA removed from dataframe = 0

No of rows with duplicated Id removed from dataframe = 0

No of rows remaining after duplicates and NA's removed = 42

No of DId's with no matching Id = 2

Length of dataframe with base Id's added = 44

Renumber pedigree Id's:

Add matrix of multivariate traits:

Return mdf as a normal dataframe:

> str(sheep.mdf)

'data.frame': 44 obs. of 7 variables:

$ Id : int 1 2 3 4 5 6 7 8 9 10 ...

$ SId : int NA NA NA NA NA NA NA NA NA NA ...

$ DId : int NA NA NA NA NA NA NA NA NA NA ...

$ Year: Factor w/ 8 levels "1981","1982",..: NA NA 1 2 3 3 4 1 1 1 ...

$ Tb : Factor w/ 2 levels "S","T": NA NA 1 1 1 2 1 1 1 2 ...

$ Sex : Factor w/ 2 levels "F","M": 1 1 2 2 2 2 2 1 1 1 ...

$ Ymat: num [1:44, 1:3] NA NA NA NA NA 4.2 4.7 4.1 4.4 3.8 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr "0a4713" "2a4247" "9a4003" "0a4721" ...

.. ..$ : chr "Cww" "Diam" "Bwt"

>
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So now the pedigree columns (Id, SId, DId) are coded as integers, Year is a factor, and the three traits
(Cww, Diam, Bwt) are assembled into a matrix called Ymat. Also note that there are now 44 observations
(originally there were 42); two ’base’ individuals have been added because there were two DId’s which did
not occur as an Id.

We are now ready to use function dmm(). We wish to adjust for the fixed effects by first fitting a fixed
model of the form

Yi jkl = µ +Sexi +Year j +T bk + ri jkl

where Yi jkl is an observation of one trait on the lth individual and ri jkl is the corresponding residual.
Assume that we just wish to partition ri jkl into an individual environmental variance and an individual

genetic additive variance. To do this we fit a dyadic model of the form

Cov(ri jkl,i‘ j‘k‘l‘) = ell‘σ
2
E(I)+all‘σ

2
G(Ia)+δi jkl,i‘ j‘k‘l‘

where Cov(ri jkl,i‘ j‘k‘l‘) is the dyadic observation for dyad (l, l‘) and δi jkl,i‘ j‘k‘l‘ is the corresponding dyadic
residual.

These are single trait models, but extension to multi-trait case is trivial. In dmm the partitioned variance
components σ2

E(I) and σ2
G(Ia) are labelled VarE(I) and VarG(Ia) respectively, even when they may refer to

cross-trait covariances.
The notation used by dmm to label (co)variance components was designed to use only ASCII symbols. A

few examples will make the meaning clear

VarE(I) variance environmental individual

VarG(Ia) variance genetic individual additive

VarG(Ma) variance genetic maternal additive

CovE(I,M) covariance environmental individual x maternal

VarGs(Ia) variance genetic sexlinked individual additive

There is a complete definition of all components in Section 6.
So we now call function dmm() to do the above model fitting, and save its output for later display. To learn

to use dmm() look at its help page

>help(dmm)

... help page should appear on screen here

We need to give the name of the dataframe, the fixed model with the fixform argument, and the variances
to be partitioned with the components argument. The components argument in this case is actually the default,
but we shall specify it for clarity. Note that dmm() is different from most other variance component programs
in that it requires the individual environmental variance ("VarE(I)") to be explicitely fitted.

> sheep.fit1 <- dmm(sheep.mdf, Ymat ~ 1 + Sex + Year + Tb,

components = c("VarE(I)","VarG(Ia)"))

Dyadic mixed model fit for datafile: sheep.mdf

Data file is a normal dataframe:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 9

no of traits (l) = 3

Setup antemodel matrices:

No of factors with specific components: 0

No of non-specific components partitioned: 2
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No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 44

no of individuals with data and X codes (n) = 36

Rank of X: 9 No of Fixed Effects: 9

OLS-fixed-effects step completed:

DME substep:

No of components defined = 2

No of components estimable = 2

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:

>

What are all these lines displayed on the screen? Well most are just reporting the stage of computation; a
large problem can take some time and it helps to know the stage reached. This is particularly important if the
iterative GLS-fixed-effects step is used.

If the fixed effect model is singular the process will stop with a message

"Rank of X .ne. k:"

If the dyadic model equations are singular the process will stop with a message

"Dyadic model equations not of full rank:

either omit some components or try dmeopt='pcr'"

Even if there are no singularities, the dyadic model equations may have serious collinearities. We can
check this by looking at the dme.correl attribute of the sheep.fit1 object.

> sheep.fit1$dme.correl

VarE(I) VarG(Ia)

VarE(I) 1.0000000 0.8125828

VarG(Ia) 0.8125828 1.0000000

>

In this case the correlation between ”VarE(I)” and ”VarG(Ia)” is 0.81 which should sound warning bells. If
this were a serious analysis it would be best to obtain some more data with a structure which would better
separate the two components of interest. As this is only a tutorial, we shall proceed to look at estimates of
fixed effects and variance components. The object sheep.fit1 returned by dmm() is an object of class dmm and
there is a print method for this class which gives a brief view of the ’fit’ object as follows:

> print(sheep.fit1)

Call:

dmm.default(mdf = sheep.mdf, fixform = Ymat ~ 1 + Sex + Year +

Tb, components = c("VarE(I)", "VarG(Ia)"))

Fixed formula:

Ymat ~ 1 + Sex + Year + Tb

Cohort formula:

NULL

Var/Covariance components:

[1] "VarE(I)" "VarG(Ia)" "VarP(I)"

Traits:

[1] "Cww" "Diam" "Bwt"

Fitted OLS-fixed-effects:
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Cww Diam Bwt

(Intercept) 4.08994992 20.68664709 49.706459

SexM 0.21661950 0.30933131 3.978543

Year1982 0.76666667 0.73333333 -1.666667

Year1983 0.03328253 -0.26902396 -3.111563

Year1984 0.38164017 -0.38468523 -5.782813

Year1985 0.63093009 0.03065326 -3.203542

Year1986 0.95145594 0.85505128 -4.948870

Year1987 0.46112683 0.18022290 -8.992848

TbT 0.03015024 -0.35994127 -2.119376

Var/covariance components partitioned by DME after OLS-fixed-effects fit:

Cww:Cww Cww:Diam Cww:Bwt Diam:Cww Diam:Diam Diam:Bwt

VarE(I) 0.02624452 -0.04600793 0.2737025 -0.04600793 0.2670173 1.166502

VarG(Ia) 0.35379493 0.46601661 1.7435379 0.46601661 0.7903752 2.231398

Bwt:Cww Bwt:Diam Bwt:Bwt

VarE(I) 0.2737025 1.166502 17.397968

VarG(Ia) 1.7435379 2.231398 8.616402

Observed (residual) var/covariance after OLS-fixed-effects fit:

Cww Diam Bwt

Cww 0.2219876 0.3489707 1.824223

Diam 0.3489707 0.9569698 3.134368

Bwt 1.8242230 3.1343678 24.994537

Correlations between columns of W matrix of dyadic model equations:

VarE(I) VarG(Ia)

VarE(I) 1.0000 0.8126

VarG(Ia) 0.8126 1.0000

>

Notice that the print method also showthe correlations between columns of the dyadic model euations ch
we obtained above by printing the element $dme.correl from the object sheep.fit1 directly.

In the above view, there are no standard errors, and we always get all fixed effects across all traits, and
all components across all traitpairs. The matrix labelled ’Observed (residual) var/covariance after OLS fit:’
is covariance matrix the residual terms ri jkl from the fitted fixed model. It is not the phenotypic covariance
matrix in most cases, because the individuals are related. The print.dmm method is documented on its help
page:

>help(print.dmm)

...

A more extensive view, with standard errors and confidence limits is given by the summary method:

> summary(sheep.fit1)

Call:

summary.dmm(object = sheep.fit1)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Cww 4.0899 0.278 3.5451 4.635

SexM Cww 0.2166 0.186 -0.1482 0.581

Year1982 Cww 0.7667 0.385 0.0127 1.521

Year1983 Cww 0.0333 0.368 -0.6878 0.754

Year1984 Cww 0.3816 0.347 -0.2991 1.062

Year1985 Cww 0.6309 0.331 -0.0170 1.279
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Year1986 Cww 0.9515 0.335 0.2943 1.609

Year1987 Cww 0.4611 0.339 -0.2031 1.125

TbT Cww 0.0302 0.172 -0.3066 0.367

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Diam 20.6866 0.577 19.555 21.818

SexM Diam 0.3093 0.386 -0.448 1.067

Year1982 Diam 0.7333 0.799 -0.832 2.299

Year1983 Diam -0.2690 0.764 -1.766 1.228

Year1984 Diam -0.3847 0.721 -1.798 1.029

Year1985 Diam 0.0307 0.686 -1.315 1.376

Year1986 Diam 0.8551 0.696 -0.509 2.220

Year1987 Diam 0.1802 0.704 -1.199 1.559

TbT Diam -0.3599 0.357 -1.059 0.339

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Bwt 49.71 2.95 43.925 55.49

SexM Bwt 3.98 1.97 0.108 7.85

Year1982 Bwt -1.67 4.08 -9.667 6.33

Year1983 Bwt -3.11 3.90 -10.763 4.54

Year1984 Bwt -5.78 3.69 -13.006 1.44

Year1985 Bwt -3.20 3.51 -10.078 3.67

Year1986 Bwt -4.95 3.56 -11.922 2.02

Year1987 Bwt -8.99 3.60 -16.041 -1.94

TbT Bwt -2.12 1.82 -5.693 1.45

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 0.0262 0.0533 -0.0782 0.131

VarG(Ia) Cww:Cww 0.3538 0.0491 0.2576 0.450

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Diam -0.046 0.112 -0.266 0.174

VarG(Ia) Cww:Diam 0.466 0.103 0.264 0.668

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Bwt 0.274 0.575 -0.853 1.40

VarG(Ia) Cww:Bwt 1.744 0.530 0.705 2.78

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww -0.046 0.112 -0.266 0.174

VarG(Ia) Diam:Cww 0.466 0.103 0.264 0.668

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 0.267 0.232 -0.187 0.721

VarG(Ia) Diam:Diam 0.790 0.213 0.372 1.208

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Bwt 1.17 1.20 -1.1874 3.52

VarG(Ia) Diam:Bwt 2.23 1.11 0.0625 4.40
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Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Bwt:Cww 0.274 0.575 -0.853 1.40

VarG(Ia) Bwt:Cww 1.744 0.530 0.705 2.78

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Bwt:Diam 1.17 1.20 -1.1874 3.52

VarG(Ia) Bwt:Diam 2.23 1.11 0.0625 4.40

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Bwt:Bwt 17.40 6.07 5.49 29.3

VarG(Ia) Bwt:Bwt 8.62 5.60 -2.35 19.6

>

Notice that the function is summary() but the call is summary.dmm(). That is because ’dmm’ is a method for
the pre-existing generic summary() function.

So now we get one parameter estimate per line with standard errors and confidence limits.With lots of traits
and parameters this can get to be rather voluminous, so the summary method for dmm objects has arguments
for choosing subsets of traits or components. There is also an argument to change the ordering from bytrait to
byparameter. Consult the help page as follows

>help(summary.dmm)

... help page should appear here

We have to use help(syummary.dmm) not help(summary) because help(summary) gives the help page for
the generic summary() function.

We may wish to view genetic parameter estimates instead of variance components. In this case there is
a gprint.dmm method which produces an abbreviated output (analagous to print.dmm) and a gsummary.dmm
method which produces a full output with standard errors (analagous to summary.dmm). These functions have
help pages

>help(gprint.dmm)

... help page should appear here

>help(gsummary.dmm)

... help page should appear here

In this case we shall view the gsummary output for just 2 traits

> gsummary(sheep.fit1,traitset=c("Diam","Bwt"))

Call:

gsummary.dmm(dmmobj = sheep.fit1, traitset = c("Diam", "Bwt"))

Proportion of phenotypic var/covariance partitioned by DME:

to each component (OLS-fixed-effects):

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Diam 0.253 0.199 -0.138 0.643

VarG(Ia) Diam 0.747 0.207 0.341 1.154

VarP(I) Diam 1.000 0.000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Bwt 0.669 0.209 0.2586 1.079

VarG(Ia) Bwt 0.331 0.210 -0.0806 0.743

VarP(I) Bwt 1.000 0.000 1.0000 1.000
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Correlation corresponding to each var/covariance component:

partitioned by DME (OLS-fixed-effects):

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 1 0 1 1

VarG(Ia) Diam:Diam 1 0 1 1

VarP(I) Diam:Diam 1 0 1 1

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Bwt 0.541 0.3166 -0.0794 1.162

VarG(Ia) Diam:Bwt 0.855 0.2646 0.3365 1.374

VarP(I) Diam:Bwt 0.648 0.0923 0.4669 0.829

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Bwt:Diam 0.541 0.3166 -0.0794 1.162

VarG(Ia) Bwt:Diam 0.855 0.2646 0.3365 1.374

VarP(I) Bwt:Diam 0.648 0.0923 0.4669 0.829

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Bwt:Bwt 1 0 1 1

VarG(Ia) Bwt:Bwt 1 0 1 1

VarP(I) Bwt:Bwt 1 0 1 1

Phenotypic var/covariance from components partitioned by DME (OLS-fixed-effects):

Traitpair Estimate StdErr CI95lo CI95hi

1 Diam:Diam 1.06 0.137 0.788 1.33

2 Diam:Bwt 3.40 0.712 2.002 4.79

3 Bwt:Diam 3.40 0.712 2.002 4.79

4 Bwt:Bwt 26.01 3.601 18.957 33.07

>

The section labelled ’Proportion of phenotypic var/covariance ....’ gives for each trait an estimate of each
variance component as a proportion of "VarP(I)", the phenotpic variance. So for component "VarG(Ia)" the
proportion 0.747 is the additive genetic heritability estimate for trait "Diam".

The section labelled ’Correlation ...’ gives for each trait pair an estimate of the cross-trait correlation
corresponding to each variance component. So for component "VarG(Ia)" the estimate 0.855 is the additive
genetic correlation for traitpair "Diam:Bwt".

Note that the confidence limits are not constrained to the bounds of a proportion or a correlation. This will
not usually be a problem with reasonable sized datasets.

Let us now change the dyadic model to include maternal as well as individual genetic and environmental
effects. This is done by simply adding components "VarE(M)" and "VarG(Ma)" to the components argument,
representing maternal environmental and maternal additive genetic effects. However we also need to add some
covariances, because it is possible for individual and maternal effects to be correlated at both the environmental
and genetic levels. So we add "CovE(I,M)" and "CovG(Ia,Ma)", and we also add their reciprocals "CovE(M,I)"
and "CovG(Ma,Ia)". It is a useful convention in dmm() to always include reciprocal covariances, for two
reasons

• It makes the variances and covariances sum correctly to phenotypic variance
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• It allows for cross-trait-cross-effect covariances to differ between reciprocals, which is commonly the
case

So let us do another fit of the new model including maternal effects. We will leave out the environmental
covariances, but include the genetic ones. We still only need the additive relationship matrix so we can use the
same dataframe.

>sheep.fit2 <- dmm(sheep.mdf, Ymat ~ 1 + Sex + Year + Tb,

components=c("VarE(I)","VarG(Ia)","VarE(M)","VarG(Ma)",

"CovG(Ia,Ma)","CovG(Ma,Ia)"))

...

Again we look at the column correlations of the dyadic model equations

> sheep.fit2$dme.corre

VarE(I) VarG(Ia) VarE(M) VarG(Ma) CovG(Ia,Ma) CovG(Ma,Ia)

VarE(I) 1.0000000 0.8125828 0.5302941 0.5074266 0.3504908 0.3504908

VarG(Ia) 0.8125828 1.0000000 0.6238947 0.6397454 0.6573003 0.6573003

VarE(M) 0.5302941 0.6238947 1.0000000 0.9646691 0.6613528 0.6613528

VarG(Ma) 0.5074266 0.6397454 0.9646691 1.0000000 0.7067437 0.7067437

CovG(Ia,Ma) 0.3504908 0.6573003 0.6613528 0.7067437 1.0000000 0.5009414

CovG(Ma,Ia) 0.3504908 0.6573003 0.6613528 0.7067437 0.5009414 1.0000000

>

For a small dataset, the column correlations are reasonable, except for the 0.96 between "VarE(M)" and
"VarG(Ma)" and the 0.81 which was there in the previous analysis. We will just view the genetic parameters
for two traits

> gsummary(sheep.fit2, traitset = c("Diam", "Cww"))

Call:

gsummary.dmm(dmmobj = sheep.fit2, traitset = c("Diam", "Cww"))

Proportion of phenotypic var/covariance partitioned by DME:

to each component (OLS-fixed-effects):

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Diam 0.0411 0.0903 -0.136 0.218

VarG(Ia) Diam 0.5381 0.1722 0.201 0.876

VarE(M) Diam 0.0958 0.1427 -0.184 0.376

VarG(Ma) Diam 1.1164 0.2163 0.693 1.540

CovG(Ia,Ma) Diam -0.3957 0.1266 -0.644 -0.148

CovG(Ma,Ia) Diam -0.3957 0.1266 -0.644 -0.148

VarP(I) Diam 1.0000 0.0000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Cww 0.1851 0.0886 0.0114 0.3587

VarG(Ia) Cww 0.5301 0.1613 0.2140 0.8461

VarE(M) Cww 0.0475 0.1329 -0.2131 0.3081

VarG(Ma) Cww 0.7445 0.1812 0.3893 1.0998

CovG(Ia,Ma) Cww -0.2536 0.1094 -0.4680 -0.0392

CovG(Ma,Ia) Cww -0.2536 0.1094 -0.4680 -0.0392

VarP(I) Cww 1.0000 0.0000 1.0000 1.0000

Correlation corresponding to each var/covariance component:
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partitioned by DME (OLS-fixed-effects):

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 1.000 1.0000 -0.960 2.960

VarG(Ia) Diam:Diam 1.000 0.0000 1.000 1.000

VarE(M) Diam:Diam 1.000 0.0000 1.000 1.000

VarG(Ma) Diam:Diam 1.000 0.0000 1.000 1.000

CovG(Ia,Ma) Diam:Diam -0.511 0.0839 -0.675 -0.346

CovG(Ma,Ia) Diam:Diam -0.511 0.0839 -0.675 -0.346

VarP(I) Diam:Diam 1.000 0.0000 1.000 1.000

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww 0.0229 0.0312 -0.0382 0.084

VarG(Ia) Diam:Cww 0.9999 0.1283 0.7484 1.251

VarE(M) Diam:Cww -0.8569 253.5523 -497.8195 496.106

VarG(Ma) Diam:Cww 0.9960 0.0900 0.8197 1.172

CovG(Ia,Ma) Diam:Cww -0.4762 0.1222 -0.7157 -0.237

CovG(Ma,Ia) Diam:Cww -0.5528 0.1008 -0.7505 -0.355

VarP(I) Diam:Cww 0.6596 0.0537 0.5544 0.765

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Diam 0.0229 0.0312 -0.0382 0.084

VarG(Ia) Cww:Diam 0.9999 0.1283 0.7484 1.251

VarE(M) Cww:Diam -0.8569 253.5523 -497.8195 496.106

VarG(Ma) Cww:Diam 0.9960 0.0900 0.8197 1.172

CovG(Ia,Ma) Cww:Diam -0.5528 0.1008 -0.7505 -0.355

CovG(Ma,Ia) Cww:Diam -0.4762 0.1222 -0.7157 -0.237

VarP(I) Cww:Diam 0.6596 0.0537 0.5544 0.765

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 1.000 0.00e+00 1.000 1.0

VarG(Ia) Cww:Cww 1.000 0.00e+00 1.000 1.0

VarE(M) Cww:Cww 1.000 1.49e-08 1.000 1.0

VarG(Ma) Cww:Cww 1.000 0.00e+00 1.000 1.0

CovG(Ia,Ma) Cww:Cww -0.404 1.04e-01 -0.607 -0.2

CovG(Ma,Ia) Cww:Cww -0.404 1.04e-01 -0.607 -0.2

VarP(I) Cww:Cww 1.000 0.00e+00 1.000 1.0

Phenotypic var/covariance from components partitioned by DME (OLS-fixed-effects):

Traitpair Estimate StdErr CI95lo CI95hi

1 Diam:Diam 3.003 0.2743 2.466 3.54

2 Diam:Cww 0.981 0.1330 0.720 1.24

3 Cww:Diam 0.981 0.1330 0.720 1.24

4 Cww:Cww 0.736 0.0633 0.612 0.86

>

Notice that the covariances between Ia and Ma are negative and contribute negatively to phenotypic vari-
ance, so that the proportions still sum to 1.0 and it is thus possible for the proportions due to some components
to exceed 1.0. This is actually the case for "VarG(Ma)" for trait "Diam" where the proportion is 1.116.

Notice also that the correlations for a trait with itself are always 1.0, except for those components which
are cross-effect covariances. For example the same-trait-cross-effect correlation between Ia and Ma for trait
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"Diam" is −0.511. This represents the genetic correlation between individual additive and maternal additive
effects.

Notice also that the cross-trait-cross-effect correlations are not equal, as mentioned above. For example the
correlation corresponding to "CovG(Ia,Ma)" for traits "Diam:Cww" is −0.476, while the reciprocal correlation
corresponding to "CovG(Ma,Ia)" for traits "Diam:Cww" is −0.552.

Let us now assume that the above model is our final choice for these data. Up until now all dmm() runs
have defaulted to what we term OLS-fixed-effects estimates, that is the dyadic model equations are setup using
ordinary least squares estimates of the fixed effects. This leads to variance component estimates which are
equivalent to MINQUE estimates.

We may now wish, for the final model, to obtain the more desirable GLS-fixed-effects estimates, where
the dyadic model equations are setup using generalised least squares estimates of the fixed effects. This
leads to variance component estimates which are equivalent to ’bias-corrected ML’ (BCML) estimates. The
disadvantage here is that the procedure becomes iterative, so it makes sense to reserve it for the final analysis.
We simply add the fixedgls=T argument as follows

> sheep.fit2g <- dmm(sheep.mdf, Ymat ~ 1 + Sex + Year ,

components=c("VarE(I)","VarG(Ia)","VarE(M)","VarG(Ma)","CovG(Ia,Ma)","CovG(Ma,Ia)"),

fixedgls=T)

Dyadic mixed model fit for datafile: sheep.mdf

Data file is a normal dataframe:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 9

no of traits (l) = 3

Setup antemodel matrices:

No of factors with specific components: 0

No of non-specific components partitioned: 6

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 44

no of individuals with data and X codes (n) = 37

Rank of X: 9 No of Fixed Effects: 9

OLS-fixed-effects step completed:

DME substep:

No of components defined = 6

No of components estimable = 6

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:

GLS-fixed-effects step:

Warning: Multivariate GLS is not same as multiple univariate GLS's

Round = 1 Stopcrit = 0.3658621

Round = 2 Stopcrit = 4.557446

Round = 3 Stopcrit = 7.026983

Round = 4 Stopcrit = 5.739107

Round = 5 Stopcrit = 3.973461

Round = 6 Stopcrit = 9.759143

.......

Round = 199 Stopcrit = 0.6030025

Round = 200 Stopcrit = 18.54845

Iteration(gls-fixed-effects) completed - count = 200
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Failed to converge

GLS-fixed-effects step abandoned:

>

So the GLS-fixed-effects step fails to converge. We cannot get GLS-fixed-effects estimates in this case.
Not surprising given the small dataset and the collinearities among the components. So let us go back to the
simpler model and do GLS-fixed-effects estimates there:

> sheep.fitg <- dmm(sheep.mdf, Ymat ~ 1 + Sex + Year + Tb,

components = c("VarE(I)","VarG(Ia)"),fixedgls=T)

Dyadic mixed model fit for datafile: sheep.mdf

Data file is a normal dataframe:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 9

no of traits (l) = 3

Setup antemodel matrices:

No of factors with specific components: 0

No of non-specific components partitioned: 2

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 44

no of individuals with data and X codes (n) = 36

Rank of X: 9 No of Fixed Effects: 9

OLS-fixed-effects step completed:

DME substep:

No of components defined = 2

No of components estimable = 2

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:

GLS-fixed-effects step:

Warning: Multivariate GLS is not same as multiple univariate GLS's

Round = 1 Stopcrit = 0.4485067

Round = 2 Stopcrit = 0.1680281

Round = 3 Stopcrit = 0.1077827

Round = 4 Stopcrit = 0.06148315

Round = 5 Stopcrit = 0.05731837

Round = 6 Stopcrit = 0.02106319

Round = 7 Stopcrit = 0.02599891

Round = 8 Stopcrit = 0.0157828

Round = 9 Stopcrit = 0.01001712

Round = 10 Stopcrit = 0.007371432

Iteration(gls-fixed-effects) completed - count = 10

Convergence achieved

GLS-fixed-effects step completed successfully:

DME substep:

Components to genetic parameters and SE's:

GLS-fixed-effects - genetic parameters with nonspecific components:

DME substep completed:

>
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So in this case the iteration works and converges quite rapidly, despite the high correlation between the
two components. Note that this run does both OLS-fixed-effects and GLS-fixed-effects estimates, in fact the
OLS-fixed-effects step provides intital estimates of the variance components for the GLS-fixed-effects step. The
saved object sheep.fitg contains the results of both steps. We can see the structure of sheep.fitg as follows

>attributes(sheep.fitg)

$names

[1] "aov" "mdf" "fixform"

[4] "b" "seb" "vara"

[7] "totn" "degf" "dme.mean"

[10] "dme.var" "dme.correl" "dmeopt"

[13] "siga" "sesiga" "vard"

[16] "degfd" "component" "correlation"

[19] "correlation.variance" "correlation.se" "fraction"

[22] "fraction.variance" "fraction.se" "variance.components"

[25] "variance.components.se" "phenotypic.variance" "phenotypic.variance.se"

[28] "observed.variance" "gls" "call"

$class

[1] "dmm"

> attributes(sheep.fitg$gls)

$names

[1] "b" "seb" "siga"

[4] "sesiga" "vard" "msr"

[7] "msrdf" "msa" "component"

[10] "correlation" "correlation.variance" "correlation.se"

[13] "fraction" "fraction.variance" "fraction.se"

[16] "variance.components" "variance.components.se" "phenotypic.variance"

[19] "phenotypic.variance.se" "observed.variance" "dmeopt"

>

So sheep.fitg now contains results of the OLS-fixed-effects step plus an attribute "gls" which itself contains
results of the GLS-fixed-effects step.

All the S3 methods (print(),summary(),gprint(),gsummary()) will report the GLS-fixed-effects results as
well as the OLS-fixed-effects results, if given the argument fixedgls=T. For example, let us view the variance
components and fixed effect estimates as follows

> summary(sheep.fitg,fixedgls=T,traitset=c("Cww","Diam"))

Call:

summary.dmm(object = sheep.fitg, traitset = c("Cww", "Diam"),

fixedgls = T)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Cww 4.0899 0.278 3.5451 4.635

SexM Cww 0.2166 0.186 -0.1482 0.581

Year1982 Cww 0.7667 0.385 0.0127 1.521

Year1983 Cww 0.0333 0.368 -0.6878 0.754

Year1984 Cww 0.3816 0.347 -0.2991 1.062

Year1985 Cww 0.6309 0.331 -0.0170 1.279

Year1986 Cww 0.9515 0.335 0.2943 1.609
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Year1987 Cww 0.4611 0.339 -0.2031 1.125

TbT Cww 0.0302 0.172 -0.3066 0.367

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Diam 20.6866 0.577 19.555 21.818

SexM Diam 0.3093 0.386 -0.448 1.067

Year1982 Diam 0.7333 0.799 -0.832 2.299

Year1983 Diam -0.2690 0.764 -1.766 1.228

Year1984 Diam -0.3847 0.721 -1.798 1.029

Year1985 Diam 0.0307 0.686 -1.315 1.376

Year1986 Diam 0.8551 0.696 -0.509 2.220

Year1987 Diam 0.1802 0.704 -1.199 1.559

TbT Diam -0.3599 0.357 -1.059 0.339

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 0.0262 0.0533 -0.0782 0.131

VarG(Ia) Cww:Cww 0.3538 0.0491 0.2576 0.450

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Diam -0.046 0.112 -0.266 0.174

VarG(Ia) Cww:Diam 0.466 0.103 0.264 0.668

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww -0.046 0.112 -0.266 0.174

VarG(Ia) Diam:Cww 0.466 0.103 0.264 0.668

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 0.267 0.232 -0.187 0.721

VarG(Ia) Diam:Diam 0.790 0.213 0.372 1.208

Coefficients fitted by GLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Cww 4.363 0.549 3.288 5.439

SexM Cww 0.232 0.316 -0.388 0.852

Year1982 Cww 0.354 0.758 -1.131 1.840

Year1983 Cww -0.414 0.706 -1.798 0.969

Year1984 Cww 0.716 0.621 -0.502 1.934

Year1985 Cww 0.606 0.614 -0.597 1.810

Year1986 Cww 0.405 0.652 -0.874 1.683

Year1987 Cww 0.197 0.654 -1.084 1.478

TbT Cww 0.101 0.308 -0.502 0.705

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Diam 21.1631 0.915 19.370 22.956

SexM Diam 0.3396 0.521 -0.681 1.361

Year1982 Diam 0.0224 1.263 -2.453 2.498

Year1983 Diam -1.0643 1.174 -3.366 1.237

Year1984 Diam 0.1941 1.028 -1.821 2.209
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Year1985 Diam -0.0109 1.019 -2.008 1.987

Year1986 Diam -0.1152 1.086 -2.244 2.014

Year1987 Diam -0.2972 1.087 -2.428 1.834

TbT Diam -0.2187 0.509 -1.216 0.779

Components partitioned by DME from residual var/covariance after GLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 0.0661 0.0457 -0.0234 0.156

VarG(Ia) Cww:Cww 0.9807 0.0398 0.9027 1.059

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Diam -0.0429 0.0899 -0.219 0.133

VarG(Ia) Cww:Diam 1.6542 0.0783 1.501 1.808

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww -0.0429 0.0899 -0.219 0.133

VarG(Ia) Diam:Cww 1.6542 0.0783 1.501 1.808

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 0.0389 0.176 -0.305 0.383

VarG(Ia) Diam:Diam 2.8223 0.153 2.522 3.122

>

Notice that the GLS-fixed-effects estimates differ from the OLS-fixed-effects estimates, both for fixed effects
and for variance components, and that the GLS-fixed-effects estimates generally have smaller standard errors.
That is as would be expected.

One can , of course use the gsummary() function on an object like sheep.fitg and it will report heritabilities
and genetic correlations based on whatever option is chosen for solving the DME’s, for both OLS-fixed-effects
and GLS-fixed-effects. For example if dmeopt="lm" the resulting component estimates and heritabilities and
genetic correelations will be MINQUE estimates with OLS-fixed-effects amd BCML estimates with GLS-fixed-
effects.

There is also a function csummary() which lists (co)variance component estimates alone.
That is enough for a tutorial. Here is a list of further aspects which the user may wish to investigate

• Non additive genetic (co)variance components

• Sexlinked genetic variance components

• Calculation of response to selection

• Plotting the dyadic model residuals

• Using alternative regression methods ( ie alternatives to OLS) to solve the dyadic model equations.
Options are feasable-gls, robust regression and principal components regression

• Defining a cohort effect

• Class specific variance compponent estimates ( eg sex-specific)
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5 Some datasets with ’known’ results
It is important that users be able to build confidence in the correctness of any R function by testing its results
with some datasets for which the answers are ’known’. In the case of pedigree data, this is by no means easy
achieve. The options are

• Use very simple small datasets

• Use simulated data, sampled from some population with known parameters

• Use real data and compare results with other programs

All three approaches have issues. Tiny datasets are artificial. Simulated data is a sample and will never give
the exact same result as the parameters of the population from which it was drawn. Real data is messy and
other programs (as well as one’s own) may be in error. We use all three approaches here.

5.1 A balanced dataset: comparison with anova method
The dataset dt8bal.df is a simple balanced design with 8 observations of individuals from 4 sire families, with
2 individuals per family. We wish to use it to estimate additive genetic variance and to show that the results
are the same as those obtained by estimating the sire and within sire variance components using the analysis
of variance method.

First the dmm() analysis. We will just analyse the trait "CWW", so we can work straight from the
dataframe, without preprocessing with function mdf().

>data(dt8bal.df)

>dt8bal.fit <- dmm(dt8bal.df,CWW ~ 1, fixedgls=T)

...

> summary(dt8bal.fit,fixedgls=T)

Call:

summary.dmm(object = dt8bal.fit, fixedgls = T)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

1 CWW 4.97 0.128 4.72 5.23

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) CWW:CWW 0.0713 0.163 -0.249 0.392

VarG(Ia) CWW:CWW 0.0617 0.164 -0.260 0.383

Coefficients fitted by GLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

1 CWW 4.98 0.136 4.71 5.24

Components partitioned by DME from residual var/covariance after GLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) CWW:CWW 0.0713 0.163 -0.249 0.392
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VarG(Ia) CWW:CWW 0.0617 0.164 -0.260 0.383

>

So the OLS-fixed-effect and GLS-fixed-effect estimates of variance components are identical. That is as
expected for balanced data.

Now we wish to do an analysis of variance between and within sire families, for the same data.

>dt8.fit <- aov(CWW ~ 1 + SId, dt8bal.df)

> summary(dt8.fit)

Df Sum Sq Mean Sq F value Pr(>F)

SId 3 0.445 0.1483 1.262 0.4

Residuals 4 0.470 0.1175

12 observations deleted due to missingness

We now have the between and within sire mean squares, and we need to equate these to their expectations
in terms of variance components as follows:

MS(B) = σ
2
W +2.0∗σ

2
B

MS(W ) = σ
2
W

and solve these two equations to obtain σ2
B = 0.0154 and σ2

W = 0.1175. We then need to equate these two
components to their expectaions in terms of causal components as follows:

σ
2
B = 0.25∗σ

2
G(Ia)

σ
2
W = 0.75∗σ

2
G(Ia)+σ

2
E(I)

and solve these two equations to obtain σ2
G(Ia) = 0.0616 and σ2

E(I) = 0.0713.
These agree exactly with the analysis using function dmm() above. Most methods of variance component

estimation agree with the analysis of variance method for balanced designs, and this agreement extends to
pedigree based causal components. This shows that dmm belongs to this family, and that its arithmetic is
substantially correct.

If we use the dmeopt="fgls" option with the dataset dt8bal.df we get the following

> dt8bal.fgls.fit <- dmm(dt8bal.df,CWW ~ 1,dmeopt="fgls")

.....

Iteration(fgls) round: 0

siga in fgls.update:

[,1]

[1,] 0.07125000

[2,] 0.06166667

Round = 1 Stopcrit = 4.544976e-16

Iteration(fgls) completed - count = 1

Convergence achieved (fgls)

>

> summary(dt8bal.fgls.fit)

Call:

summary.dmm(object = dt8bal.fgls.fit)

Coefficients fitted by OLS for fixed effects:
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Trait Estimate StdErr CI95lo CI95hi

1 CWW 4.97 0.128 4.72 5.23

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) CWW:CWW 0.0713 0.276 -0.470 0.612

VarG(Ia) CWW:CWW 0.0617 0.294 -0.514 0.637

>

So the REML estimates obtained from dmeopt="fgls" are also the same as the analysis of variance estimates
for this balanced design, as expected. This constitutes a somewhat trivial validation of the code for obtaining
REML estimates via dmeopt="fgls".
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5.2 The quercus program’s demo2 dataset
The dataset quercus.df is a demonstrtation dataset from the program package QUERCUS, developed by Ruth
G. Shaw and Frank H. Shaw. It is known to QUERCUS as the ’demo2’ dataset. The QUERCUS program pack-
age is available from https://cbs.umn.edu/eeb/about-eeb/helpful-links/quercus-quantitative-genetics-software.

We are going to use the program ’nf3.p’ from within the QUERCUS package to compute both ML and
REML estimates of components "VarE(I)", "VarG(Ia)", and "VarG(Id)", for the dataset ’demo2’ which has a 2
generation pedigree with full-sib and half-sib families. The program ’nf3.p’ requires a Pascal compiler - here
we used the GNU gpc compiler. To run ’nf3.p’ the data must be in a file called sibships as follows

2 2 0 0 0

0

1 181 201 0.0214 0.4917

2 181 201 0.8036 2.4103

3 181 201 -0.1645 -1.1545

4 181 202 -1.2467 -3.2364

5 181 202 -1.1167 -2.4520

...

256 0 0 -99 -99

257 0 0 -99 -99

258 0 0 -99 -99

259 0 0 -99 -99

260 0 0 -99 -99

0

and output appears in a file called ’Analysis’ as follows

This is an REML analysis.

LogLike -272.6264

LogLike -238.4432

LogLike -238.4432

At iteration 3

*** The unconstrained analysis converged with the following results ***

The log likelihood is -238.4432

The mean of each trait is

0.081236

-0.085470

The effect of the fixed factors is

(in the order given, levels within factors)

The estimates of the components are:

Additive

0.196601 0.134016

0.813206

Environmental

0.034755 0.134609

0.974764

Dominance
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0.938617 -0.113085

0.046997

Large-sample var-cov matrix of the estimates

0.122560 0.021440 0.004091 0.093991 0.010331 0.00

1413 -0.207028 -0.028068 -0.004611

0.105442 0.037818 0.010331 0.065235 0.01

5525 -0.028068 -0.157275 -0.045913

0.356861 0.001413 0.015525 0.18

3679 -0.004611 -0.045913 -0.482813

0.228582 0.021530 0.00

2238 -0.336299 -0.031249 -0.003320

0.153474 0.03

0090 -0.031249 -0.221470 -0.043116

0.41

5866 -0.003320 -0.043116 -0.587751

0.565659 0.057480 0.007096

0.382374 0.083193

1.046082

The test statistic comparing two likelihoods is given by twice

their difference and is compared to Chi-square with df given by the

number of parameters specified by the hypothesis.

The above is the REML analysis. The same analysis using ML is a s follows

This is an ML analysis.

LogLike -267.4334

LogLike -234.2705

LogLike -234.2705

At iteration 3

*** The unconstrained analysis converged with the following results ***

The log likelihood is -234.2705

The mean of each trait is

0.081236

-0.085470

The effect of the fixed factors is

(in the order given, levels within factors)

The estimates of the components are:

Additive

0.149251 0.124371

0.726729

Environmental

0.022917 0.132197

0.953145
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Dominance

0.985967 -0.103439

0.133474

Large-sample var-cov matrix of the estimates

0.109096 0.018697 0.003532 0.090625 0.009646 0.00

1273 -0.193564 -0.025326 -0.004052

0.092867 0.032809 0.009646 0.062091 0.01

4273 -0.025326 -0.144700 -0.040904

0.311952 0.001273 0.014273 0.17

2452 -0.004052 -0.040904 -0.437904

0.227741 0.021358 0.00

2203 -0.332933 -0.030563 -0.003180

0.152688 0.02

9776 -0.030563 -0.218326 -0.041863

0.41

3060 -0.003180 -0.041863 -0.576523

0.552195 0.054738 0.006537

0.369800 0.078184

1.001173

The test statistic comparing two likelihoods is given by twice

their difference and is compared to Chi-square with df given by the

number of parameters specified by the hypothesis.

To analyse these data with dmm() we need to load the data, and prepare it with mdf(). In particular, we
need to add base animals to the pedigree and compute both the additive and dominance relationship matrices.
We do this as follows

> data(quercus.df)

> quercus.mdf <- mdf(quercus.df,pedcols=c(1:3), factorcols=4, ycols=c(5:6),

sexcode=c(1,2), relmat=c("E","A","D"))

Pedigree Id check:

No of rows with Id in original dataframe = 180

No of sex codes not in sexcode[] so changed to NA = 0

No of rows with Sex == NA removed from dataframe = 0

No of rows with Id == NA removed from dataframe = 0

No of rows with duplicated Id removed from dataframe = 0

No of rows remaining after duplicates and NA's removed = 180

No of SId's with no matching Id = 20

No of DId's with no matching Id = 60

Length of dataframe with base Id's added = 260

Renumber pedigree Id's:

Add matrix of multivariate traits:

Setup pedigree for nadiv():

Make relationship matrices:

starting to make D....done

Return mdf as an object of class mdf containing the dataframe as mdf$df and

the relationship matrices as mdf$rel:

>
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Note that mdf() has added 20 base sires and 60 base dams. We now do the dmm() analysis, with only the
mean as a fixed effect

> quercus.fit <- dmm(quercus.mdf, Ymat ~ 1,components=c("VarE(I)","VarG(Ia)","VarG(Id)"),relmat="withdf", fixedgls=T)

Dyadic mixed model fit for datafile: quercus.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 1

no of traits (l) = 2

Setup antemodel matrices:

No of factors with specific components: 0

No of non-specific components partitioned: 3

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 260

no of individuals with data and X codes (n) = 180

Rank of X: 1 No of Fixed Effects: 1

OLS-fixed-effects step completed:

DME substep:

No of components defined = 3

No of components estimable = 3

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:

GLS-fixed-effects step:

Warning: Multivariate GLS is not same as multiple univariate GLS's

Round = 1 Stopcrit = 4.163336e-17

Iteration(gls-fixed-effects) completed - count = 1

Convergence achieved

GLS-fixed-effects step completed successfully:

DME substep:

Components to genetic parameters and SE's:

GLS-fixed-effects - genetic parameters with nonspecific components:

DME substep completed:

>

So the fixedgls iteration completed successfully. We can inspect the results.

> summary(quercus.fit,fixedgls=T)

Call:

summary.dmm(object = quercus.fit, fixedgls = T)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

1 Trait1 0.0812 0.0804 -0.0764 0.239

Trait Estimate StdErr CI95lo CI95hi

1 Trait2 -0.0855 0.101 -0.283 0.112
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Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait1 0.0348 0.294 -0.5414 0.611

VarG(Ia) Trait1:Trait1 0.1966 0.143 -0.0836 0.477

VarG(Id) Trait1:Trait1 0.9386 0.373 0.2082 1.669

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait2 0.135 0.369 -0.589 0.858

VarG(Ia) Trait1:Trait2 0.134 0.179 -0.218 0.486

VarG(Id) Trait1:Trait2 -0.113 0.468 -1.030 0.804

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait1 0.135 0.369 -0.589 0.858

VarG(Ia) Trait2:Trait1 0.134 0.179 -0.218 0.486

VarG(Id) Trait2:Trait1 -0.113 0.468 -1.030 0.804

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 0.975 0.460 0.0726 1.88

VarG(Ia) Trait2:Trait2 0.813 0.224 0.3745 1.25

VarG(Id) Trait2:Trait2 0.047 0.584 -1.0967 1.19

Coefficients fitted by GLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

1 Trait1 0.0812 0.109 -0.132 0.294

Trait Estimate StdErr CI95lo CI95hi

1 Trait2 -0.0855 0.147 -0.374 0.203

Components partitioned by DME from residual var/covariance after GLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait1 0.0348 0.208 -0.37332 0.443

VarG(Ia) Trait1:Trait1 0.1966 0.101 -0.00184 0.395

VarG(Id) Trait1:Trait1 0.9386 0.264 0.42128 1.456

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait2 0.135 0.261 -0.377 0.646

VarG(Ia) Trait1:Trait2 0.134 0.127 -0.115 0.383

VarG(Id) Trait1:Trait2 -0.113 0.331 -0.761 0.535

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait1 0.135 0.261 -0.377 0.646

VarG(Ia) Trait2:Trait1 0.134 0.127 -0.115 0.383

VarG(Id) Trait2:Trait1 -0.113 0.331 -0.761 0.535

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 0.975 0.326 0.336 1.614

VarG(Ia) Trait2:Trait2 0.813 0.159 0.502 1.124

VarG(Id) Trait2:Trait2 0.047 0.413 -0.763 0.857
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>

So the dmm OLS-fixed-effects and dmm GLS-fixed-effects estimates of variance components are exactly the
same, and are also exactly the same as the QUERCUS REML estimates. The QUERCUS ML estimates are
different. That is because the quercus ML estimates are not bias-corrected whereas the dmm BCML estimates
( obtained after fitting fixed effects by GLS) are.

The var-cov matrix of the estimates given by QUERCUS leads to larger standard errors than those given by
dmm. This is not surprising, QUERCUS uses large-sample covariances from the matrix of second derivatives,
while dmm() uses standard errors from the regression technique used to fit the dyadic model.

The QUERCUS ’demo2’ dataset is essentially a balanced design, even with a dominance variance fitted,
because the pedigree has equal sized families and there are no fixed effects except mean. So this reinforces
the concept of a family of methods that agree with ’anova’ and with each other for balanced designs. REML
and dmm OLS-b (ie MINQUE) and dmm GLS-b (ie bias-corrected ML) belong to that family, but ML and the
classical method of moments do not.

We have also learnt that we seem to be doing the dominance relationship matrix and "VarG(Id)" correctly,
and that the process of appending relationship matrices to the dataframe seems to be sound.
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5.3 The warcolak dataset
In the R package nadiv there is a synthetic dataset with a 3 generation pedigree designed for testing estimation
of nonadditive and sex-linked genetic variances. The package author (Matthew Wolak) gives the following
specification on the warcolak help page.

The dataset was simulated to have two un-correlated traits with different genetic architectures
(see ‘examples’ below). The trait means are both equal to 1 for males and 2 for females. The
additive genetic, dominance genetic, and environmental (or residual) variances for both ‘trait1’
and ‘trait2’ are 0.4, 0.3, & 0.3, respectively. However, the additive genetic variance for ‘trait2’
can be further decomposed to autosomal additive genetic variance (0.3) and X-linked additive
genetic variance (0.1; assuming the ‘no global dosage compensation’ mechanism).

Females and males have equal variances (except for sex-chromosomal additive genetic vari-
ance, where by definition, males have half of the additive genetic variance as females; Wolak
2013) and a between-sex correlation of one for all genetic and residual effects (except the cross-
sex residual covariance=0). All random effects were drawn from multivariate random normal
distributions [e.g., autosomal additive genetic effects: N (0, kronecker(A, G))] with means of
zero and (co)variances equal to the product of the expected sex-specific (co)variances (e.g., G)
and the relatedness (or incidence) matrix (e.g., A).

The actual variance in random effects will vary slightly from the amount specified in the
simulation, because of Monte Carlo error. Thus, the random effects have been included as separate
columns in the dataset.

We are going to use these data to check dmm(), but first we have to slightly alter the column names
of the warcolak dataframe to suit dmm() conventions. To this end the dmm package provides a function
warcolak.convert() just for this task.

> library(dmm)

> data(warcolak)

> warcolak.df <- warcolak.convert(warcolak)

> str(warcolak.df)

'data.frame': 5400 obs. of 13 variables:

$ Id : Factor w/ 5400 levels "u10_d1c","u10_d1d",..: 737 738 739 740 733 734 735 736 789 790 ...

$ SId : Factor w/ 600 levels "u10_gs1","u10_gs2",..: NA NA NA NA NA NA NA NA 81 81 ...

$ DId : Factor w/ 1200 levels "u10_d1c","u10_d1d",..: NA NA NA NA NA NA NA NA 173 173 ...

$ Sex : Factor w/ 2 levels "F","M": 2 2 2 2 1 1 1 1 2 2 ...

$ Trait1: num 1.975 1.046 1.758 0.369 1.679 ...

$ Trait2: num 1.132 0.767 2.325 1.317 0.784 ...

$ t1_a : num -0.205 -0.427 0.198 0.391 0.58 ...

$ t2_a : num -0.0489 0.7127 0.9415 -0.6312 -0.8016 ...

$ t2_s : num -0.0982 -0.3253 0.2469 0.2616 -0.0257 ...

$ t1_d : num 1.109 -0.141 0.993 -0.774 -0.521 ...

$ t2_d : num 0.241 -0.506 0.011 0.376 -0.281 ...

$ t1_r : num 0.0707 0.6133 -0.4331 -0.2486 -0.3797 ...

$ t2_r : num 0.0383 -0.1144 0.1258 0.3105 -0.1069 ...

> rm(warcolak)

>

The columns labelled t1_a to t2_r are the random effects for the additive, sexlinked, dominance, and residual
components.

We now need to preprocess warcolak.df with mdf() to renumber the Id’s and to append the additive, domi-
nance, and sex-linked relationship matrices. Matthew Wolak ( author of the nadiv package) has kindly assisted
me with the information that the sexlinked breeding vales in the warcolak dataset were generated with the as-
sumption of no global dosage compensation. This means that the appropriate model for dosage compensation
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should be "ngdc". Unfortunately an earlier release of dmm (dmm_1.5-1) assumed "hopi" and the analysis re-
ported in this document for release (dmm_1.5-1) is wrong. It was corrected in release (dmm_1.6-1). Also the
warcolak dataset was resimulated in nadiv release (nadiv_2.14.0), requiring a recompute of the dmm analyses
of the warcolak data. This recompute is included in release (dmm_1.6-3) and later, and is reported below.

> warcolak.mdf <- mdf(warcolak.df,pedcols=c(1:3),factorcols=4,ycols=c(5:6),sexcode=c("M","F"),relmat=c("E","A","D","S"),keep=T)

Pedigree Id check:

No of rows with Id in original dataframe = 5400

No of sex codes not in sexcode[] so changed to NA = 0

No of rows with Sex == NA removed from dataframe = 0

No of rows with Id == NA removed from dataframe = 0

No of rows with duplicated Id removed from dataframe = 0

No of rows remaining after duplicates and NA's removed = 5400

Length of dataframe with base Id's added = 5400

Renumber pedigree Id's:

Add matrix of multivariate traits:

Setup pedigree for nadiv():

Make relationship matrices:

starting to make D....done

Return mdf as an object of class mdf:

containing the dataframe as mdf$df:

and the relationship matrices as mdf$rel:

Warning message:

In makeS(ped2, heterogametic = sexcode[1], returnS = T, DosageComp = "ngdc") :

Assuming male heterogametic (e.g., XX/XY) sex chromosome system

>

We can now run dmm() and we shall fit a mean and a Sex difference as the only fixed effects. We shall do
separate runs for each trait, as Trait1 should not have a sexlinked additive variance component fitted. Firstly
Trait1

> warcolak.fit1 <- dmm(warcolak.mdf, Trait1 ~ 1 + Sex,components = c("VarE(I)","VarG(Ia)", "VarG(Id)"), relmat = "withdf")

Dyadic mixed model fit for datafile: warcolak.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 2

no of traits (l) = 1

Setup antemodel matrices:

No of factors with specific components: 0

No of non-specific components partitioned: 3

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 5400

no of individuals with data and X codes (n) = 5400

Rank of X: 2 No of Fixed Effects: 2

OLS-fixed-effects step completed:

DME substep:

No of components defined = 3

No of components estimable = 3

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:

>
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We look to see if the 3 compoents are correlated

> warcolak.fit1$dme.corre

VarE(I) VarG(Ia) VarG(Id)

VarE(I) 1.0000000 0.4856324 0.9190639

VarG(Ia) 0.4856324 1.0000000 0.6255619

VarG(Id) 0.9190639 0.6255619 1.0000000

>

There seem to be some serious collinearities in these data, particularly between "VarE(I)" and "VarG(Id)".
We shall proceed to view the results.

> summary(warcolak.fit1)

Call:

summary.dmm(object = warcolak.fit1)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Trait1 2.06 0.0180 2.03 2.100

SexM Trait1 -1.02 0.0269 -1.07 -0.968

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait1 0.282 0.03487 0.213 0.350

VarG(Ia) Trait1:Trait1 0.391 0.00857 0.374 0.408

VarG(Id) Trait1:Trait1 0.295 0.03592 0.225 0.365

>

The estimated components VarE(I), VarG(Ia), VarG(Id) agree reasonably well with the stated population
values (0.3,0.4,0.3 respectively).The confidence limits include the stated population value. The collinearities
noted above do not seem to have grossly affected the results.

Because the warcolak dataset now includes the actual simulated effects as well as their sum which is
the phenotypic value of the trait, we can compute the sample values for VarE(I), VarG(Ia), and VarG(Id) by
computing the variances of t1_r, t1_a, and t1_d . These are shown below.

> var(warcolak$t1_r[warcolak$sex == "M"])

[1] 0.3016221

> var(warcolak$t1_r[warcolak$sex == "F"])

[1] 0.3028589

> var(warcolak$t1_a[warcolak$sex == "M"])

[1] 0.3634443

> var(warcolak$t1_a[warcolak$sex == "F"])

[1] 0.3711862

> var(warcolak$t1_d[warcolak$sex == "M"])

[1] 0.2962183

> var(warcolak$t1_d[warcolak$sex == "F"])

[1] 0.2873658

We had to compute separately for each sex, because there is a Sex difference. The sample values are close to
the stated population values, as expected for a sample of size 5400. The confidence limits of the dmm estimates
include the sample values, except for the male additive genetic variance.
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The above dmm analysis is with OLS-fixed-effects, that is fixed effects fitted by ordinary least squares.
There is no reason to do a GLS-fixed-effects run in this case as the data are balanced ( there is only a mean
and a balanced Sex effect to fit), and the estimates of variance components after GLS-fixed-effects would be
identical to those after OLS-fixed-effects.

We now look at the analysis of Trait2.

> warcolak.fit2 <- dmm(warcolak.mdf,Trait2 ~ 1 + Sex,components=c("VarE(I)","VarG(Ia)","VarG(Id)","VarGs(Ia)"),relmat="withdf")

Dyadic mixed model fit for datafile: warcolak.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 2

no of traits (l) = 1

Setup antemodel matrices:

No of factors with specific components: 0

No of non-specific components partitioned: 4

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 5400

no of individuals with data and X codes (n) = 5400

Rank of X: 2 No of Fixed Effects: 2

OLS-fixed-effects step completed:

DME substep:

No of components defined = 4

No of components estimable = 4

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:

>

We again check the correlations among columns of the DME’s

> warcolak.fit2$dme.corre

VarE(I) VarG(Ia) VarG(Id) VarGs(Ia)

VarE(I) 1.0000000 0.4856324 0.9190639 0.4080959

VarG(Ia) 0.4856324 1.0000000 0.6255619 0.8268400

VarG(Id) 0.9190639 0.6255619 1.0000000 0.5254999

VarGs(Ia) 0.4080959 0.8268400 0.5254999 1.0000000

>

There is an additional serious collinearitty between "VarG(Ia)" and "VarGs(Ia)". We shall keep this in mind as
we view the results

> summary(warcolak.fit2)

Call:

summary.dmm(object = warcolak.fit2)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Trait2 1.99 0.0179 1.95 2.023

SexM Trait2 -1.00 0.0269 -1.06 -0.951

33



Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 0.2954 0.0349 0.2271 0.364

VarG(Ia) Trait2:Trait2 0.2750 0.0126 0.2502 0.300

VarG(Id) Trait2:Trait2 0.3366 0.0359 0.2662 0.407

VarGs(Ia) Trait2:Trait2 0.0776 0.0123 0.0535 0.102

>

The estimated components VarE(I), VarG(Ia), VarG(Id), and VarGs(Ia), agree well with the stated pop-
ulation values (0.3,0.3,0.3,0.1 respectively). The confidence limits include the stated population value. The
collinearities noted above do not seem to have affected the results.

We compute the sample values for VarE(I), VarG(Ia), VarG(Id), and VarGs(Ia) by computing the variances
of t2_r, t2_a, t2_d, and t2_s. These are shown below

> var(warcolak$t2_r[warcolak$sex == "M"])

[1] 0.29752

> var(warcolak$t2_r[warcolak$sex == "F"])

[1] 0.2988329

> var(warcolak$t2_a[warcolak$sex == "M"])

[1] 0.3066459

> var(warcolak$t2_a[warcolak$sex == "F"])

[1] 0.300511

> var(warcolak$t2_d[warcolak$sex == "M"])

[1] 0.3113859

> var(warcolak$t2_d[warcolak$sex == "F"])

[1] 0.2891137

> var(warcolak$t2_s[warcolak$sex == "M"])

[1] 0.04912207

> var(warcolak$t2_s[warcolak$sex == "F"])

[1] 0.09356907

>

The confidence limits of the dmm estimated components span the sample values. In the case of the sexlinked
additive component the computed sample variance of effect t2_s for males is half of that for females. That
is correct. The estimated variance component VarGs(Ia) is adjusted to an all-female basis, so its confidence
limits should include the above sample variance for females, and that is what we see.

We conclude that comparison of dmm() estimates of variance components from the simulated warcolak
data with the data’s population values, and with the data’s sample values computed from effect values included
in the warcolak dataset, suggests that dmm() estimates are correct, within the limits expected from sampling
variation.

There is one other thing that can be done as a check, and that is to analyse each of the effects instead of the
phenotypic values. We will do this just for effect t2_s

> warcolak.fit2s <- dmm(warcolak.mdf,t2_s ~ 1 + Sex,components=c("VarE(I)","VarG(Ia)","VarG(Id)","VarGs(Ia)"),relmat="withdf")

Dyadic mixed model fit for datafile: warcolak.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 2

no of traits (l) = 1

Setup antemodel matrices:

No of factors with specific components: 0
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No of non-specific components partitioned: 4

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 5400

no of individuals with data and X codes (n) = 5400

Rank of X: 2 No of Fixed Effects: 2

OLS-fixed-effects step completed:

DME substep:

No of components defined = 4

No of components estimable = 4

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:

>

> summary(warcolak.fit2s)

Call:

summary.dmm(object = warcolak.fit2s)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) t2_s 0.00109 0.00496 -0.00863 0.0108

SexM t2_s -0.00324 0.00744 -0.01783 0.0113

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) t2_s:t2_s 1.00e-09 0.002662 -0.00522 0.00522

VarG(Ia) t2_s:t2_s 1.00e-09 0.000965 -0.00189 0.00189

VarG(Id) t2_s:t2_s 2.97e-03 0.002742 -0.00241 0.00834

VarGs(Ia) t2_s:t2_s 9.32e-02 0.000939 0.09138 0.09506

>

What we expect to get here is near-zero for all of the components except VarGs(Ia), which should be close to
its sample value. We find that the estimate of VarGs(Ia) is indeed very close to its sample value for females of
0.0935. Much closer than the estimate of VarGs(Ia) of 0.0776 obtained above from analysis of the phenotypic
values for Trait 2. We conclude that there is some evidence that the collinearities among columns of the W
matrix for components has affected estimation of components. Some consideration could be given to using
principal component regression in this case. We will not do that here, there is a section 7.4 demonstrating
principal component regression.

As far as dmm() is concerned all of the analyses of the warcolak dataset indicate that it is performing cor-
rectly. We conclude with a word of caution. The above analyses ignore the possibility that genetic parameters
are sex-specific. While this is OK for warcolak because we know from the simulation that genetic effects
do not differ between the sexes, it should not be assumed in general. It is possible to use dmm to perform
sex-specific analyses. See the separate document dmmClassSpecific.pdf [13].
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5.4 The Harvey dataset
The harv101.df dataset comes originally from Harvey(1960) [11]. It is real data, average daily gain on 65
Hereford steers. It has been extensively used as a test example for many years. It is unbalanced in both the
fixed effects and the pedigree families.

We are going to compare estimates of additive genetic and environmental variance components obtained
from these data with two programs, dmm() and DFREML. The program DFREML was written by Karin
Meyer, and does REML estimates only. We shall also compare with estimates from Harvey’s original analysis
by the fitting constants method, which is an analysis of variance method, commonly known as Henderson’s
Method-3.

The program DFREML (Meyer(1998) [20]) is written in Fortran. It requires separate files for pedigree
information and data. It also requires some interactive input which under Unix can be redirected from standard
input. DFREML is actually a package of several programs, and we are going to use the routine DFUNI, which
is for univariate analyses, along with the routine DFPREP, which recodes the pedigree and data files. We are
not going to give all the details, just the output file from the final run as follows

*** DFREML 3.1.000 ***

Last modified : May 11, 2001

********************************************************************************

PROGRAM " D F U N I"

ESTIMATE VARIANCE COMPONENTS FOR AN INDIVIDUAL ANIMAL MODEL

****************************************************************************KM**

Today is 17/05/2010 -- Time is 15:30

Running on host : "not determined"

-----------------------------------

DESCRIPTION OF DATA SET

-----------------------------------

harv103df.dat with dfuni - no interaction

ANALYSIS FOR TRAIT : 1 adg

Data file used : "

Pedigree file used : "

Data directory : "

----------------------------------

MODEL OF ANALYSIS & DATA STRUCTURE

----------------------------------

ANALYSIS FITTING MODEL NO. = 1

NO. OF RECORDS = 65

NO. OF ANIMALS = 74

NO. OF TRAITS = 1

1 adg MEAN = 2.41138 SDEV = 0.277809
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NO. OF FIXED EFFECTS = 2

... WITH TOTAL NO. OF LEVELS = 6

1 line NO. OF LEVELS = 3

2 agedam NO. OF LEVELS = 3

NO. OF COVARIABLES = 2

... WITH TOTAL NO. OF REGRESSION COEFFICIENTS = 2

1 age ORDER FITTED = 1 MEAN = 176.646 SDEV = 1

4.7048

2 wt ORDER FITTED = 1 MEAN = 416.846 SDEV = 4

1.4149

NO. OF EQUATIONS IN TOTAL = 83

-----------------------------

SUMMARY OF PEDIGREE STRUCTURE

-----------------------------

NO. OF "BASE" ANIMALS = 74

NO. OF ANIMALS WITH RECORDS = 65

... WITH UNKNOWN/PRUNED SIRE = 0

... WITH UNKNOWN/PRUNED DAM = 65

NO. OF SIRES WITH PROGENY RECORDS = 9

NO. OF DAMS WITH PROGENY RECORDS = 0

NO. OF GRAND-SIRES W. PROGENY RECORDS = 0

NO. OF GRAND-DAMS W. PROGENY RECORDS = 0

-------------------------------------

OPTIONS SET IN OPTIMIZATION ROUTINE

-------------------------------------

USE QUADRATIC APPROXIMATION OF LOG L

MAXIMUM NO. OF ITERATES ALLOWED = 500

-----------------------

CHARACTERISTICS OF RUN :

-----------------------

RUN WITH OPTION = 0

NO. OF NON-ZERO PIVOTS ENCOUNTERED = 81

NO. OF DEGREES OF FREEDOM 1 = 58

NO. OF DEGREES OF FREEDOM 2 = -16

NO. OF ITERATES CARRIED OUT = 0

NO. OF LIKELIHOODS EVALUATED = 11

PARAMETERS : STARTING VALUES AND ESTIMATES =

1 HERITABILITY 0.4000000000 0.7400498769

0 LOG L 34.62023750 34.82083038

-------------------------------------------

ESTIMATES OF VARIANCES & GENETIC PARAMETERS
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-------------------------------------------

UNIVARIATE ANALYSIS FOR TRAIT NO. = 1

TOTAL SUMS OF SQUARES (Y'Y) = 4.939375385

SUMS OF SQUARES FOR RESIDUAL (Y'PY) = 1.033240267

LOG DETERMINANT OF COEFFICIENT MATRIX = 47.24592509

LOG DETERMINANT OF NRM = -18.69933471

LOG LIKELIHOOD (WITH NRM) = 34.82083038

ADDITIV-GENETIC (DIRECT) VARIANCE 1 = 0.5071591820E-01

ERROR VARIANCE = 0.1781448737E-01

PHENOTYPIC VARIANCE 1 = 0.6853040557E-01

PHENOTYPIC STANDARD DEVIATION = 0.2618

PHENOTYPIC COEFFICIENT OF VARIATION (%) = 10.8561

HERITABILITY 1 = 0.7400 0

-----------------------------------

APPROXIMATION OF SAMPLING VARIANCES

-----------------------------------

NO. OF LIKELIHOOD VALUES AVAILABLE = 11

QUADRATIC APPROXIMATION OF LIKELIHOOD :

NO. OF PARAMETERS OF FUNCTION = 2

NORM OF GRADIENT VECTOR = 0.2075215705E-02

"RANGE" PARAMETER (IN %) = 10.00000000

NO. OF POINTS USED = 4

RANK OF APPROXIMATE INFORMATION MATRIX = 1

LOG DETERMINANT ...................... = 0.9746069797

PARAMETER ESTIMATES WITH THEIR APPROX. S.E.

1 HERITABILITY : 0.740050 0.614281

CONSTANT = 34.82083038

LINEAR COEFFCIENT 1 = 0.20752157E-02

QUADRATIC COEFFICIENT 1 1 = -1.3250627

CUBIC APPROXIMATION OF LIKELIHOOD :

NO. OF PARAMETERS OF FUNCTION = 3

NORM OF GRADIENT VECTOR = 0.1835470165E-05

"RANGE" PARAMETER (IN %) = 10.00000000

NO. OF POINTS USED = 4

RANK OF APPROXIMATE INFORMATION MATRIX = 1

LOG DETERMINANT ...................... = 0.9875165352

PARAMETER ESTIMATES WITH THEIR APPROX. S.E.

1 HERITABILITY : 0.740050 0.610328

CONSTANT = 34.82083038

LINEAR COEFFCIENT 1 = 0.18354702E-05
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QUADRATIC COEFFICIENT 1 1 = -1.3422796

CUBIC COEFFICIENT 1 1 1 = 0.86430366

------------------------------------------

SOLUTION FOR FIXED EFFECTS AND COVARIABLES

------------------------------------------

COVARIABLE NO. 1 age

EQ.NO. ORIG.ID. NREC MEAN GLS-SOLUTION L

SQ-SOLUTION

2 level/ORDER 1 1 -0.8556266281E-02 -0.816

4370130E-02

COVARIABLE NO. 2 wt

EQ.NO. ORIG.ID. NREC MEAN GLS-SOLUTION L

SQ-SOLUTION

3 level/ORDER 1 1 0.2447670253E-02 0.251

8596921E-02

FIXED EFFECT NO. 1 line

EQ.NO. ORIG.ID. NREC MEAN GLS-SOLUTION L

SQ-SOLUTION

4 LEVEL 1 1 21 2.4019 0.08054226

0.05061950

5 LEVEL 2 2 15 2.5447 0.16935178

0.14488600

6 LEVEL 3 3 29 2.3493 0.11588633

0.08635849

FIXED EFFECT NO. 2 agedam

EQ.NO. ORIG.ID. NREC MEAN GLS-SOLUTION L

SQ-SOLUTION

7 LEVEL 1 3 12 2.4575 0.00000000

0.00000000

8 LEVEL 2 4 16 2.4537 -0.06872572

-0.03049424

9 LEVEL 3 5 37 2.3781 -0.17235061

-0.14196724

********************************************************************************

The above output is for an analysis of the trait ’adg’ with fixed effects fitted for ’line’ and ’agedam’ and
covariates ’age’ and ’weight’. There is no interaction ’line x agedam’ fitted. This differs from the the analysis
publised by Harvey(1960) [11] in which the above interaction is included.

The Harvey(1960) [11] analysis results in variance components for ’sire/line’ and ’residual’ as follows

σ
2
S/L = 0.0166

σ
2
W = 0.0522

We need to equate these two components to their expectaions in terms of causal components as follows:
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σ
2
S/L = 0.25∗σ

2
G(Ia)

σ
2
W = 0.75∗σ

2
G(Ia)+σ

2
E(I)

and solve these two equations to obtain

σ
2
G(Ia) = 0.0656

σ
2
E(I) = 0.0030.

These sum to σ2
P = 0.0686 . So the Harvey analysis by fitting constants results in a larger additive genetic

variance and a smaller environmental variance, while their sum, the phenotypic variance is almost identical.
We now wish to analyse these data with dmm(). We start with data preparation

> library(dmm)

> data(harv101.df)

> str(harv101.df)

'data.frame': 139 obs. of 9 variables:

$ Id : int 1 2 3 4 5 6 7 8 9 10 ...

$ SId : int NA NA NA NA NA NA NA NA NA NA ...

$ DId : int NA NA NA NA NA NA NA NA NA NA ...

$ Line : int NA NA NA NA NA NA NA NA NA NA ...

$ Agedam: int NA NA NA NA NA NA NA NA NA NA ...

$ Age : num NA NA NA NA NA NA NA NA NA NA ...

$ Weight: num NA NA NA NA NA NA NA NA NA NA ...

$ Adg : num NA NA NA NA NA NA NA NA NA NA ...

$ Sex : num 1 1 1 1 1 1 1 1 1 1 ...

>

> harv101.mdf <- mdf(harv101.df, pedcols=c(1:3), factorcols=c(4:5,9),

ycols=8, sexcode=c(1,2),keep=T)

Pedigree Id check:

No of rows with Id in original dataframe = 139

No of sex codes not in sexcode[] so changed to NA = 0

No of rows with Sex == NA removed from dataframe = 0

No of rows with Id == NA removed from dataframe = 0

No of rows with duplicated Id removed from dataframe = 0

No of rows remaining after duplicates and NA's removed = 139

Length of dataframe with base Id's added = 139

Renumber pedigree Id's:

Add matrix of multivariate traits:

Return mdf as a normal dataframe:

>

> str(harv101.mdf)

'data.frame': 139 obs. of 10 variables:

$ Id : int 1 2 3 4 5 6 7 8 9 10 ...

$ SId : int NA NA NA NA NA NA NA NA NA NA ...

$ DId : int NA NA NA NA NA NA NA NA NA NA ...

$ Line : Factor w/ 3 levels "1","2","3": NA NA NA NA NA NA NA NA NA NA ...

$ Agedam: Factor w/ 3 levels "3","4","5": NA NA NA NA NA NA NA NA NA NA ...

$ Age : num NA NA NA NA NA NA NA NA NA NA ...

$ Weight: num NA NA NA NA NA NA NA NA NA NA ...

$ Adg : num NA NA NA NA NA NA NA NA NA NA ...
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$ Sex : Factor w/ 1 level "1": 1 1 1 1 1 1 1 1 1 1 ...

$ Ymat : num [1:139, 1] NA NA NA NA NA NA NA NA NA NA ...

>

Notice that we are using argument keep=T with mdf() to force it to keep the numeric columns ’Age’ and
Weight’, which we wish to use as covariates. We did not bother with relationship matrices, as we only need
the additive relationship matrix, and dmm() can calculate it "inline".

First we will fit the model without interaction used with DFREML above and we can use the default
components (environmental and additive genetic)

> harv101.fit1 <- dmm(harv101.mdf,Adg ~ 1 + Line + Agedam + Age + Weight, fixedgls=T)

Dyadic mixed model fit for datafile: harv101.mdf

Data file is a normal dataframe:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 7

no of traits (l) = 1

Setup antemodel matrices:

No of factors with specific components: 0

No of non-specific components partitioned: 2

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 139

no of individuals with data and X codes (n) = 65

Rank of X: 7 No of Fixed Effects: 7

OLS-fixed-effects step completed:

DME substep:

No of components defined = 2

No of components estimable = 2

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:

GLS-fixed-effects step:

Round = 1 Stopcrit = 0.02352827

Round = 2 Stopcrit = 0.004211696

Iteration(gls-fixed-effects) completed - count = 2

Convergence achieved

GLS-fixed-effects step completed successfully:

DME substep:

Components to genetic parameters and SE's:

GLS-fixed-effects - genetic parameters with nonspecific components:

DME substep completed:

>

>harv101.fit1$dme.corre

VarE(I) VarG(Ia)

VarE(I) 1.0000000 0.8755222

VarG(Ia) 0.8755222 1.0000000

>

> summary(harv101.fit1,fixedgls=T)

Call:

summary.dmm(object = harv101.fit1, fixedgls = T)
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Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Adg 2.85434 0.50581 1.862946 3.84574

Line2 Adg 0.09427 0.09566 -0.093231 0.28176

Line3 Adg 0.03574 0.07817 -0.117471 0.18895

Agedam4 Adg -0.03049 0.09770 -0.221988 0.16100

Agedam5 Adg -0.14197 0.08708 -0.312642 0.02871

Age Adg -0.00816 0.00289 -0.013820 -0.00251

Weight Adg 0.00252 0.00090 0.000755 0.00428

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Adg:Adg 0.0167 0.0155 -0.0136 0.0471

VarG(Ia) Adg:Adg 0.0520 0.0147 0.0230 0.0809

Coefficients fitted by GLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Adg 2.97709 0.499218 1.998620 3.95555

Line2 Adg 0.08906 0.135158 -0.175846 0.35397

Line3 Adg 0.03535 0.112905 -0.185944 0.25664

Agedam4 Adg -0.06694 0.093367 -0.249939 0.11606

Agedam5 Adg -0.17092 0.083863 -0.335292 -0.00655

Age Adg -0.00854 0.002918 -0.014257 -0.00282

Weight Adg 0.00245 0.000869 0.000748 0.00415

Components partitioned by DME from residual var/covariance after GLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Adg:Adg 0.0183 0.0154 -0.0119 0.0484

VarG(Ia) Adg:Adg 0.0498 0.0145 0.0215 0.0781

>

So both the OLS-fixed-effects and GLS-fixed-effects estimates of VarE(I) and VarG(Ia) are close to the
DFREML estimates 0.01781 and 0.05071, but they are not exactly equal. That is as expected, because these
are MINQUE and BCML estimates, wheras the DFREML estimates are REML estimates.

If we rerun the above job using dmeopt="fgls" option we get REML estimates from dmm.

> harv101.fgls.fit1 <- dmm(harv101.mdf,Adg ~ 1 + Line + Agedam + Age + Weight,

dmeopt="fgls")

Dyadic mixed model fit for datafile: harv101.mdf

Data file is a normal dataframe:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 7

no of traits (l) = 1

Setup antemodel matrices:
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No of factors with specific components: 0

No of non-specific components partitioned: 2

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 139

no of individuals with data and X codes (n) = 65

Rank of X: 7 No of Fixed Effects: 7

OLS-fixed-effects step completed:

DME substep:

No of components defined = 2

No of components estimable = 2

Checking dyadic model equations:

fgls iteration starting siga from ols:

Adg:Adg

VarE(I) 0.01674900

VarG(Ia) 0.05195215

Residual var for DME (vard):

Adg:Adg

Adg:Adg 0.003253705

Total var for DME (vart):

Adg:Adg

Adg:Adg 0.003320518

Iteration(fgls) round: 0

siga in fgls.update:

[,1]

[1,] 0.01783227

[2,] 0.05069428

Round = 1 Stopcrit = 0.0009364542

Iteration(fgls) completed - count = 1

Convergence achieved (fgls)

diagvsiga:

Adg:Adg

VarE(I) 0.001643798

VarG(Ia) 0.002516052

diagvsiga posdef:

Adg:Adg

VarE(I) 0.001643798

VarG(Ia) 0.002516052

sesiga:

Adg:Adg

VarE(I) 0.04054378

VarG(Ia) 0.05016026

DME substep with OLS-fixed-effects completed:

>

>

>

> summary(harv101.fgls.fit1)

Call:

summary.dmm(object = harv101.fgls.fit1)

Coefficients fitted by OLS for fixed effects:
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Trait Estimate StdErr CI95lo CI95hi

(Intercept) Adg 2.85434 0.50581 1.862946 3.84574

Line2 Adg 0.09427 0.09566 -0.093231 0.28176

Line3 Adg 0.03574 0.07817 -0.117471 0.18895

Agedam4 Adg -0.03049 0.09770 -0.221988 0.16100

Agedam5 Adg -0.14197 0.08708 -0.312642 0.02871

Age Adg -0.00816 0.00289 -0.013820 -0.00251

Weight Adg 0.00252 0.00090 0.000755 0.00428

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Adg:Adg 0.0176 0.0405 -0.0619 0.0971

VarG(Ia) Adg:Adg 0.0509 0.0502 -0.0474 0.1493

>

Now the variance component estimates are very close to those obtained with DFREML program. They are
not exactly equal because DFREML and dmm are both iterative , and will converge to slightly different points
in the parameter space. Both DFREML and dmm give an heritability estimate of 0.74 but the standard error
estimates differ, as expected given the difference in methodology.

The OLS-fixed-effects and GLS-fixed-effects (ie fixed effect estimates) are also close but not equal, as
expected for an unbalanced dataset. The fixed effects for covariates ’Age’ and ’Weight’ also agree with
DFREML, but the constants fitted for ’Line’ and ’Agedam’ differ because DFREML uses a different set of
contrasts to the default used in R.

We now do another fit with the ’Line x Agedam’ interaction included

> harv101.fit2 <- dmm(harv101.mdf,Adg ~ 1 + Line + Agedam + Line:Agedam + Age + Weight,

fixedgls=T)

Dyadic mixed model fit for datafile: harv101.mdf

Data file is a normal dataframe:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 11

no of traits (l) = 1

Setup antemodel matrices:

No of factors with specific components: 0

No of non-specific components partitioned: 2

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 139

no of individuals with data and X codes (n) = 65

Rank of X: 11 No of Fixed Effects: 11

OLS-fixed-effects step completed:

DME substep:

No of components defined = 2

No of components estimable = 2

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:

GLS-fixed-effects step:
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Round = 1 Stopcrit = 0.07444493

Round = 2 Stopcrit = 0.01458684

Round = 3 Stopcrit = 0.00358769

Iteration(gls-fixed-effects) completed - count = 3

Convergence achieved

GLS-fixed-effects step completed successfully:

DME substep:

Components to genetic parameters and SE's:

GLS-fixed-effects - genetic parameters with nonspecific components:

DME substep completed:

>

> summary(harv101.fit2, fixedgls = T)

Call:

summary.dmm(object = harv101.fit2, fixedgls = T)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Adg 2.72290 0.503339 1.73636 3.70945

Line2 Adg 0.14911 0.205286 -0.25325 0.55147

Line3 Adg 0.11449 0.186059 -0.25018 0.47917

Agedam4 Adg -0.04942 0.189274 -0.42040 0.32156

Agedam5 Adg -0.03449 0.166360 -0.36056 0.29157

Age Adg -0.00709 0.002986 -0.01295 -0.00124

Weight Adg 0.00224 0.000903 0.00047 0.00401

Line2:Agedam4 Adg -0.09554 0.270166 -0.62507 0.43399

Line3:Agedam4 Adg 0.11616 0.239031 -0.35234 0.58466

Line2:Agedam5 Adg -0.02430 0.240672 -0.49602 0.44741

Line3:Agedam5 Adg -0.20179 0.206156 -0.60586 0.20227

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Adg:Adg 0.00293 0.0147 -0.0259 0.0317

VarG(Ia) Adg:Adg 0.06472 0.0139 0.0374 0.0920

Coefficients fitted by GLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Adg 2.87126 0.489738 1.911370 3.83114

Line2 Adg 0.21954 0.222333 -0.216228 0.65532

Line3 Adg 0.24867 0.199647 -0.142637 0.63998

Agedam4 Adg 0.01700 0.175097 -0.326191 0.36019

Agedam5 Adg 0.04031 0.157460 -0.268317 0.34893

Age Adg -0.00779 0.002976 -0.013621 -0.00195

Weight Adg 0.00204 0.000857 0.000363 0.00372

Line2:Agedam4 Adg -0.18609 0.248449 -0.673049 0.30087

Line3:Agedam4 Adg -0.05271 0.222334 -0.488489 0.38306

Line2:Agedam5 Adg -0.12788 0.223753 -0.566433 0.31068

Line3:Agedam5 Adg -0.36253 0.194124 -0.743015 0.01795
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Components partitioned by DME from residual var/covariance after GLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Adg:Adg 0.00191 0.0146 -0.0267 0.0305

VarG(Ia) Adg:Adg 0.06593 0.0135 0.0394 0.0924

>

So both the OLS-fixed-effects and GLS-fixed-effects estimates of VarE(I) and VarG(Ia) are now very close
to those from Harvey’s fitting constants analysis 0.0030 and 0.0656. The fixed effects differ from Harvey,
and this is not surprising as Harvey’s model includes a ’Sire’ effect. It is also not surprising that the variance
components are now a little different from the DFREML estimates, as the fixed effects model differs.

What we can conclude is that dmm() can produce reasonable estimates of variance components from an
unbalanced dataset with MINQUE or BCML estimates, and that they are close to REML estimates in this
case. If we use dmeopt="fgls" and get REML estimates from dmm then obviously they are exactly the same
as REML estimates otained by other techniques. Unfortunately REML estimates with dmm are not always
feasable, as explained elsewhere.
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5.5 The DFREML dataset
The dataset tstmo1.df is an example dataset from program DFREML (Meyer(1998) [20]). Inside DFREML it
is known as ’Example 1’. It is a univariate dataset with 282 individuals in a 3 generation pedigree with full-sib
families.

Karin Meyer gives the following description of these data:

.... The test data given is that used by Meyer(1989) to illustrate univariate REML estimation
via a derivtive-free algorithm. They are simulated records for a trait with a phenotypic variance of
100, direct heritability of 0.40, maternal heritability of 0.20, maternal-direct covariance (divided
by 100) of -0.05, and a "c-squared" effect of 0.15. Data were generated for 2 generations of ani-
mals with a heirarchical full-sib family structure, yielding a total of 282 records and 306 animals
in the analysis with generations as the only fixed effect.

We are going to use the program DFUNI from the DFREML package to estimate environmental and
additive genetic variance components, after fitting a fixed effect called ’Gen’ which is the generation number
of each individual. We will not give the runing details. The final output including estimates is as follows

*** DFREML 3.1.000 ***

Last modified : May 11, 2001

********************************************************************************

PROGRAM " D F U N I"

ESTIMATE VARIANCE COMPONENTS FOR AN INDIVIDUAL ANIMAL MODEL

****************************************************************************KM**

Today is 25/05/2010 -- Time is 18:59

Running on host : "not determined"

-----------------------------------

DESCRIPTION OF DATA SET

-----------------------------------

Example 1 - tstmo1.d with dfuni

ANALYSIS FOR TRAIT : 1 weight

Data file used : "

Pedigree file used : "

Data directory : "

----------------------------------

MODEL OF ANALYSIS & DATA STRUCTURE

----------------------------------

ANALYSIS FITTING MODEL NO. = 1

NO. OF RECORDS = 282

NO. OF ANIMALS = 306
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NO. OF TRAITS = 1

1 weight MEAN = 229.787 SDEV = 13.4939

NO. OF FIXED EFFECTS = 1

... WITH TOTAL NO. OF LEVELS = 2

1 generation NO. OF LEVELS = 2

NO. OF COVARIABLES = 0

NO. OF EQUATIONS IN TOTAL = 309

-----------------------------

SUMMARY OF PEDIGREE STRUCTURE

-----------------------------

NO. OF "BASE" ANIMALS = 24

NO. OF ANIMALS WITH RECORDS = 282

... WITH UNKNOWN/PRUNED SIRE = 0

... WITH UNKNOWN/PRUNED DAM = 0

NO. OF SIRES WITH PROGENY RECORDS = 12

NO. OF DAMS WITH PROGENY RECORDS = 36

NO. OF GRAND-SIRES W. PROGENY RECORDS = 10

NO. OF GRAND-DAMS W. PROGENY RECORDS = 18

-------------------------------------

OPTIONS SET IN OPTIMIZATION ROUTINE

-------------------------------------

USE QUADRATIC APPROXIMATION OF LOG L

MAXIMUM NO. OF ITERATES ALLOWED = 500

-----------------------

CHARACTERISTICS OF RUN :

-----------------------

RUN WITH OPTION = 0

NO. OF NON-ZERO PIVOTS ENCOUNTERED = 308

NO. OF DEGREES OF FREEDOM 1 = 280

NO. OF DEGREES OF FREEDOM 2 = -26

NO. OF ITERATES CARRIED OUT = 0

NO. OF LIKELIHOODS EVALUATED = 8

PARAMETERS : STARTING VALUES AND ESTIMATES =

1 HERITABILITY 0.3000000000 0.4633476480

0 LOG L -760.7423178 -759.5034413

-------------------------------------------

ESTIMATES OF VARIANCES & GENETIC PARAMETERS

-------------------------------------------

UNIVARIATE ANALYSIS FOR TRAIT NO. = 1
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TOTAL SUMS OF SQUARES (Y'Y) = 51165.23404

SUMS OF SQUARES FOR RESIDUAL (Y'PY) = 14262.75854

LOG DETERMINANT OF COEFFICIENT MATRIX = 378.8445786

LOG DETERMINANT OF NRM = -195.4675049

LOG LIKELIHOOD (WITH NRM) = -759.5034413

ADDITIV-GENETIC (DIRECT) VARIANCE 1 = 43.98042526

ERROR VARIANCE = 50.93842336

PHENOTYPIC VARIANCE 1 = 94.91884862

PHENOTYPIC STANDARD DEVIATION = 9.7426

PHENOTYPIC COEFFICIENT OF VARIATION (%) = 4.2398

HERITABILITY 1 = 0.4633 0

-----------------------------------

APPROXIMATION OF SAMPLING VARIANCES

-----------------------------------

NO. OF LIKELIHOOD VALUES AVAILABLE = 8

QUADRATIC APPROXIMATION OF LIKELIHOOD :

NO. OF PARAMETERS OF FUNCTION = 2

NORM OF GRADIENT VECTOR = 0.1407278372E-03

"RANGE" PARAMETER (IN %) = 10.00000000

NO. OF POINTS USED = 3

RANK OF APPROXIMATE INFORMATION MATRIX = 1

LOG DETERMINANT ...................... = 4.421234753

PARAMETER ESTIMATES WITH THEIR APPROX. S.E.

1 HERITABILITY : 0.463348 0.109633

CONSTANT = -759.5034413

LINEAR COEFFCIENT 1 = 0.14072784E-03

QUADRATIC COEFFICIENT 1 1 = -41.599476

CUBIC APPROXIMATION OF LIKELIHOOD :

NO. OF PARAMETERS OF FUNCTION = 3

NORM OF GRADIENT VECTOR = 0.7416302902E-02

"RANGE" PARAMETER (IN %) = 30.00000000

NO. OF POINTS USED = 5

RANK OF APPROXIMATE INFORMATION MATRIX = 1

LOG DETERMINANT ...................... = 4.429672096

PARAMETER ESTIMATES WITH THEIR APPROX. S.E.

1 HERITABILITY : 0.463348 0.109171

CONSTANT = -759.5034413

LINEAR COEFFCIENT 1 = -0.74163029E-02

QUADRATIC COEFFICIENT 1 1 = -41.951950

CUBIC COEFFICIENT 1 1 1 = 16.196033

------------------------------------------
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SOLUTION FOR FIXED EFFECTS AND COVARIABLES

------------------------------------------

FIXED EFFECT NO. 1 generation

EQ.NO. ORIG.ID. NREC MEAN GLS-SOLUTION L

SQ-SOLUTION

2 LEVEL 1 1 138 220.4638 -9.46612491

-9.32345865

3 LEVEL 2 2 144 238.7222 6.90686757

8.93499546

********************************************************************************

So the phenotypic variance of 94.9 is not exactly the population value of 100 and the additive genetic
variance of 43.9 is not exactly the population value of 40. This is a small sample for simulated data and the
deviations are to be expected.

We now want to conduct the same analysis with dmm(). First prepare the data. This time we will do the
relationship matrices during preparation and append them to the dataframe.

> library(dmm)

> data(tstmo1.df)

> str(tstmo1.df)

'data.frame': 282 obs. of 6 variables:

$ Id : int 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 ...

$ SId : int 1 1 1 1 1 1 1 1 1 1 ...

$ DId : int 2 2 2 2 2 2 2 2 3 3 ...

$ Sex : Factor w/ 2 levels "1","2": 1 1 1 1 1 1 2 1 1 1 ...

$ Gen : int 1 1 1 1 1 1 1 1 1 1 ...

$ Weight: num 220 212 221 207 218 201 214 229 214 198 ...

>

> tstmo1.mdf <- mdf(tstmo1.df, pedcols=c(1:3), factorcols=c(4:5), ycols=6,

sexcode=c(1,2), relmat=c("E","A"))

Pedigree Id check:

No of rows with Id in original dataframe = 282

No of sex codes not in sexcode[] so changed to NA = 0

No of rows with Sex == NA removed from dataframe = 0

No of rows with Id == NA removed from dataframe = 0

No of rows with duplicated Id removed from dataframe = 0

No of rows remaining after duplicates and NA's removed = 282

No of SId's with no matching Id = 6

No of DId's with no matching Id = 18

Length of dataframe with base Id's added = 306

Renumber pedigree Id's:

Add matrix of multivariate traits:

Setup pedigree for nadiv():

Make relationship matrices:

Return mdf as an object of class mdf:

containing the dataframe as mdf$df:

and the relationship matrices as mdf$rel:

>

>str(tstmo1.mdf)

List of 2

$ df :'data.frame': 306 obs. of 6 variables:
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..$ Id : int [1:306] 1 2 3 4 5 6 7 8 9 10 ...

..$ SId : int [1:306] NA NA NA NA NA NA NA NA NA NA ...

..$ DId : int [1:306] NA NA NA NA NA NA NA NA NA NA ...

..$ Sex : Factor w/ 2 levels "1","2": 1 1 1 1 1 1 2 2 2 2 ...

..$ Gen : Factor w/ 2 levels "1","2": NA NA NA NA NA NA NA NA NA NA ...

..$ Ymat: num [1:306, 1] NA NA NA NA NA NA NA NA NA NA ...

$ rel:List of 8

...

>

Now we can do the dmm fit of the same simple model as used for DFREML

> tstmo1.fit1 <- dmm(tstmo1.mdf, Ymat ~ 1 + Gen,components=c("VarE(I)","VarG(Ia)"),

fixedgls=T)

Dyadic mixed model fit for datafile: tstmo1.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 2

no of traits (l) = 1

Setup antemodel matrices:

No of factors with specific components: 0

No of non-specific components partitioned: 2

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 306

no of individuals with data and X codes (n) = 282

Rank of X: 2 No of Fixed Effects: 2

OLS-fixed-effects step completed:

DME substep:

No of components defined = 2

No of components estimable = 2

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:

GLS-fixed-effects step:

Round = 1 Stopcrit = 1.01928

Round = 2 Stopcrit = 0.2283226

Round = 3 Stopcrit = 0.04124407

Round = 4 Stopcrit = 0.007648931

Iteration(gls-fixed-effects) completed - count = 4

Convergence achieved

GLS-fixed-effects step completed successfully:

DME substep:

Components to genetic parameters and SE's:

GLS-fixed-effects - genetic parameters with nonspecific components:

DME substep completed:

>

>

>tstmo1.fit1$dme.corre

VarE(I) VarG(Ia)
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VarE(I) 1.0000000 0.4158424

VarG(Ia) 0.4158424 1.0000000

>

> summary(tstmo1.fit1,fixedgls=T)

Call:

summary.dmm(object = tstmo1.fit1, fixedgls = T)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Ymat 220.5 0.846 218.8 222.1

Gen2 Ymat 18.3 1.184 15.9 20.6

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Ymat:Ymat 32.7 6.41 20.1 45.3

VarG(Ia) Ymat:Ymat 70.0 2.82 64.5 75.6

Coefficients fitted by GLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Ymat 220.3 2.21 216.0 224.6

Gen2 Ymat 15.8 1.30 13.3 18.4

Components partitioned by DME from residual var/covariance after GLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Ymat:Ymat 33.6 6.54 20.8 46.4

VarG(Ia) Ymat:Ymat 78.4 2.86 72.8 84.0

>

So the OLS-fixed-effects and GLS-fixed-effects are not identical (as expected for an unbalanced dataset)
but of more concern is that they differ substantially from the DFREML estimates. This requires some con-
sideration. Firstly, they are not expected to agree exactly because dmm() estimates are not REML equivalent.
Secondly, the ’Gen’ fixed effect in these data is not independent of the pedigree; generation 1 are parents and
generation 2 are their offspring. So there is a parent/offspring correlation between generations 1 and 2, and
this means that the levels of the ’Gen’ fixed effect are not independent. So the analyses violate one of the basic
assumptions of the model, both for DFREML and dmm(). Correlated levels of an effect is as serious a problem
as correlated residuals. It would be expected that DFREML and dmm() would be biassed in different ways in
such a case. We should conclude that neither program is ’correct’ in this case, because the model is flawed..

There remains the question of whether we can match the stated population parameters for this dataset,
notwithstanding the problem with the ’Gen’ effect. This requires another run with more variance components
fitted, as follows

> tstmo1.fit2 <- dmm(tstmo1.mdf, Ymat ~ 1 + Gen,

components=c("VarE(I)","VarG(Ia)","VarE(M)","VarG(Ma)","CovG(Ia,Ma)","CovG(Ma,Ia)"),

fixedgls=T)

Dyadic mixed model fit for datafile: tstmo1.mdf

Data file is a list containing a dataframe and a list of relationship matrices:
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Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 2

no of traits (l) = 1

Setup antemodel matrices:

No of factors with specific components: 0

No of non-specific components partitioned: 6

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 306

no of individuals with data and X codes (n) = 282

Rank of X: 2 No of Fixed Effects: 2

OLS-fixed-effects step completed:

DME substep:

No of components defined = 6

No of components estimable = 6

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:

GLS-fixed-effects step:

Round = 1 Stopcrit = 0.7502715

Round = 2 Stopcrit = 0.1639629

Round = 3 Stopcrit = 0.03181733

Round = 4 Stopcrit = 0.006011582

Iteration(gls-fixed-effects) completed - count = 4

Convergence achieved

GLS-fixed-effects step completed successfully:

DME substep:

Components to genetic parameters and SE's:

GLS-fixed-effects - genetic parameters with nonspecific components:

DME substep completed:

>

>

>tstmo1.fit2$dme.corre

VarE(I) VarG(Ia) VarE(M) VarG(Ma) CovG(Ia,Ma) CovG(Ma,Ia)

VarE(I) 1.0000000 0.4158424 0.3457454 0.2933538 0.2209086 0.2209086

VarG(Ia) 0.4158424 1.0000000 0.6412865 0.7312091 0.7658688 0.7658688

VarE(M) 0.3457454 0.6412865 1.0000000 0.8488271 0.6383430 0.6383430

VarG(Ma) 0.2933538 0.7312091 0.8488271 1.0000000 0.8376605 0.8376605

CovG(Ia,Ma) 0.2209086 0.7658688 0.6383430 0.8376605 1.0000000 0.7037866

CovG(Ma,Ia) 0.2209086 0.7658688 0.6383430 0.8376605 0.7037866 1.0000000

>

The correlations of these components are rather high, but we can still have a look at the estimates

> summary(tstmo1.fit2,fixedgls=T)

Call:

summary.dmm(object = tstmo1.fit2, fixedgls = T)

Coefficients fitted by OLS for fixed effects:
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Trait Estimate StdErr CI95lo CI95hi

(Intercept) Ymat 220.5 0.846 218.8 222.1

Gen2 Ymat 18.3 1.184 15.9 20.6

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Ymat:Ymat 2.37e+01 6.77 10.47 37.00

VarG(Ia) Ymat:Ymat 7.95e+01 5.36 68.94 89.96

VarE(M) Ymat:Ymat 1.00e-09 4.58 -8.97 8.97

VarG(Ma) Ymat:Ymat 3.41e+01 6.83 20.76 47.53

CovG(Ia,Ma) Ymat:Ymat -2.50e+01 6.23 -37.26 -12.82

CovG(Ma,Ia) Ymat:Ymat -2.50e+01 6.23 -37.26 -12.82

Coefficients fitted by GLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Ymat 220.3 2.41 215.6 225.0

Gen2 Ymat 16.5 2.21 12.2 20.9

Components partitioned by DME from residual var/covariance after GLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Ymat:Ymat 2.34e+01 6.78 10.07 36.63

VarG(Ia) Ymat:Ymat 8.52e+01 5.40 74.61 95.78

VarE(M) Ymat:Ymat 1.00e-09 4.64 -9.09 9.09

VarG(Ma) Ymat:Ymat 3.67e+01 6.93 23.14 50.29

CovG(Ia,Ma) Ymat:Ymat -2.63e+01 6.29 -38.68 -14.01

CovG(Ma,Ia) Ymat:Ymat -2.63e+01 6.29 -38.68 -14.01

>

The population values for these data are VarE(I) = 35, VarG(Ia) = 40, VarE(M) = 15, VarG(Ma) = 20, and
CovG(Ia,Ma) = -5. I am assuming that what Karin Meyer calls a ’c-squared’ effect’ is actually VarE(M). Only
for two components do the confidence limits include the population value. It is a small sample and there are
problems with the model noted above.

What we can conclude from this somewhat unsatisfactory exposition, is that dmm() MINQUE and BCML
estimates will not always agree with REML, and that we should avoid trying to use a pathological dataset to
compare results from different programs. The example is pathological because the given result for DFREML
is with a model that contains an effect (Gen) with correlatesd levels and omits important significant variance
components. The ’omitted variable’ effect is operating here - we do not know how the omitted maternal
additive genetic variance will be redistributed among the other variances when it is omitted. A larger sample
would also be desirable for simulated data.
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Table 2: Definition of estimable causal components of individual genetic value and individual environmental
value for autosomal loci

Component Name Meaning
G(Ia) additive genetic

effect or breeding
value

sum of average effects on phenotype
of an individual’s genes

G(Id) dominance effect sum of deviations from average ef-
fect due to non-additive combina-
tion of gene effects within a locus

G(Ia : a) additive x addi-
tive epistatic ef-
fect

non-additive combination of addi-
tive gene effects across pairs of loci

G(Ia : d) additive x domi-
nance epistatic ef-
fect

non-additive combination of addi-
tive and dominance gene effects
across pairs of loci

G(Id : d) dominance x
dominance
epistatic effect

non-additive combination of domi-
nance gene effects across pairs of
loci

E(I) environmental de-
viation

unexplained deviation of individual
phenotype (assumed environmental,
developmental, or measurement er-
ror)

E(C) cohort environ-
mental effect

environmental deviation due to indi-
vidual belonging to a specific cohort

6 Mathematical methods

6.1 Genetic models and definition of causal components
An observation or a measurement of an individual is known as the individual’s phenotypic value (P (I)). P (I)
can be multivariate. It is usually expressed as a deviation from a population mean and may also be adjusted
for fixed effects other than the mean.

6.1.1 Individual effects

There is a conceptual division of individual phenotypic value into individual genetic value (G(I)) and individ-
ual environmental deviations (E(I)), and these values are additive so that for any individual

P (I) =G(I)+E(I) (1)

although this partitioning is generally not achievable in practice.
What can be done is to estimate some specific components of G(I) and E(I) and assume that those not

estimated are zero, so that these sum to G(I) and E(I) respectively, which in turn sum to P (I) as in equation 1.
Estimable components of the G(I) and E(I) values are defined in Table 2. A full explanation of gene ef-

fects on individual phenotype can be found in introductory texts, for example Falconer(1961) [7] , Kempthorne(1957) [16],
or Lynch and Walsh(1998) [18].

All the components of value in Table 2 are independent and additive, so we can write, for example

G(I) =G(Ia)+G(Id)

and
P (I) =G(Ia)+G(Id)+E(I)

if we postulate no epistatic effects and no cohort environment.
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6.1.2 Maternal effects

Equation 1 is not the only conceptual division of individual phenotypic value. In mammals, the genotype and
the environment of the mother can influence an individual’s phenotype, in addition to its own genotype and
environment. Willham(1963) [31] developed the following partitioning

P (I) =G(I)+E(I)+G(M)+E(M) (2)

Here we can estimate components of G(I) and E(I), as in Table 2, but we can also estimate components
of G(M) and E(M), as defined in Table 3.

Table 3: Definition of estimable causal components of maternal genetic value and maternal environmental
value for autosomal loci

Component Name Meaning
G(Ma) maternal additive

genetic effect or
breeding value

sum of average effects on phenotype
of an individual’s dam’s genes

G(Md) maternal domi-
nance effect

sum of deviations from average ef-
fect due to non-additive combina-
tion of gene effects within a dam’s
locus

G(Ma : a) maternal addi-
tive x additive
epistatic effect

non-additive combination of addi-
tive gene effects across pairs of
dam’s loci

G(Ma : d) maternal additive
x dominance
epistatic effect

non-additive combination of addi-
tive and dominance gene effects
across pairs of dam’s loci

G(Md : d) matermnal dom-
inance x domi-
nance epistatic ef-
fect

non-additive combination of domi-
nance gene effects across pairs of
dam’s loci

E(M) maternal environ-
mental deviation

unexplained deviation of individual
phenotype (assumed maternal envi-
ronmental, or maternal developmen-
tal)

E(M&C) within cohort
maternal environ-
mental deviation

unexplained deviation for individu-
als with same dam and same cohort

E(M&!C) cross cohort
maternal environ-
mental deviation

unexplained deviation for individu-
als with same dam and different co-
hort

All the components of value in Table 3 are independent and additive, so we can write, for example

G(M) =G(Ma)+G(Ma : a)

if we postulate no maternal dominance effect and only maternal additive x additive epistasis. We do not
define a P (M). Maternal effects are part of the individual’s phenotype. The dam’s own phenotype is something
entirely different.

The two effects E(M&C) and E(M&!C) are a partitioning of E(M) along the lines suggested by Bi-
jma(2006) [3].
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Table 4: Definition of estimable causal components of individual and maternal genetic value for sex-linked
loci

Component Name Meaning
Gs(Ia) sex-linked addi-

tive genetic effect
or breeding value

sum of average effects on phenotype
of an individual’s sex-linked genes

Gs(Ma) sex-linked ma-
ternal additive
genetic effect or
breeding value

sum of average effects on phenotype
of an individual’s dam’s sex-linked
genes

Table 5: Definition of estimable causal components of variation between maternal and paternal founder lines

Component Name Meaning
Glm(I) effect of maternal

line
in mammals could be attributed to
differences in cytoplasmic genetic
material between maternal lines

Gl p(I) effect of paternal
line

in mammals could be attributed to
differences in Y chromosome genes
between paternal lines

6.1.3 Individual and maternal effects due to sex-linked genes

All of the individual and maternal genetic effects defined in Table 2 and Table 3 are from genes at autosomal
loci. For genes located on the sex chromosome, effects are defined in the same way, but require different
procedures for their estimation. Table 4 defines the individual and maternal additive sex-linked effects used by
the current version of dmm(). It is possible to define dominance and epistatic sex-linked effects, but these are
not currently used by dmm(). It is also possible for sex-linked genes to interact epistatically with autosomal
genes.

The components defined in Table 4 are additive, but are not independent. In general, individual effects are
not independent from maternal effects. We can write, for example

G(M) =G(Ma)+Gs(Ma)

if we postulate only additive genetic maternal effects that are both sex-linked and autosomal, or again

G(I) =G(Ia)+Gs(Ia)

for only individual additive genetic effects.

6.1.4 Effects due to maternal founder line and paternal founder line

All of the effects defined in Table 2 and Table 3 are from genes at autosomal loci. The effects defined in
Table 4 are from genes on the sex chromosome ( X chromosome in mammals). There are other possible
genetic effects. Other possibilities are cytoplasmic inheritance ( via mitochondrial DNA in mammmals or
plasmid DNA in plants), and Y chromosome genes ( carried by males in mammals).

The way that these effects are analysed is to divide the pedigree into maternal ( or paternal) founder lines;
that is groups of individuals which trace back to one base generation female ( or male). Table 5 defines
maternal founder line and paternal founder line effects used in versions of dmm() from dmm_2.1-4 onward.

The components defined in Table 5 are additive in their contribution to individual phenotype and are
independent of all other effects.
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6.1.5 Estimation of effects

There are techniques (commonly known as BLUP) for estimating any of the above genetic effects for each
individual in a population, given adequate data, pedigree information, and estimates of genetic parameters.
These techniques are not the province of dmm(). dmm() is a procedure for estimation of genetic parameters.
Genetic parameters depend on the variances (and sometimes covariances) of effects. So we proceed to these.

6.1.6 Variances of effects

For each of the effects defined in Tables 2, 3 , 4 and 5, there is a sample variance, and a population variance
about which we might wish to make inferences. The statistical methods used by dmm() to estimate population
variance components are covered in section 6.2. Here we will just focus on the genetic aspects.

The dyadic model (equation 13) is a linear model with the variance components Γ as unknowns and the
model matrix W defining the relationship of the dyadic observations Ψ to the unknown variance components.
Each variance component corresponds to a column of model coefficients in W . It is the setting up of the
column of coefficients for each variance component that requires a knowledge of genetics.

For any dyad (yi,y j) the expected value of its covariance (yi −Xiα)(y j −X jα)′ is given by

∑
c
(rc)i, jγc (3)

which is actually the sum of one row of W times one column of Γ. So one element of one column of W
is (rc)i, j ; but not quite, there are statistical considerations requiring introduction of an M matrix, and we also
need a Z matrix to map individuals observed to individuals in the pedigree (see equations 9).

The quantity (rc)i, j is a relationship coefficient between individuals i and j. The type of relationship
coefficient required depends on the variance component γc. For example if γc is individual additive genetic
variance VarG(Ia) the relationship coefficient required is the additive genetic relationship between individuals
i and j.

For the original definition of relationship coefficients see Wright(1922) [34]. For a modern account see
one of the texts, Falconer(1961) [7] , Kempthorne(1957) [16], or Lynch and Walsh(1998) [18]. A matrix of
relationship coefficients for all pairs of individuals in a pedigree is termed a relationship matrix. Relationship
coefficients have a dual definition and interpretation, as a probability of identity by descent of certain paires
of genes, and as a correlation between the genes present in gametes from two individuals. It is the correlation
interpretation which enables us to write (rc)i, jγc in equation 3. Expressions for what is commonly termed
the Covariance between Relatives treat the relationship coefficient as a correlation. Equation 3 is actually
an example of an expression for the covariance between relatives for a given set of components γc. For
calculation of relationship matrices from pedigrees see Wolak(2012) [32]. The dmm() package uses Matthew
Wolak’s excellent package nadiv to compute relationship matrices.

Given the required relationship matrices, it is a simple matter to setup the W matrix for the dyadic model
equations 13. The calculation of the column elements of W for each type of variance component is docu-
mented in Table 6.

The component names in column 1 of Table 6 are in the form used by dmm() to label output; their equivalent
in the more familiar subscripted notation (eg σ2

aI
for the first item) should be obvious. The formulae in column

2 of Table 6 produce matrices each of which must be vectorized into a column of W . The symbols in column
2 of Table 6 are defined as follows

ZI Matrix mapping individuals with observations to individuals in the pedigree

ZM Matrix mapping individuals with observations to their dams in the pedigree

ZC Matrix mapping individuals with observations to cohorts

ZLm Matrix mapping individuals with observations to maternal founder line groups

ZLp Matrix mapping individuals with observations to paternal founder line groups

RA Matrix of additive relationship coefficients
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Table 6: Calculation of W matrix column elements for variance components defined as the variance of the
effects documented in Tables 2, 3 and 4

Component Column of W matrix
VarG(Ia) MZIRAZ

′
IM

VarG(Id) MZIRDZ
′
IM

VarG(Ia:a) MZIRAAZ
′
IM

Varg(Ia:d) MZIRADZ
′
IM

Varg(Id:d) MZIRDDZ
′
IM

VarE(I) MZIREZ
′
IM

VarE(C) MZCZ
′
CM

VarG(Ma) MZMRAZ
′
MM

VarG(Md) MZMRDZ
′
MM

VarG(Ma:a) MZMRAAZ
′
MM

VarG(Ma:d) MZMRADZ
′
MM

VarG(Md:d) MZMRDDZ
′
MM

VarE(M) MZMZ ′
MM

VarE(M&C) M((ZMZ ′
M)&(ZCZ

′
C))M

VarE(M&!C) M((ZMZ ′
M)&!(ZCZ

′
C))M

VarGs(Ia) MZIRSZ
′
IM

VarGs(Ma) MZMRSZ
′
MM

VarGlm(I) MZLmZ
′
LmM

VarGlp(I) MZLpZ
′
LpM

RD Matrix of dominance relationship coefficients

RAA Matrix of additive x additive epistatic relationship coefficients

RAD Matrix of additive x dominance epistatic relationship coefficients

RDD Matrix of dominance x dominance epistatic relationship coefficients

RS Matrix of sex-linked additive relationship coefficients

RE Matrix of environmental correlations for individuals

M Matrix which transforms observations to residuals, see section 6.2.2

When dmm() labels components as variances, as in Table 6, it means either single-trait-variances or same-
effect-cross-trait covariances. This convention extends thruout the dmm() output, for example genetic param-
eters are labelled by the component from which they derive.

6.1.7 Covariances of effects

What we mean by covariances of effects is a covariance between two different effects, commonly called a
cross-effect-covariance. There can be single-trait-cross-effect-covariances and cross-trait-cross-effect-covariances.

Given the effects defined in Tables 2, 3 and 4, the only covariances which have non-zero expectation are
those between an individual effect and a maternal effect of the same type (eg CovG(Ia,Ma)). This is because
additive, dominance, and epistatic effects are defined in such a way as to be independent.

The columns of W for cross-effect-covariances depend on relationship matrices in the same way as the
variances of effects, and are defined (for all non-zero covariances) in Table 7.

Notice that in Table 7 the cross-effect-covariances occur in symmetric pairs (eg CovG(Ia,Ma) and CovG(Ma.Ia)).
These pairs are identical for a single-trait-cross-effect-covariance, but usually differ for a cross-trait-cross-
effect-covariance. Users of dmm() are therefore encouraged to put covariances into the dyadic model in sym-
metric pairs. This practice also ensures that components sum to phenotypic (co)variance.
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Table 7: Calculation of W matrix column elements for covariance components defined as the covariance of
the effects documented in Tables 2, 3 and 4

Component Column of W matrix
CovG(Ia,Ma) MZIRAZ

′
MM

CovG(Ma,Ia) MZMRAZ
′
IM

CovG(Id,Md) MZIRDZ
′
MM

CovG(Md,Id) MZMRDZ
′
IM

CovG(Ia:a,Ma:a) MZIRAAZ
′
MM

CovG(Ma:a,Ia:a) MZMRAAZ
′
IM

CovG(Ia:d,Ma:d MZIRADZ
′
MM

CovG(Ma:d,Ia:d MZMRADZ
′
IM

Covg(Id:d,Md:d) MZIRDDZ
′
MM

Covg(Md:d,Id:d) MZMRDDZ
′
IM

CovGs(Ia,Ma) MZIRSZ
′
MM

CovGs(Ma,Ia) MZMRSZ
′
IM

CovE(I,M) MZIREZ
′
MM

CovE(M,I) MZMREZ
′
IM

CovE(I,M&!C) M((ZIZ
′
M)&!(ZCZ

′
C))M

CovE(M&!C,I) M((ZMZ ′
I)&!(ZCZ

′
C))M

CovE(I,M&C) M((ZIZ
′
M)&(ZCZ

′
C))M

CovE(M&C,I) M((ZMZ ′
I)&(ZCZ

′
C))M

When dmm() labels components as covariances, as in Table 7, it means either single-trait-cross-effect-
covariances or cross-trait-cross-effect-covariances. This convention extends thruout the labelling of dmm()
output, for example genetic correlations are labelled by the covariance component from which they derive.
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6.2 Statistical models and variance component estimation
The models used by dmm() are heirarchical. At the first level we model observations on the ith individual or
monad (yi). At the second level we model observations on pairs of individuals or dyads (yi,y j). The first level
models fixed effects and puts everything else into residual. The second level models residual (co)variances
from the first level and breaks them into causal components corresponding to nominated genetic and environ-
mental effects. We call the first level model a monadic model and the second level model a dyadic model.
Some workers call the second level model a derived model.

6.2.1 First level - Monadic model

If Y is an n× l matrix of observations on n individuals with l traits observed on each, we write the mixed
model

Y = Xα +Zγ + ε (4)

where

X is a design matrix (n× k)

α is a matrix of fixed effects (k× l) for k fixed effects and l traits

Z is an incidence matrix mapping n individuals with observations to m individuals in a pedigree

γ is a matrix of random effects associated with individuals in the pedigree (m× l)

ε is a matrix of residuals (n× l)

We proceed by contracting equation 4 to

Y = Xα +R (5)

where
R = Zγ + ε

and we have E (R) = 0 and Cov(R) =E (RR′) =E (Zγγ ′Z + εε ′)
We can estimate α from equation 5 either by OLS ignoring the fact that the elements of R are correlated

using α̂OLS = (X ′X)−1X ′y , or by GLS using estimates of γγ ′ and εε ′ to approximate Cov(R)
Before we can use GLS we need to get some estimates of γγ ′ and εε ′. We do this at the second level .

6.2.2 Second level - Dyadic model

We rewrite equation 4 as

Y −Xα = Zγ + ε = R (6)

but we now wish to model dyads (i, j). The defining observation for a dyad is the covariance between
the two individuals (i, j), which turns out to be just the product of the observations on the two individuals,
appropriately adjusted for mean and fixed effects. So we model the dyadic observations as

(Y −Xα)⊗ (Y −Xα) = (Zγ + ε)⊗ (Zγ + ε)+δ (7)

where δ is a matrix of dyadic residuals. If we take expectations from equation 7 we get a set of equations

E ((Y −Xα)⊗ (Y −Xα)) = ZE (γγ ′)Z′+E (εε ′) (8)

which is a set of linear equations in E (γγ ′) and E (εε ′)). Typically, in the univariate case, E (εε ′)) will
be Iσ2

E where σ2
E is the (unknown) variance of residuals and E (γγ ′) might be RAσ2

Ia where RA is an additive
genetic relationship matrix and σ2

Ia is the (unknown) individual additive genetic variance. In the multivariate
case, E (εε ′)) will be I⊗ΣE where ΣE is the (unknown) covariance matrix of residuals for multiple traits,
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and E (γγ ′) might be RA ⊗ΣIa where RA is an additive genetic relationship matrix and ΣIa is the (unknown)
additive genetic covariance matrix for multiple traits.

If we substitute α̂ (from the monadic model) for α in equations 8, we need to allow for the estimate α̂ not
being exactly the true α , and we do this by defining a matrix M such that

Y −Xα̂ = MY

We can compute M as (I −H) where H is the ’hat’ matrix from estimating α̂ from model 5. In the OLS-
fixed-effects case H is defined as H = X(X ′X)−X ′ and can be obtained from the QR decomosition of X . In
the GLS-fixed-effects case M and H are more complex and are discussed later.

We can then write equations 8 as

(MY )⊗ (MY ) =Vec(MZE (γγ
′)Z ′M′)+Vec(ME (εε

′)M ′) (9)

Equations 9 are like 8, that is linear in E (γγ ′) and E (εε ′)), but unlike 8 they can be solved for E (γγ ′)
and E (εε ′)) because we know M and Z.

We can break E (γγ ′) and E (εε ′) into a correlation matrix and a (co)variance as in equation 3. This leads
to a rewrite of equation 9 as

(MY )⊗ (MY ) =Vec(MZIRIaZ′
IM

′)⊗ΣIa+Vec(MIM′)⊗ΣE (10)

so we now have the two unknown components ΣIa and ΣE separated. We can generalize to any number of
components (v) by writing

(MY )⊗ (MY ) =
v

∑
c=1

Vec(MZcRcZ′
cM′)⊗Σc (11)

The term (MY )⊗ (MY ) sets up a matrix Ψ of order n2 × l2 with each column consisting of all the squares
and products of adjusted Y values, for one traitpair. There is a column for each pair of traits so we model
same-trait-dyadic covariances and cross-trait-dyadic covariances.

The terms Vec(MZcRcZ′
cM′)⊗Σc can be setup as an n2 × v matrix of coefficients W (v being the number

of components), and a v× l2 matrix Γ of unknowns, collapsing Σc into Γ, so we can write

Ψ =WΓ (12)

as equations 10 or 11 in matrix form, which we call the dyadic model equations (DME’s) , or

Ψ =WΓ+∆ (13)

as the corresponding dyadic model, ∆ being the dyadic residuals.
Equations 12 or model 13 are quite general as W and Γ can encompass any set of (co)variance components

Σc (not just E (γγ ′) and E (εε ′) ), each component having a column of coefficients in W and a row of unknowns
in Γ.

The actual method of setting up W for these equations for each of the components available in dmm() is
documented in section 6.1.

Equations 12 or model 13 show that (co)variance component estimation reduces to a linear regression
problem with the causal components as the estimated regression coefficients. We can therefore solve equa-
tions 12 by OLS, which amounts to a least squares fitting of the dyadic model 13 to the data embodied in all
the dyadic covariances in Ψ.

This procedure is similar to that proposed by Pukelsheim(1976) [25], which he termed a dispersion-mean
model, and it it a happy coincidence that our package name dmm is also an acronym for Pukelsheim’s termi-
nology. Searle(1979) [26] shows that if α̂ (or M) are obtained by OLS, and equations 12 solved by OLS, then
the resulting(co)variance component estimates are equivalent to MINQUE estimates.
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6.2.3 First level - second level iteration

We can now go back to the monadic model at level 1 of the heirarchy, substituting for E (RR′) in model 5 using
the estimates of Γ obtained from fitting model 13 as follows

Ω̂ =E (RR′) = ∑i ZiRiZ′
iσ

2
i

where Riis the relevant relationship matrix for the ith component ( or I in the case of σ2
E).

Having an estimate of Ω (the covariance matrix of residuals R ) we can estimate α using GLS by

ˆαGLS = (X ′Ω−1X)−1X ′Ω−1Y

using Ω̂ in place of the unknown Ω.
Given ˆαGLS, we return to level 2 and refine the estimate of Γ by re-fitting model 13, but we need to obtain a

new M matrix (say MGLS ) which differs from the M in equation 9 because using GLS has effectively changed
X ′X into X ′Ω−1X . The equation for MGLS is

MGLS = I −HGLS = I −X(X ′V−1X)−X ′V−1

where
HGLS = HOLSV HOLSV−1

and given this we can reconstruct equations 12 and re-estimate Γ.
This iteration can be repeated until convergence of estimates is achieved. Convergence is defined as achiev-

ing a state where the current round of estimates of ˆαGLS and Γ̂ differ by only a small amount from the previous
round. Convergence may fail to occur; this indicates that the model is a poor representation of the data. Con-
vergence is normally rapid (ie in less than 10 rounds). It is necessary to constrain the matrix Ω̂ to be positive
definite, and this is achieved by constraining all component matrices (Γ̂ ) to be positive definite.

Anderson(1984) [1] has shown that if α̂ ( or M ) are obtained by GLS, and then equations 12 solved
by OLS, then the resulting (co)variance components are equivalent to ML estimates. However Anderson’s
derivation did not include the M matrix, ie he used equation 7 rather than equation 9. In dmm() we use
equation 9 and this effectively corrects the ML estimates of Γ for bias. That is it allows for the degrees
of freedom used in fitting α̂GLS at the first level, before fitting Γ̂ at the second level. We therefore call the
GLS-fixed-effects estimates from dmm() ’bias-corrected-ML estimates’ (BCML).

It is, in theory, possible to obtain REML estimates from dmm(). Searle, et al (1992) [27] show that if
we use α̂GLS and then solve the resulting equations 12 by GLS instead of OLS, the resulting estimates of Γ

are equivalent to REML or I-MINQUE. However, using GLS on equations 12 requires the covariance matrix
of the dyadic residuals ∆, and this is an enormous array of the order of the fourth power of the number of
individuals, so it is not computationally feasible to attempt REML estimates using the dmm approach, except
for very small datasets. The code is present in dmm but it will run out of memory if number of individuals is
more than about 200.

One can show that the GLS-fixed-effects estimates are bias corrected very simply. Make a simple dataset
of 3 observations

> y <- c(1,2,3)

> Id <- y

> y.df <- data.frame(cbind(Id,y))

and use dmm() to obtain just a mean and a residual variance

> fit <- dmm(y.df,y ~ 1, components=c("VarE(I)"),fixedgls=T)

....

> summary(fit,fixedgls=T)

Call:

summary.dmm(object = fit, fixedgls = T)

63



Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

1 y 2 0.577 0.868 3.13

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) y:y 1 0.354 0.307 1.69

Coefficients fitted by GLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

1 y 2 0.577 0.868 3.13

Components partitioned by DME from residual var/covariance after GLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) y:y 1 0.354 0.307 1.69

>

and we do indeed get a mean of 2 and a variance of 1, not 0.66, which is the uncorrected ML estimate of
variance.

The M matrix for this simple case is 
N−1

N
−1
N

−1
N

−1
N

N−1
N

−1
N

−1
N

−1
N

N−1
N


and it can be shown that the quadratic form y′My expands to ∑i y2

i − (1/N)∑i, j yiy j which is the dyadic
version of the familiar formula for variance. It is clear from this that the M matrix can be used to compute a
correction for mean.

In more complex cases the M matrix simply adjusts the degrees of freedom appropriately, given the replica-
tion for all fixed effects embodied in the X matrix. This adjustment is not the same as the adjustment made by
REML. The bias-corrected ML estimates obtained from dmm() will agree with REML estimates in some cases,
but not always. This is because REML accounts for the covariances of dyadic residuals (∆ in equation 13),
while dmm() assumes these residuals are uncorrelated (ie it uses OLS on equation 13).

The approach taken by dmm() also has similarities with the ’symmetric sums method’ of Koch(1967) [17].
Koch was probably the first worker to equate dyadic covariances to their expectations, as in equation 7. The
difference is that Koch summed his expectations (he could hardly have done anything else, given computing
facilities at the time), while dmm() writes all expectations as a set of equations 12 to be solved directly.

There is some more detail of the setting up and solving of dyadic model equations in the document dmm-
SolveDME.pdf [12]

6.2.4 Standard errors of variance component estimates

Using a dyadic model reduces variance component estimation to a multiple linear regression problem, the
components being estimated as regression coefficients. Therefore standard errors for variance component
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estimates can be computed using expressions for the standard error of a regresssion coefficient. In terms of
model 13 the unknowns Γ are defined (if estimated by OLS) as

Γ = (W ′W )−1W ′Ψ

but are not actually computed that way, and their standard errors are obtained from

Cov(Γ) = (W ′W )−1 ⊗Σ

where Σ = ∆∆′/(n2 − v) is the (l × l) covariance matrix of residuals from model 13. Again (W ′W )−1 is
not computed that way, but is obtained from the QR decomposition of W .

Because these expressions are exact, given the usual assumptions in regression models, the standard errors
of component estimates from dmm() are likely to be smaller than those obtained other procedures which
employ numerical approximations. This is born out in the examples.

6.2.5 Problems with variance component estimation

A common problem in partitioning residual variance after fixed effects are fitted into a number of variance
components is to encounter the following message from dmm().

Error in dyad.am.expect(am, gls, dmeopt) :

Dyadic model equations not of full rank:

either omit some components or try dmeopt='pcr'

This means that the set of components fitted is more than can be estimated from the data. There are a number
of ways of dealing with this situation

• omit some of the components, rerun dmm() and see if the problem disappears

• start with a minimal set of components (eg components=c("VarE(I)","VarG(Ia)")), and sequentially add
components until the problem occurs

• use dmeopt="pcr" to force dmm() to produce an output object, then look at the correlations among the
columns of the dyadic model equations matrix (W matrix) using print(dmmobject$dme.correl)

• as from dmm_2.1-3 a dmm output object will be returned when the ’not of full rank’ message occurs, so
there is no need to use dmeopt="pcr", you can inspect the correlations of the columns of the W matrix
directly with print(dmmobject$dme.correl). As from dmm_2.1-5 the print method for objects of class
dmm will print the above correlations of the columns of the W matrix, at the end of its usual output.

Deciding which components can be estimated from a particular pedigree is not always easy. There are
some general rules

• to partition individual variation into VarE(I) and VarG(Ia) there must be some individuals in the pedigree
which are related ( ie have a relationship coefficient other than zero). If the relationship matrix is an
identity ( all individuals unrelated) the above partitioning is impossible. In general this means that at
least a 2 generation pedigree is required to partition individual effects.

• to partition maternal variation into VarE(M) and VarG(Ma) there must be some dams in the pedigree
which are related. In general this means that at least a 3 generation pedigree is required to partition
maternal effects.

• to partition sexlinked genetic variation the must be individuals of both sexex present in the pedigree and
having observations.

The easiest way to see if a particular pedigree design will estimate the components one desires is to con-
struct an artificial dataset with that pedigree and attempt to analyse it.

I would like to thank Paloma Moran Martinez for bringing these issues to my attention.
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6.3 Genetic parameters and their standard errors
Strictly speaking, any set of parameters which quantify genetic and environmental variation in a set of traits
can be called genetic parameters. So causal variance and covariance components are genetic parameters.
However, there is a convention that ’genetic parameters’ refers to heritabilities and genetic correlations (
and for completeness phenotypic (co)variance). Geneticists seem to prefer standardized unitless quantities to
describe their populations.

When people say ’heritability’ , without qualification, they imply individual additive genetic variation as
a proportion of total phenotypic variation. Similarly an unqualified ’genetic correlation’ implies the correla-
tion based on the individual additive genetic covariance. There are, of coarse, equivalent parameters for the
non-additive, sex-linked, and maternal components. We avoid using qualifiers in dmm() by using the terms
proportion for each variance component as a proportion of the total or phenotypic variance, and correlation
for each covariance component scaled by the appropriate variances to a correlation. We use the component
names defined in Tables 6 and 7 as qualifying labels.

So proportion is defined as

VarX(Y z)
VarP(I)

for component X(Yz), and correlation for traits T1 and T2 is defined as

CovX(Y z[T 1],Y z[T 2])√
VarX(Y z[T 1]VarX(Y z[T 2])

for cross-trait-same-effect-covariances, and

CovX(Y z[T 1],Wv[T 1])√
VarX(Y z[T 1]VarX(Wv[T 1])

for same-trait-cross-effect-covariances for effects X(Yz) and X(Wv), and

CovX(Y z[T 1],Wv[T 2])√
VarX(Y z[T 1]VarX(Wv[T 2])

for cross-trait-cross-effect-covariances.
So genetic parameter estimates are a simple (but nonlinear) transform of variance and covariance com-

ponent estimates. Their sampling variances ( and hence standard errors) can therefore be obtained from the
sampling variances of the components. The usual method of obtained these is known as the delta method [2].
This approach computes the sampling variance of a polynomial approximation to the transform. Typically
a Taylor series expansion truncated to two terms is used as as the approximation. In dmm(() we develop a
different approach, using logarithms to linearize the function as outlined below.

We need the following identities

Var(lnX) = ln(1+CV 2
X )

which is exact if the distribution of X is lognormal, and approximate otherwise, and is also approximated
by CV 2

X if CV 2 is small.
We also need the bivariate equivalent

Cov(lnX , lnY ) = ln(1+CC2
X ,Y )

where CC2
X ,Y = Cov(X ,Y )

XY = rX ,YCVXCVY

In the present application X and Y are variances, which have a χ2 distribution. This does not necessarily
mean that the above identities are being misapplied, because the lognormal distribution can be used as an
approximation to the χ2 distribution, for example see Jouini etal (2011) [15].
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6.3.1 Sampling variance of a proportion

Let Z = X/Y be the proportion. Apply the log transform to linearize

lnZ = lnX − lnY

and write as
z = x− y

Do the variance of the linear transform

Var(z) = Var(x− y)
= Var(x)+Var(y)−2Cov(x,y)
= ln(1+CV 2

X )+ ln(1+CV 2
Y )+2ln(1+CC2

X ,Y )

then reverse the transform with the exp function

Var(Z) = Z̄2(exp[Var(lnZ)−1)
= Z̄2(exp[Var(z)−1)

=
¯

(
X
Y
)2(exp[ln(1+CV 2

X )+ ln(1+CV 2
Y )+2ln(1+CC2

X ,Y )])

This looks complex but is readily programmed in R as a set of nested function calls.

6.3.2 Sampling variance of a correlation

Let Z =W/(XY )0.5 be the correlation. Apply the log transform to linearize

lnZ = lnW −0.5lnX −0.5lnY

nd write as
z = w−0.5x−0.5y

Do the variance of the linear transform

Var(z) = Var(w)−0.25Var(x)−0.25Var(y)
−2Cov(w,z)−2Cov(w,y)+0.5Cov(x,y)

= ln(1+CV 2
W )+0.25ln(1+CV 2

X )+0.25ln(1+CV 2
Y )

− ln(1+CC2
W,X)− ln(1+CC2

W,Y )+0.5ln(1+CC2
X ,Y )

then reverse the transform with the exp function

Var(Z) = Z̄2(exp[Var(lnZ)−1)
= Z̄2(exp[Var(z)−1)

=
¯

(
W

(XY )0.5 )
2(exp[ln(1+CV 2

W )+0.25ln(1+CV 2
X )+0.25ln(1+CV 2

Y )

− ln(1+CC2
W,X)])− ln(1+CC2

W,Y )])+0.5ln(1+CC2
X ,Y )])
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6.3.3 Problems with genetic parameter calculation

To calculate the genetic parameters corresponding to a cross-effect covariance, dmm(() requires that the corre-
sponding variance components are also estimated. For example, for CovG(Ia,Ma) the corresponding variances
(VarG(Ia) and VarG(Ma)) must also be estimated, and so must appear in the components= argument for dmm().
If this is not done, you will get error messages similar to

....

DME substep completed:

Error in varcomp[var2, ii] : subscript out of bounds

>

and execution will terminate. No output will be returned.
It does not make sense to estimate a cross-effect-covariance without simultaneously estimating the cor-

responding variances. If two effects have a covariance, they must also have variances. All variances and
covariances that are significantly different from zero should be in the dyadic model used to partition resid-
ual variance. If a large and significant variance or covariance is omitted, estimates for all the other included
variances and covariances are biased. This is known as the ’omitted variable effect’. It is well known is a
regression context, but it applies also to partitioning of variance components.
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6.4 Genetic response to selection
The function gresponse() converts phenotypic selection differentials to genetic selection differentials. It re-
quires a set of genetic parameter estimates, in the form of a dmm object as computed by dmm().

6.4.1 Understanding selection differentials

Consider the mechanics of selection. The selection process chooses a subset of individuals which are to be
parents of the next generation. The selected sub-group will presumably have some differences from the whole
group of individuals from which they were chosen. The difference may be univariate (ie one measured trait
differs) or multivariate (any number of traits differ). Such a difference is referred to as a phenotypic selection
differential, and thus may be a single value or a vector of differences. It is called ’phenotypic’ because it is the
average observed difference of selected from unselected individuals.

The function gresponse() assumes that phenotypic selection differentials are known and are specified in
the same units of measurement as the traits used to compute genetic parameters with dmm(). It is outside of the
scope of gresponse() to calculate expected selection differentials for various types and intensities of selection.

When selected parents are mated and produce progeny there will be an observable performance (for one or
more traits) of the progeny of selected parents. If we also mated (experimantally) some unselected parents (ie
chosen at random from the whole population) their progeny would also have an observable performance.. The
average observed difference between the progeny of selected parents and the progeny of unselected parents,
would be a genetic selection differential. or more precisely a realised genetic selection differential. It is called
’genetic’ because it represents the part of the parent’s phenotypic selection differential which is inherited by
their progeny.

One of the main uses of genetic parameters is to predict what the genetic selection differential would be,
for a given phenotypic selection differential, without having to carry out the above experimental matings.
This is what gresponse() does. The term ’response to selection’ refers to achieving a certain genetic selection
differential, given a specific phenotypic selection differential.

Most of the predictable response to selection is due to additive genetic variation. Therefor gresponse()
deals with two important cases, response due to individual additive genetic variation, and response due to
maternal additive genetic variation. In each case the additive genetic variation can be autosomal or sexlinked
or both, leading to four additive genetic effects which can be considered in any combination. The following
four sections deal with a gradual development of the response prediction equations leading up to the general
case with all four effects.

6.4.2 Response due to individual additive genetic variation

If there are two traits, X and Y, the equation for response due to individual additive genetic variation is

[
dGX

dGY

]
=

[
σ2

GX
σGXY

σGXY σ2
GY

][
σ2

PX
σPXY

σPXY σ2
PY

]−1[
dPX

dPY

]
where

dPX is the phenotypic selection differential for trait x

dGX is the genetic selection differential for trait x

σ2
GX

is the additive genetic variance for trait X

σGXY is the additive genetic covariance for traits X and Y

σ2
GY

is the additive genetic variance for trait y

σ2
PX

is the phenotypic variance for trait X

σPXY is the phenotypic covariance for traits X and Y
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σ2
PY

is the phenotypic variance for trait Y

For multiple traits this is readily generalized to

dG =GP−1dP (14)

where

dG is a vector of genetic selection differentials

dP is a vector of phenotypic selection differentials

G is an additive genetic covariance matrix

P is a phenotypic covariance matrix

and for a single trait it reduces to the familiar breeder’s equation

dG = dPh2

where h2 is additive genetic heritability

6.4.3 Response due to individual and maternal additive genetic variation

We start by rewriting equation 2 using a slightly different notation and a ’prime’ superscript to indicate parent
generation.

p = gIa + eI +g′Ma
+ e′M (15)

because we have to be clear now that the genetic components of phenotype p are gIa + g′Ma
, but the indi-

vidual’s own genotypic value is gIa +gMa

If the above equation is for a progeny generation, we have for the parent generation

p′ = g′Ia
+ eI +g′′Ma

+ e′′M (16)

and we are looking at predicting
[

dgIa
dg′Ma

]
from dp′ .

For a single trait, this prediction can be written

[
dgIa
dg′Ma

]
=

[
GIaIa GIaM′

a
GIaM′

a
GM′

aM′
a

][
1
1

][
P

]−1 [ dp′
]

but because covariance component estimates from dmm() are of GIaMa and GMaMa rather than GIaM′
a

and
GM′

aM′
a

we rewrite it as

[
dgIa
dg′Ma

]
=

[
GIaIa GIaMa

GIaM′
a

GMaMa

][
RII
RIM

][
P

]−1 [ dp′
]

where RII is 1, and RIM is the relationship between individual and parent, that is 0.5.
This single trait case reduces to Dickerson’s(1947) [5] formula

dG = (h2
I +

3
2

rGIM hIhM +
1
2

h2
M)dP

where dG in Dickerson’s notation is the sum of our dgIa
and dg′Ma

.
For two traits, X and Y, we can write
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
dgIX
dgIY
dg′MX
dg′MY

 =


σ2

GIX
σGIXY

σGIX MX
σGIX MY

σGIXY
σ2

GIY
σGIY MX

σGIY MY

σGIX MX
σGIX MY

σ2
GMX

σGMXY

σGIY MX
σGIY MY

σGMXY
σ2

GMY


[

RII
RIM

][
σ2

PX
σPXY

σPXY σ2
PY

]−1
[

dp′X
dp′Y

]

where here RII is I2 (an identity matrix of order 2), and RIM is 0.5I2.
For multiple traits this generalizes to

dG =GRP−1dP (17)

where G is the combined genetic covariance matrix of individual and maternal effects, and R is a 2l × l

matrix
[

Il
0.5Il

]
where l is number of traits.
There remains the issue of phenotypic response in the progeny generation not being the same as the genetic

response, when there are maternal effects (Mueller and James(1985) [24]). This is not currently considered by
gresponse(). It involves the "CovE(I,M)" environmental covariance of individual and maternal effects.

6.4.4 Response due to individual additive autosomal and sexlinked genetic variation

If some of the genes affecting a trait are on the X chromosome, and some are autosomal, the appropriate effects
model is

p = gIa +gsIa
+ eI (18)

In this case there are two sorts of individual additive genetic variance (VarG(Ia) and VarGs(Ia) in our R
notation). Their respective contributions to response to selection was first obtained by Griffin(1966) [10]. We
first look at Griffin’s equations, in his original notation. Change in female progeny mean due to mass selection
among males is

(im/mσind)[ f mσAs +0.5( f mσAa)+0.5( f mσAA)] (19)

where

im is the standardised phenotypic selection differential for males

mσind is the phenotypic standard deviation for males

f mσAs is the additive sexlinked genetic covariance between females and males

f mσAa is the additive autosomal genetic covariance between females and males

f mσAA is the epistatic genetic covariance between females and males (both autosomal and sexlinked)

Note the unusual leading subscript notation.
Similarly the change in female progeny mean due to mass selection among females is

(i f / f σind)[0.5( f f σAs)+0.5( f f σAa)+0.25( f f σAA)] (20)

with obvious notation.
Changes in the male progeny mean due to mass selection among males are

(im/mσind)[0.5(mmσAa)] (21)

so the sexlinked additive genetic covariance (σAs) does not enter into response in males to selection of
males, because a male parent cannot pass an X chromosome onto its male progeny.

And, finally, change in male progeny mean, due to mass selection among females is
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(i f / f σind)[( f mσAs)+0.5( f mσAa)+0.5( f mσAA)] (22)

that is, the same as the male to female path, except for the selection differential.
There are a number of points to note, before we adapt these equations to our current purpose.

• Griffin is using sex-specific genetic parameters. His f f σAa is autosomal additive genetic variance in
females, and f mσAa is a cross-sex additive genetic covariance. We use the same parameters for both
sexes so we write

mmσAa = f f σAa = f m σAa =VarG(Ia)

and
mmσAs = f f σAs = f m σAs =VarGs(Ia)

and
mσind = f σind = (VarP(I))0.5 = σP

• We will not use the epistatic σAA component.

• Our dP is a phenotypic selection differential in real units ( ie not standardized). So

im/(mσind) = dPhe/σ
2
P

i f /( f σind) = dPho/σ
2
P

The he and ho subscripts refer to heterogametic and homogametic sexes (see below). We will take
the σ2

P denominator inside the square brackets and use it to turn the genetic variance components into
heritabilities, for example the female to male equation can be written

dPho[0.5h2
As +0.5h2

Aa]

• Griffin used m and f for male and female and assumed the male sex to be hetrogametic, as in mammals.
We will generalize slightly, as foreshadowed above, and use he for the heteogametic sex and ho for the
homogametic sex.

• Griffin’s four equations represent four paths of genetic change. We will write these as he.he, ho.he,
he.ho, and ho.ho, the first (he or ho) representing the parent sex, and the last the progeny sex.

So taking taking all the above points together we rewrite Griffin’s 4 equations as

dGhe.he = dPhe [0h2
As +0.5h2

Aa]

dGho.he = dPho[h
2
As +0.5h2

Aa]

dGhe.ho = dPhe [h
2
As +0.5h2

Aa]

dGho.ho = dPho[0.5h2
As +0.5h2

Aa]

where

h2
As =

VarGs(Ia)
VarP(I)

h2
Aa =

VarG(Ia)
VarP(I)

These are, of course single trait equations. To get multivariate equations we simply replace each heritability
by GP−1, where G is the relevant genetic covariance matrix and P is the phenotypic covariance matrix. This
leads to
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dGhe.he = [OGSIa +0.5IGIa]P
−1dPhe

dGho.he = [IGSIa +0.5IGIa]P
−1dPho

dGhe.ho = [IGSIa +0.5IGIa]P
−1dPhe

dGho.ho = [0.5IGSIa +0.5IGIa]P
−1dPho

where O is a matrix of zeros of order l× l and I is an identity matrix of order l× l, l being the number of traits.
The phenotypic selection differentials dP and genetic selection differentials dG, are now vectors of length l.

If we form the coefficients into matrices

She.he =

[
0.5I
O

]
Sho.he =

[
0.5I
I

]
She.ho =

[
0.5I
I

]
Sho.ho =

[
0.5I
0.5I

]
and form a partitioned G matrix

G =

[
GIa O
O GSIa

]
we can then write

dGhe.he = GShe.heP
−1dPhe

dGho.he = GSho.heP
−1dPho

dGhe.ho = GShe.hoP
−1dPhe

dGho.ho = GSho.hoP
−1dPho (23)

and we have 4 matrix equations predicting genetic selection differentials for each of the 4 paths separately.
Each dG is a vector with partitions containing the responses due to GIa and GSIa , in all traits.

These path specific genetic selection differentials can be summed to obtain sex-specific genetic selection
differentials

dG.he = dGhe.he +dGho.he

dG.ho = dGho.ho +dGhe.ho (24)

and these sex specific responses can be averaged to obtain an overall genetic selection differential

dG.. = 0.5(dG.he +dG.ho) (25)

We can also sum the GIa and GSIa contributions within any of the above dG’s to obtain a total response
due to both autosomal and sexlinked genetic variation, as is done in Griffin’s equations.
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6.4.5 Combined responses due to individual and maternal additive genetic variation, both autosomal
and sexlinked

We need to put together a set of equations which will predict responses due to individual additive, individual
additive sexlinked, maternal additive, and maternal additive sexlinked genetic variation. We now work with
the following model for effects

p= gIa +gSIa
+eI +g′Ma

+g′SMa
+e′M

the prime indicating parent generation.
The concept of a partitioned G matrix needs to be extended to 4 partitions as follows

G =


GIaIa O GIaMa O
O GSIaIa O GSIaMa

GMaIa O GMaMa O
O GSMaIa O GSMaMa


We must also extend the R matrix if section 6.4.3 which deals with mother x offspring relationships, and

the S matrix of section 6.4.4 which deals with autosomal and sexlinked inheritance. We put both the R and S
matrix coefficients into a combined matrix T which is defined as

The.he =


0.5I
O

0.25I
O



Tho.he =


0.5I
I

0.25I
0.5I



The.ho =


0.5I
I

0.25I
0.5I



Tho.ho =


0.5I
0.5I

0.25I
0.25I


where I is an identity matrix of order l, and O is a matrix of zeros of order l, l being the number of traits.
We can then write the combined equations as

dGhe.he = GThe.heP
−1dPhe.he

dGho.he = GTho.heP
−1dPho.he

dGhe.ho = GThe.hoP
−1dPhe.ho

dGho.ho = GTho.hoP
−1dPho.ho (26)

which look similar to equations 23 but G now has 4 partitions as defined above, and the dG’s each have 4
matching partitions for the 4 modes of inheritance. We have also defined a separate dP for each of the 4 paths,
instead of just for each sex selected, although this is only necessary if the population is structured.

It is necessary to keep the 4 paths as 4 separate equations, but the path specific dG’s can be summed/aver-
ages as indicated in equations 24 and 25 of the previous section.
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The gresponse() function always uses this combined approach, simply setting to zero the G matrix com-
ponents not present in any particular case, and always doing the 4 paths separately, even when there is no
sexlinkage. Regardless of how dP is specified, it is always set up internally as 4 path specific phenotypic se-
lection differentials, for use in the above equations, even if they are all identical. That is the price of generality.

6.4.6 Limitations

Function gresponse() is experimental. It currently only does elementary predictions of response to mass se-
lection based on individual phenotype. It does a one generation prediction assuming generations are not
overlapping.

Sex specific genetic parameters and questions of population structure where the male-to-male, male-to-
female, female-to-male, and female-to-female pathways are considered separately, are not considered, al-
thought there is provision for path specific selection differentials.

Nonadditive genetic variation is not considered.
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7 Some issues unique to dmm().
Apart from using a dyadic model, dmm() has a number of facilities which might be termed experimental or
novel. We want these to be both mathematically sound and useful. Because these have had limited scrutiny,
they are grouped in this section under a general warning of let the user beware.

7.1 Cohorts
A cohort is a group of individuals reared together in a common environment, most likely up to the point
of observation, or at least for a substantial period. It must be an environmental grouping. The following
discussion will be wrong if it represents a genetic grouping. An example would be a group of animals born at
the same time and reared together such as a drop of lambs, or a group of plants grown in the same plot.

So why give special attention to cohort? Is it not just another fixed effect? The answer depends on our
intended use of the genetic parameter estimates. If we want parameter estimates that are relevant to selection
within a cohort, then leaving cohort as a fixed effect in the model is the appropriate course of action. Genetic
parameters will then be a summary of within cohort variation and will be appropriate for selection among
individuals within a cohort.

If we want parameter estimates that are relevant to selection across cohorts, or ignoring cohorts, then
cohort must be a random effect in the model, and its variance must be included in summing components to
obtain phenotypic variance. Genetic parametrs will then include between cohort variation as an environmental
variance "VarE(C)", and will be appropriate for selection of individuals across cohorts.

To setup the latter case in dmm() we need to use the argument cohortform to define a cohort formula,
and we also need to include "VarE(C)" in the component argument. Any dataframe columns which appear in
cohortform should not also appear in the fixform argument.

An example will make this clear

> library(dmm)

> data(sheep.df)

> sheep.mdf <- mdf(sheep.df,pedcols=c(1:3),factorcols=c(4:6),ycols=c(7:9), sexcode=c("M","F"),relmat=c("E","A"))

In the sheep.df dataset there is a factor called Year which records the year of birth of each individual. We
are going to let Year be the cohort grouping. We first run an analysis without a cohort effect

> sheep.fit <- dmm(sheep.mdf, Ymat ~ 1 + Year + Tb + Sex)

Dyadic mixed model fit for datafile: sheep.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 9

no of traits (l) = 3

Setup antemodel matrices:

No of factors with specific components: 0

No of non-specific components partitioned: 2

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 44

no of individuals with data and X codes (n) = 36

Rank of X: 9 No of Fixed Effects: 9

OLS-fixed-effects step completed:

DME substep:

No of components defined = 2

No of components estimable = 2

Checking dyadic model equations:
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QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:

>

Then we rerun with Year as a cohort instead of as a fixed effect

> sheep.fitc <- dmm(sheep.mdf, Ymat ~ 1 + Tb + Sex, cohortform = ~ Year,components=c("VarE(I)","VarE(C)","VarG(Ia)"))

Dyadic mixed model fit for datafile: sheep.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 3

no of traits (l) = 3

Setup antemodel matrices:

ncohortcodes = 8

No of factors with specific components: 0

No of non-specific components partitioned: 3

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 44

no of individuals with data and X codes (n) = 36

Rank of X: 3 No of Fixed Effects: 3

OLS-fixed-effects step completed:

DME substep:

No of components defined = 3

No of components estimable = 3

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:

>

Then let us compare the genetic parameter estimates from the two runs. We will look just at trait "Diam"

> gsummary(sheep.fit,traitset="Diam")

Call:

gsummary.dmm(dmmobj = sheep.fit, traitset = "Diam")

Proportion of phenotypic var/covariance partitioned by DME:

to each component (OLS-fixed-effects):

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Diam 0.253 0.199 -0.138 0.643

VarG(Ia) Diam 0.747 0.207 0.341 1.154

VarP(I) Diam 1.000 0.000 1.000 1.000

Correlation corresponding to each var/covariance component:

partitioned by DME (OLS-fixed-effects):

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 1 0 1 1

VarG(Ia) Diam:Diam 1 0 1 1

VarP(I) Diam:Diam 1 0 1 1
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Phenotypic var/covariance from components partitioned by DME (OLS-fixed-effects):

Traitpair Estimate StdErr CI95lo CI95hi

1 Diam:Diam 1.06 0.137 0.788 1.33

>

> gsummary(sheep.fit,traitset="Diam")

Call:

gsummary.dmm(dmmobj = sheep.fit, traitset = "Diam")

Proportion of phenotypic var/covariance partitioned by DME:

to each component (OLS-fixed-effects):

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Diam 0.253 0.199 -0.138 0.643

VarG(Ia) Diam 0.747 0.207 0.341 1.154

VarP(I) Diam 1.000 0.000 1.000 1.000

Correlation corresponding to each var/covariance component:

partitioned by DME (OLS-fixed-effects):

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 1 0 1 1

VarG(Ia) Diam:Diam 1 0 1 1

VarP(I) Diam:Diam 1 0 1 1

Phenotypic var/covariance from components partitioned by DME (OLS-fixed-effects):

Traitpair Estimate StdErr CI95lo CI95hi

1 Diam:Diam 1.06 0.137 0.788 1.33

>

The phenotypic variance increases, as expected when another variance is included in phenotypic variation.
Also the estimates of ’Proportion’ change when "VarE(C)" is added to the causal components, for two reasons,
firstly the denominator of the ’Proportion’ is different, and secondly "VarE(C)" is correlated with the other
components so its presence in the model alters the fit.

In theory, changing from a fixed effect "Year" to a random effect "VarE(C)" should not alter the fit, but that
only applies when all effects are fitted simultaneously. With a mixed model there is an heirarchy - fixed effects
fitted first, data adjusted, then random effects estimated. That applies to dmm and to bias-corrected-ML and
REML. The only procedure which fits all effects simultaneously in a mixed model is Henderson’s Method 3.

7.2 Partitioning "VarE(M)"
If there is more than one offspring per dam, the component "VarE(M)", as fitted by dmm() may be a complex
mixture of

σ2
EM

maternal environmental effect

σ2
EC

nonmaternal environmental effect due to littermates (the so-called "common environment" variance)
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These can be separated only if dams have multiple litters and multiple offspring per litter. In that case, we
can use the cohort facility in dmm(), where cohort is any grouping which separates multiple litters of a dam
(eg Year of birth), to define the following components

VarE(C) variance between cohorts

VarE(M&C) variance of individuals with the same dam and same cohort - ie littermates

VarE(M&!C) variance of individuals with the same dam and not the same cohort - ie maternal half sibs across
cohorts

With this partitioning we can clearly obtain σ2
EM

annd σ2
EC

if desired, by simple subtraction

σ
2
EC

= VarE(M&C)−VarE(M&!C)

σ
2
EM

= VarE(M&!C)

The above discussion is well presented by Bijma(2006)[3].
We do not of course fit VarE(M) at the same time as its two components VarE(M&C) and VarE(M&!C).

The relationship between VarE(M) and its components is actually a weighted average

VarE(M) =
n1VarE(M&C)+n2VarE(M&!C)

n1 +n2

where n1 and n2 are sums of the relavant columns of the W matrix.
We continue the example of the cohort section, fitting maternal environmental variance and then splitting

it as follows

> sheep.fitm <- dmm(sheep.mdf,Ymat ~ 1 + Tb + Sex,components=c("VarE(I)","VarE(C)", "VarG(Ia)", "VarE(M)", "VarG(Ma)"),cohortform = ~ Year)

Dyadic mixed model fit for datafile: sheep.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 3

no of traits (l) = 3

Setup antemodel matrices:

ncohortcodes = 8

No of factors with specific components: 0

No of non-specific components partitioned: 5

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 44

no of individuals with data and X codes (n) = 36

Rank of X: 3 No of Fixed Effects: 3

OLS-fixed-effects step completed:

DME substep:

No of components defined = 5

No of components estimable = 5

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:

>

> summary(sheep.fitm,traitset=c("Cww"))
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Call:

summary.dmm(object = sheep.fitm, traitset = c("Cww"))

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Cww 4.638 0.128 4.3863 4.890

TbT Cww -0.105 0.181 -0.4602 0.250

SexM Cww 0.320 0.196 -0.0653 0.705

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 0.0627 0.0686 -0.0718 0.1972

VarE(C) Cww:Cww 0.0550 0.0221 0.0117 0.0984

VarG(Ia) Cww:Cww 0.1461 0.0658 0.0172 0.2750

VarE(M) Cww:Cww 0.2237 0.1334 -0.0378 0.4852

VarG(Ma) Cww:Cww 0.0823 0.1311 -0.1746 0.3393

>

> sheep.fitm2 <- dmm(sheep.mdf,Ymat ~ 1 + Tb + Sex,components=c("VarE(I)","VarE(C)", "VarG(Ia)","VarE(M&C)","VarE(M&!C)","VarG(Ma)"),cohortform = ~ Year)

Dyadic mixed model fit for datafile: sheep.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 3

no of traits (l) = 3

Setup antemodel matrices:

ncohortcodes = 8

No of factors with specific components: 0

No of non-specific components partitioned: 6

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 44

no of individuals with data and X codes (n) = 36

Rank of X: 3 No of Fixed Effects: 3

OLS-fixed-effects step completed:

DME substep:

No of components defined = 6

No of components estimable = 6

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:

> summary(sheep.fitm2,traitset=c("Cww"))

Call:

summary.dmm(object = sheep.fitm2, traitset = c("Cww"))

Coefficients fitted by OLS for fixed effects:
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Trait Estimate StdErr CI95lo CI95hi

(Intercept) Cww 4.638 0.128 4.3863 4.890

TbT Cww -0.105 0.181 -0.4602 0.250

SexM Cww 0.320 0.196 -0.0653 0.705

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 0.0947 0.0794 -0.060854 0.250

VarE(C) Cww:Cww 0.0560 0.0226 0.011687 0.100

VarG(Ia) Cww:Cww 0.1309 0.0671 -0.000571 0.262

VarE(M&C) Cww:Cww 0.1474 0.1430 -0.132873 0.428

VarE(M&!C) Cww:Cww 0.2627 0.1355 -0.002936 0.528

VarG(Ma) Cww:Cww 0.0768 0.1312 -0.180476 0.334

>

so in this small demonstration case VarE(M&!C) turns out larger than VarE(M) so the estimate of σ2
EC

by
subtraction will be negative. This often happens if we overfit a small dataset with many components.

7.3 Using robust regression to solve DME’s
One of the advantages of turning variance component estimation into a regression is that one can use regression
techniques other than least squares. One option is robust regression. There are several packages for robust
regression available in R. All of them are only capable of multiple regression with a univariate response. In
dmm() the function lmrob() from package robustbase can be used instead of QR to solve the dyadic model
equations, if the argument dmeopt="lmrob" is specified.

There is no information on the properties of the variance component estimates obtained by dmm() using
lmrob(). Their standard errors are obtained as the standard errors of coefficients returned by lmrob().

Experience has shown that "lmrob" estimates do not exactly agree with QR estimates for a balanced dataset.
Apparently robust algorithms will always remove some perceived outlier data points, and this will naturally
lead to slightly different estimates of regression coefficients. They also usually lead to smaller standard errors.

One possible use for the robust regression option is to check whether the usual regression estimates ob-
tained by ordinary least squares (qr or lm options) have been unduly affected by outliers. If the robust regres-
sion estimates of variance components are vastly different from the OLS estimates, then some serious outliers
are indicated. In this case the robust regression estimates are probably superior. The best course of action
would be to find the reason for the outliers and remove or correct them. The only limitation to using lmrob
option in this way is that robust regression is a univariate procedure, so you can only assess one trait at a time.

I re-ran the warcolak.fit1 analysis using dmeopt="lmrob"

> warcolak.robust.fit1 <- dmm(warcolak.mdf, Trait1 ~ 1 + Sex,components = c("VarE(I)","VarG(Ia)", "VarG(Id)"), relmat = "withdf",dmeopt="lmrob")

Dyadic mixed model fit for datafile: warcolak.mdf

....

>

> summary(warcolak.robust.fit1)

Call:

summary.dmm(object = warcolak.robust.fit1)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Trait1 2.06 0.0180 2.03 2.100

SexM Trait1 -1.02 0.0269 -1.07 -0.968
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Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait1 0.214 0.02344 0.1679 0.260

VarG(Ia) Trait1:Trait1 0.156 0.00582 0.1441 0.167

VarG(Id) Trait1:Trait1 0.117 0.02423 0.0693 0.164

>

The variance component estimates are smaller than the warcolak.fit1 estimates, the total variance is smaller,
and the standard errors are smaller.

It is probably better to compare heritability estimates

> gsummary(warcolak.fit1)

Call:

gsummary.dmm(dmmobj = warcolak.fit1)

Proportion of phenotypic var/covariance partitioned by DME:

to each component (OLS-fixed-effects):

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Trait1 0.291 0.0347 0.223 0.359

VarG(Ia) Trait1 0.404 0.0104 0.384 0.425

VarG(Id) Trait1 0.305 0.0374 0.232 0.378

VarP(I) Trait1 1.000 0.0000 1.000 1.000

> gsummary(warcolak.robust.fit1)

Call:

gsummary.dmm(dmmobj = warcolak.robust.fit1)

Proportion of phenotypic var/covariance partitioned by DME:

to each component (OLS-fixed-effects):

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Trait1 0.44 0.0749 0.2931 0.587

VarG(Ia) Trait1 0.32 0.0216 0.2775 0.362

VarG(Id) Trait1 0.24 0.0816 0.0803 0.400

VarP(I) Trait1 1.00 0.0000 1.0000 1.000

So the robust estimates do not just differ because the total variance is reduced by deleting outliers, the
proportioning of variance is affected as well.

In general one assumes that robust estimators omit noisy observations, but they may delete genetically
extreme values as well. There is no control over what robust regression deletes. It may work best with very
noisy data.

7.4 Using principal component regression to solve DME’s
If there are collinearities in the dyadic model equations ( check the column correlations) then one of the basic
assumptions of multiple regression is not met - the independent variables ( in this case the columns of the
W matrix) are not independent. In practice any correlation exceeding about 0.5 is thought to be a serious
violation.

This is by no means an unusual situation in quantitative genetic data, particularly if non-additive genetic
components are being estimated. For example, the following correlations are obtained for our test data sets
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> quercus.fit$dme.correl

VarE(I) VarG(Ia) VarG(Id)

VarE(I) 1.0000000 0.7314919 0.9428127

VarG(Ia) 0.7314919 1.0000000 0.8610611

VarG(Id) 0.9428127 0.8610611 1.0000000

> warcolak.fitg$dme.correl

VarE(I) VarG(Ia) VarG(Id) VarGs(Ia)

VarE(I) 1.0000000 0.4856324 0.9190639 0.7494688

VarG(Ia) 0.4856324 1.0000000 0.6255619 0.7473142

VarG(Id) 0.9190639 0.6255619 1.0000000 0.8105875

VarGs(Ia) 0.7494688 0.7473142 0.8105875 1.0000000

> tstmo1.fit1$dme.correl

VarE(I) VarG(Ia)

VarE(I) 1.0000000 0.4158424

VarG(Ia) 0.4158424 1.0000000

> harv.fit$dme.correl

VarE(I) VarG(Ia)

VarE(I) 1.0000000 0.8780947

VarG(Ia) 0.8780947 1.0000000

>

Note the correlations exceeding 0.9 involving dominance variance.
There is a way of circumventing this issue, which may be helpful in the current context. The dmm()

argument dmeopt="pcr" invokes a principal component regression in place of QR, using the method="svdpc"
in the function mvr() of package pls. What this does is to transform the variance components to a set of
independent variables (which are linear combinations of the variance components) before doing the multiple
regression, then transform the fitted coefficients back to the original variables. This avoids the assumption
violation, but it requires a certain amount of user intervention. One needs to choose how many transformed
independent variates to use, and the criteria for this are not readily automated.

With this in mind, the dmeopt="pcr" option is setup with some extra screen output to aid in user choices.
Usually several runs will be required to arrive at a satisfactory number of components.

We will use the quercus.df dataset for an example. Three variance components are fitted, with correlations
noted above. Component "VarG(Id)" is strongly correlated with the other two components. First a run allowing
variable ncomp, which is the number of principal components to be included in the regression, to be its default
value which is the rank of the W matrix - in this case 3.

> data(quercus.df)

> quercus.mdf <- mdf(quercus.df,pedcols=c(1:3), factorcols=4, ycols=c(5:6),

sexcode=c(1,2), relmat=c("E","A","D"))

.....

> quercus.fitpcr <- dmm(quercus.mdf,Ymat ~ 1,components = c("VarE(I)","VarG(Ia)", "VarG(Id)"),dmeopt="pcr",relmat = "withdf")

Dyadic mixed model fit for datafile: quercus.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 1

no of traits (l) = 2

Setup antemodel matrices:

No of factors with specific components: 0

No of non-specific components partitioned: 3

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 260
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no of individuals with data and X codes (n) = 180

Rank of X: 1 No of Fixed Effects: 1

OLS-fixed-effects step completed:

DME substep:

No of components defined = 3

No of components estimable = 3

Checking dyadic model equations:

PCR option on dyadic model equations:

Data: X dimension: 32400 3

Y dimension: 32400 4

Fit method: svdpc

Number of components considered: 3

VALIDATION: RMSEP

Cross-validated using 10 random segments.

Response: Trait1:Trait1

(Intercept) 1 comps 2 comps 3 comps

CV 1.158 1.155 1.155 1.155

adjCV 1.158 1.155 1.154 1.155

Response: Trait1:Trait2

(Intercept) 1 comps 2 comps 3 comps

CV 1.449 1.449 1.449 1.449

adjCV 1.449 1.449 1.449 1.449

Response: Trait2:Trait1

(Intercept) 1 comps 2 comps 3 comps

CV 1.449 1.449 1.449 1.449

adjCV 1.449 1.449 1.449 1.449

Response: Trait2:Trait2

(Intercept) 1 comps 2 comps 3 comps

CV 1.813 1.808 1.808 1.808

adjCV 1.813 1.808 1.808 1.808

TRAINING: % variance explained

1 comps 2 comps 3 comps

X 89.286032 99.157279 1.000e+02

Trait1:Trait1 0.643912 0.648228 6.544e-01

Trait1:Trait2 0.008194 0.008364 8.699e-03

Trait2:Trait1 0.008194 0.008364 8.699e-03

Trait2:Trait2 0.652555 0.652902 6.557e-01

DME substep with OLS-fixed-effects completed:

>

>

> quercus.fitpcr$dme.corre

VarE(I) VarG(Ia) VarG(Id)

VarE(I) 1.0000000 0.7314919 0.9428127

VarG(Ia) 0.7314919 1.0000000 0.8610611

VarG(Id) 0.9428127 0.8610611 1.0000000

>

> summary(quercus.fitpcr)
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Call:

summary.dmm(object = quercus.fitpcr)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

1 Trait1 0.0812 0.0804 -0.0764 0.239

Trait Estimate StdErr CI95lo CI95hi

1 Trait2 -0.0855 0.101 -0.283 0.112

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait1 0.0348 0.382 -0.7143 0.784

VarG(Ia) Trait1:Trait1 0.1966 0.136 -0.0703 0.463

VarG(Id) Trait1:Trait1 0.9386 0.450 0.0566 1.821

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait2 0.135 0.321 -0.494 0.763

VarG(Ia) Trait1:Trait2 0.134 0.156 -0.171 0.439

VarG(Id) Trait1:Trait2 -0.113 0.471 -1.036 0.810

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait1 0.135 0.322 -0.497 0.766

VarG(Ia) Trait2:Trait1 0.134 0.136 -0.133 0.401

VarG(Id) Trait2:Trait1 -0.113 0.421 -0.938 0.712

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 0.975 0.419 0.154 1.80

VarG(Ia) Trait2:Trait2 0.813 0.217 0.387 1.24

VarG(Id) Trait2:Trait2 0.047 0.552 -1.036 1.13

>

end{verbatim}

First let us note that "pcr" is using all 3 components

\begin{verbatim}

Fit method: svdpc

Number of components considered: 3

and that it actually does analyses with 1,2, and 3 components, and the successive amounts of variance
explained are

TRAINING: % variance explained

1 comps 2 comps 3 comps

X 89.286032 99.157279 1.000e+02

Now let us compare the results with those from the same model using dmeopt="qr"

> summary(quercus.fit)

Call:
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summary.dmm(object = quercus.fit)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

1 Trait1 0.0812 0.0804 -0.0764 0.239

Trait Estimate StdErr CI95lo CI95hi

1 Trait2 -0.0855 0.101 -0.283 0.112

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait1 0.0348 0.294 -0.5414 0.611

VarG(Ia) Trait1:Trait1 0.1966 0.143 -0.0836 0.477

VarG(Id) Trait1:Trait1 0.9386 0.373 0.2082 1.669

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait2 0.135 0.369 -0.589 0.858

VarG(Ia) Trait1:Trait2 0.134 0.179 -0.218 0.486

VarG(Id) Trait1:Trait2 -0.113 0.468 -1.030 0.804

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait1 0.135 0.369 -0.589 0.858

VarG(Ia) Trait2:Trait1 0.134 0.179 -0.218 0.486

VarG(Id) Trait2:Trait1 -0.113 0.468 -1.030 0.804

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 0.975 0.460 0.0726 1.88

VarG(Ia) Trait2:Trait2 0.813 0.224 0.3745 1.25

VarG(Id) Trait2:Trait2 0.047 0.584 -1.0967 1.19

>

So the variance component estimates are identical ("pcr" with ncomp=3 versus "qr), but the standard errors
are identical. This is not surprising because "pcr" uses a jackknife technique to estimate the var/covariance
matrix of estimates, while "qr" uses the exact procedure for regression coefficients estimated by least squares.

Now a rerun with ncomp=2, that is we will only use the first two principal components to fit the regressions,
but will transform the result back to the 3 variance components

> quercus.fitpcr2 <- dmm(quercus.mdf,Ymat ~ 1,components = c("VarE(I)","VarG(Ia)", "VarG(Id)"),dmeopt="pcr",relmat = "withdf",ncomp.pcr=2)

Dyadic mixed model fit for datafile: quercus.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 1

no of traits (l) = 2

Setup antemodel matrices:

No of factors with specific components: 0

No of non-specific components partitioned: 3

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0
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no of individuals in pedigree (m) = 260

no of individuals with data and X codes (n) = 180

Rank of X: 1 No of Fixed Effects: 1

OLS-fixed-effects step completed:

DME substep:

No of components defined = 3

No of components estimable = 3

Checking dyadic model equations:

PCR option on dyadic model equations:

Data: X dimension: 32400 3

Y dimension: 32400 4

Fit method: svdpc

Number of components considered: 2

VALIDATION: RMSEP

Cross-validated using 10 random segments.

Response: Trait1:Trait1

(Intercept) 1 comps 2 comps

CV 1.158 1.155 1.155

adjCV 1.158 1.155 1.155

Response: Trait1:Trait2

(Intercept) 1 comps 2 comps

CV 1.449 1.449 1.449

adjCV 1.449 1.449 1.449

Response: Trait2:Trait1

(Intercept) 1 comps 2 comps

CV 1.449 1.449 1.449

adjCV 1.449 1.449 1.449

Response: Trait2:Trait2

(Intercept) 1 comps 2 comps

CV 1.813 1.808 1.808

adjCV 1.813 1.808 1.808

TRAINING: % variance explained

1 comps 2 comps

X 89.286032 99.157279

Trait1:Trait1 0.643912 0.648228

Trait1:Trait2 0.008194 0.008364

Trait2:Trait1 0.008194 0.008364

Trait2:Trait2 0.652555 0.652902

DME substep with OLS-fixed-effects completed:

>

> summary(quercus.fitpcr2)

Call:

summary.dmm(object = quercus.fitpcr2)

Coefficients fitted by OLS for fixed effects:

87



Trait Estimate StdErr CI95lo CI95hi

1 Trait1 0.0812 0.0804 -0.0764 0.239

Trait Estimate StdErr CI95lo CI95hi

1 Trait2 -0.0855 0.101 -0.283 0.112

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait1 0.430 0.1253 0.184 0.675

VarG(Ia) Trait1:Trait1 0.338 0.1074 0.128 0.549

VarG(Id) Trait1:Trait1 0.416 0.0726 0.274 0.558

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait2 0.0193 0.0993 -0.1754 0.214

VarG(Ia) Trait1:Trait2 0.0927 0.1417 -0.1850 0.370

VarG(Id) Trait1:Trait2 0.0396 0.0441 -0.0468 0.126

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait1 0.0193 0.0914 -0.1599 0.198

VarG(Ia) Trait2:Trait1 0.0927 0.1168 -0.1363 0.322

VarG(Id) Trait2:Trait1 0.0396 0.0440 -0.0465 0.126

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 0.557 0.184 0.196 0.917

VarG(Ia) Trait2:Trait2 0.663 0.146 0.377 0.950

VarG(Id) Trait2:Trait2 0.600 0.115 0.375 0.826

>

The resulting estimates are remarkably different and have much smaller standard errors. This is exactly
what the textbooks say - regression coefficients from principal component regression may be biased, but will
have a smaller mean square error, compared to least squares. One has to hope that the bias is small and the
gain from reduced standard errors more than compensates.

What we have done, by excluding the third principal component, is to restrict the 3D space in which the
three component estimates can vary. This is equivalent to applying a constraint equation to the three estimates.
The constraint equation is a linear function of the form

a1VarE(I)+a2VarG(Ia)+a3VarG(Id) = 0

and we can get the ai coefficients of this function from the third column of the right singular vector of the
W matrix. The pls package calls the right singular vector "loadings" and provides a function to extract these
from the fit object. The function dmm() returns the "loadings" in an object called pcr.loadings which is part of
the returned object of class dmm whenever argument dmeopt="pcr" is used. So we can inspect the loadings
as follows

> quercus.fitpcr$pcr.loadings)

Loadings:

Comp 1 Comp 2 Comp 3

`VarE(I)` 0.485 0.646 -0.589

`VarG(Ia)` 0.680 -0.702 -0.211

`VarG(Id)` 0.550 0.298 0.780
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Comp 1 Comp 2 Comp 3

SS loadings 1.000 1.000 1.000

Proportion Var 0.333 0.333 0.333

Cumulative Var 0.333 0.667 1.000

>

The constraint coefficients we want in this case are given by the "Comp 3" column of the loadings matrix,
because in omitting "Comp 3" we are effectivly setting it to zero. Note that it is necessary to do the fit with
all 3 principal components to get at the loadings. If you use ncomp = 2 the required column "Comp 3" of
loadings will be missing. So we have

−0.589×VarE(I)−0.211×VarG(Ia)+0.780×VarG(Id) = 0

so substituting the ncomp = 2 estimates for trait "Trait1" we get

0.589×0.430−0.211×0.338+0.780×0.416 =−0.000108

The estimates from a 2 principal component fit do indeed conform to the constraint.
The above constraint equation is actually the equation of a plane in the 3D space of the three variance com-

ponent estimates. When we omit the third principal component, estimates of the three variance components
are constrained to lie on this plane. When we include the third principal component, estimates of the three
variance components can be anywhere in the 3d space.

If we were to omit more than one principal component (not feasible in the current example), there would
be more than one constraint, given by the appropriate columns of the loadings matrix. Estimates would then
be constrained to lie onlines of intersection of two or more hyperplanes.

The constraint(s) on the variance component estimates are the reason that principal component regression
may lead to biased estimates.

We might conclude by noting that there are three ways of dealing with colliniarities in the dyadic model
equations

• use "qr" and ignore the issue, accept the higher standard errors and enjoy the unbiased guarantee. The
results are only unbiased if the model is correct - ie if you have not omitted variance components which
are nonzero.

• use "qr" and change the model omitting one or more variance components. This amounts to setting a
constraint that the omitted component(s) are zero. So the results are biased unless the omitted component
is actually zero.

• use "pcr" and omit one or more principal components. Enjoy the lower standard errors. This amounts
to setting a constraint that some linear combination of the components is zero, or it can be rewritten as
a constraint that one particular component is a linear combination of the others. If you are happy with
the implied constraint, then you are happy with the bias. If the implied constraint is actually true - ie the
true values of the components do actually lie on the constraint plane, then there is no bias.

For completeness, we should look at the results obtained with the second option above, that is omitting
"VarG(Id)" which implies constraining it to zero

> summary(quercus.fit2)

Call:

summary.dmm(object = quercus.fit2)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

1 Trait1 0.0812 0.0804 -0.0764 0.239
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Trait Estimate StdErr CI95lo CI95hi

1 Trait2 -0.0855 0.101 -0.283 0.112

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait1 0.703 0.1266 0.455 0.951

VarG(Ia) Trait1:Trait1 0.468 0.0939 0.284 0.652

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait2 0.0541 0.159 -0.257 0.365

VarG(Ia) Trait1:Trait2 0.1013 0.118 -0.130 0.332

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait1 0.0541 0.159 -0.257 0.365

VarG(Ia) Trait2:Trait1 0.1013 0.118 -0.130 0.332

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 1.008 0.198 0.620 1.40

VarG(Ia) Trait2:Trait2 0.827 0.147 0.539 1.11

>

We get different estimates for the remaining two components and standard errors which are smaller for
Trait1 but larger for Trait2, compared with the "pcr" with ncomp=2 estimates. It is hard to choose between
these two results. It comes down to whether one believes that "VarG(Id)" is zero or whether one would prefer
to believe that some function of the components is zero.

As we said at the outset, this facility is experimental.
There is an excellent presentation of principal component regression and the pls package in Mevik and

Wehrens(2007) [19].

7.5 Constraining covariance matrices to be positive definite
If the option posdef=T is used each matrix of cross-trait (co)variances for each "Varxxx" component will be
individually positive definite, and each cross-effect covariance (if "Covxxx" components are defined) will be
constrained such that the corresponding correlation is in the bounds -1 to 1. If option fixedgls=T is used
posdef=T is enforced.

The algorithm used takes the matrix of cross-trait covariances for each variance component at a time, first
does an approximate procedure which ensures that its eigenvalues are positive, then calls the nearPD() function
from package Matrix.This 2-step procedure ensures that nearPD does not fail when matrices from small test
examples are wildly negative definite. When all variance components have been made positive definite, the
algorithm looks at each covariance component in turn, and ensures that for each element of each covariance
component matrix the corresponding correlation is not outside the bounds -1 to 1. If it is outside bounds, the
covariance component is altered. The two variances involved in the correlation are left unchanged.

Whenever a constraint is applied, in any estimation procedure, the estimated parameters are biased and
their standard errors are only approximate. If one wants the positive definite constraint one simply has to hope
that the bias is not large.

In a multi-trait analysis with the positive definite constraint applied, if one trait has variance component
estimates which are negative before the constraint is applied, the constraint algorithm will adjust the estimates
for all traits. Then if the "rogue" trait is omitted and the analysis rerun, the estimates for all remaining traits
will not be adjusted, and will therefore differ from the previous analysis. We simply need to be aware that in
a multivariate analysis, the presence or absence of one trait may affect the results for all other traits.
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7.6 Using feasable generalised least squares to solve DME’s
There is new code in dmm(), from version 3.1-1 onwards, which can be accessed with the option dmeopt="fgls"
which uses feasable generalized least squares to solve the dyadic model equations. This option leads to REML
estimates of variance components. However it is only suitable for very small data sets. It gives a warning if
used with multivaraite data , because its multivariate results are untested.

The feasable gls ("fgls") fitting method takes account of the covariance structure of the dyadic residuals.
This structure is documented in dyadicerrorcov.pdf [14]. It involves some very large matrices of order N2×N2

, where N is the number of individuals with data, so is only computable for very small examples.
Multivariate "fgls" raises questions about whether to adjust for the within-trait covarainces of residuals,

or the cross-trait covariances of residual, or both. These questions have not been settled, so the output of a
multivariate "fgls" is labelled experimental.

There is a small univariate example using the harv101.df data set in section 5.4

7.7 Dealing with unequal numbers of observations for various traits
The number of observations availabble for each pair of traits in a dataset can be obtained with the make.countarray()
function. See its help() page for details.

If there are missing observations for some traits in a multi-trait dataset, dmm() provides two special options
which allow a comprehensive analysis of all the available data for each trait. These are specified as the
arguments

traitspairwise=T Forces a separate dmm() run for each pair of traits and returns an object of class dmmarray,
which is an array of class dmm objects, one for each pair of traits.

traitsblockwise=T,... Forces a separate dmm() run for each pair of blocks of traits. Blocks are specified in the
ellipsis argument. Returns an object of class dmmblockarray, which is an array of class dmm objects,
one for each pair of blocks of traits. Use this option if there are blocks of traits with equal replication,
and other blocks with equal but different replication.

When using either of the above options, the fixed effect model must be appropriate for all pairs (or blocks)
of traits, and the same variance components will be estimated for all pairs (blocks). The number of levels of
each fixed effect can vary between pairs (blocks) but at least one level must be present.

After running dmm() with either of the above options one would typically want to construct a single ge-
netic variance/covariance matrix for all the traits for use with the gresponse() function. This can be readily
accomplished with the condense.dmmarray and condense.dmmblockarray() functions which are described in
their help() pages. These functions return an object of class dmm which can be passed to the gresponse()
function or to any of the print , gprint or plot functions.

The statistical properties and positive definite status of matrices obtained by combining trait pair (or block
pair) estimates with differing replication are not known. It is simply a matter of doing the best one can with
available data to estimate each element of the variance/covariance matrices, then hoping that combining all
the elements does not lead to matrices with undesirable properties.

7.8 Class-specific component estimates and genetic parameters
From version 2.1-1 of dmm() or later component estimates can be made specific to the classes of one or more
specific factors. This feature is documented separately in dmmClassSpecific.pdf [13]

7.9 Maternal and paternal founderline groups
A founderline is a set of individuals all descended from one individual in the base generation. A maternal
founderline is a set of individuals all descended from one female in the base generation. A paternal founderline
is a set of individuals all descended from one male in the base generation.
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We are interested in maternal founderline effects because their variation reflects variations which are inher-
ited only from the female parent. This includes various forms of cytoplasmic inheritance, including mitochon-
drial DNA in animals, and plasmid DNA in plants. The contribution of these effects to phenotypic variance
can be analysed by fitting a variance component for variance between maternal founder lines. We call this
component VarGlm(I).

We are interested in paternal founderline effects because their variation reflects variations which are in-
herited only from the male parent. This includes Y-chromosome inheritance in mammals. The contribution
of this effect to phenotypic variance can be analysed by fitting a variance component for variance between
paternal founder lines. We call this component VarGlp(I).

The function founderLine() which is part of the nadiv package will compute a vector of maternal or paternal
founderline codes. To use these founderLine codes with dmm() they need to be appended to the dataframe as
columns called "MLine" or "PLine".

Alternatively there is internal code in dmm() which will set up the required founderline codes, as it ex-
ecutes. If the supplied dataframe does not contain the columns "MLine" or "PLine" dmm() will use its own
internal code.

There is a slight difference in the above two approaches. The nadiv routine founderLine() gives an ’NA’
code to base individuals of sex opposite to that of the founderline - for example for a maternal founderline
male base individuals are coded ’NA’. The internal code indmm() gives a numeric code to all individuals. This
only makes a difference to the analysis if there are base individuals with data.

Apart from this, all that is needed to setup a founderline component in dmm() is to include either "Var-
Glm(I)" or "VarGlp(I)" in the component argument.

An example will make this clear

> library(dmm)

> data(sheep.df)

> sheep.mdf <- mdf(sheep.df,pedcols=c(1:3),factorcols=c(4:6),ycols=c(7:9),

sexcode=c("M","F"),relmat=c("E","A"),keep=T)

> sheep.linefit <- dmm(sheep.mdf,Cww ~ 1 + Sex + Year,components=c("VarE(I)","VarG(Ia)","VarGlm(I)"))

Dyadic mixed model fit for datafile: sheep.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 9

no of traits (l) = 1

Setup antemodel matrices:

No of factors with specific components: 0

No of non-specific components partitioned: 3

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of maternal line codes = 16

no of individuals in pedigree (m) = 44

no of individuals with data and X codes (n) = 37

Rank of X: 9 No of Fixed Effects: 9

OLS-fixed-effects step completed:

DME substep:

No of components defined = 3

No of components estimable = 3

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:

>
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> summary(sheep.linefit)

Call:

summary.dmm(object = sheep.linefit)

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Cww 4.1000 0.267 3.57615 4.624

SexM Cww 0.2237 0.178 -0.12614 0.574

Year1982 Cww 0.7667 0.378 0.02583 1.508

Year1983 Cww 0.0441 0.356 -0.65442 0.743

Year1984 Cww 0.3881 0.339 -0.27687 1.053

Year1985 Cww 0.6361 0.323 0.00203 1.270

Year1986 Cww 0.9470 0.328 0.30315 1.591

Year1987 Cww 0.4588 0.333 -0.19334 1.111

Year1988 Cww -0.2237 0.564 -1.32829 0.881

Components partitioned by DME from residual var/covariance after OLS-fixed-effects fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 0.0237 0.0558 -0.0857 0.1331

VarG(Ia) Cww:Cww 0.1910 0.0785 0.0372 0.3449

VarGlm(I) Cww:Cww 0.0185 0.0346 -0.0494 0.0863

> gsummary(sheep.linefit)

Call:

gsummary.dmm(dmmobj = sheep.linefit)

Proportion of phenotypic var/covariance partitioned by DME:

to each component (OLS-fixed-effects):

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Cww 0.1016 0.213 -0.316 0.520

VarG(Ia) Cww 0.8191 0.331 0.170 1.468

VarGlm(I) Cww 0.0792 0.157 -0.229 0.388

VarP(I) Cww 1.0000 0.000 1.000 1.000

.......

Phenotypic var/covariance from components partitioned by DME (OLS-fixed-effects):

Traitpair Estimate StdErr CI95lo CI95hi

1 Cww:Cww 0.233 0.0305 0.173 0.293

>

So the analysis found 16 founderlines in this small test dataset, and fitted three random effect variance
components, the last of which is "VarGlm(I)". This component will convert to a proportion of phenotypic
variance with gsummary() the same as all other components.

The founderline components "VarGlm(I)" and "VarGlp(I)" can be made class specific, in the same way as
all other components. However we do not define any covariances between these founderline components and
any other components. They are assumed to be independent of all other effects.
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8 Computing strategy
The dmm package is written entirely in R. It does not directly use any of the available sparse matrix or parallel
processing facilities. The R code is blatantly straightforward. All of the coding effort to date has been focused
on ensuring correctness of the calculations. There may be room for some optimization later on.

It has been known for many years that solving the dyadic model equations leads to estimates of variance
components (Pukelsheim(1976) [25]). No-one seems to have attempted to actually use it as an estimation
method. Twenty years ago, it would not have been computationally feasible. Part of my goal in producing
the dmm package is to show that it is a feasible approach with today’s computers. In that it must be said the I
have been only partly successful as currently implimented in R - it is feasible with datasets up to about 10000
individuals.

Most of the available variance component estimation software is compute intensive, but will run in modest
amounts of memory. dmm() is different in that it is computationally quite efficient, but requires massive
amounts of memory. An example will make this clear. The warcolak dataset has 5400 individuals and two
traits. On my PC which has an Intel ® Core TM i7 processor, dmm() runs on the warcolak data in about 2
mins and requires 13Gb of memory for the OLS-fixed-effects step. The GLS-fixed-effects step requires an
additional 10 minutes and 40Gb of memory. These times are for R compiled with the Openblas libraries.

The efficiency of the QR algorithm is quite astounding. A dataset of 5400 individuals generates dyadic
model equations consisting of 29 million simultaneous equations. QR can solve these in less than 2 minutes
in a PC, without the slightest hint of loss of significant digits. Most of the compute time in dmm() is spent
setting up the equations, not in solving them. There would seem to be no argument for turning the DME’s
into normal equations - this may reduce the number of equations, but it is usually recommended against on
numerical grounds. The other DME solving options ( "robust" or "pcr") are less efficient.

The critical memory limitation is in R, not in available physical RAM. R has an inbuilt limit of 231 −1 =
2147483648 − 1 or approximately 2 × 109, for the size of any array. This limit applies even in a 64-bit
installation of R. In other words 64-bit R has not yet been configured to fully exploit 64-bit addressing. I
understand that this limitation is being worked on, but is unlikely to change in the near future. The only option
to circumvent it is to rewrite in another language.

The memory requirements of any example are readily calculated. The arrays which most likely to en-
counter the above limit are Ψ and W in equation 13. Their sizes are

W n2 × c

Ψ n2 × l2

where n is the number of individuals, c is the number of components fitted, and l is the numnber of traits
analysed.

For example, in the case of the warcolak dataset, n = 5400, c = 4 and l = 2, so the size of both W and Ψ
is 108, which is within the limit by one order of magnitude.

There may be a way to reduce the memory requirements of array W , because it is sparse, but array Ψ is
fully populated.

There are, of coarse, other arrays in the R code, and the total amount of physical RAM used is likely to be
10 to 20 times the sizes of the above arrays, but that is less likely to be a real limitation than is the internal R
limit.

When using the dmeopt="pcr" method for solving the DME’s, the memory requirements are more de-
manding. The pls package uses three dimensional arrays of size n2 × l2 ×ncomp because it solves the DME’s
for all values of the number of components retained from 1 up to ncomp. This is a severe limitation and some
effort will be made to circumvent it in future versions of dmm.

If the fixedgls=T option is used there is an additional memory requirement which is more restrictive. The
product n2 × l2 × c must not exceed 231 − 1. This is very restrictive indeed. For example with the dataset
merino.df we have n = 2599, l = 11, and c = 2upto8. Here we have 25992 × 112 = 8× 108 so there is only
room for c = 2 unless the number of traits is reduced. There are several issues, including the above, suggesting
a rethink of the fixedgls=T part of the algorithm.
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8.1 Using R with Openblas libraries
The compute time of dmm() can be improved dramatically by using a version of R compiled with the Openblas
libraries for blas and lapack, rather than the default R libraries. Around 15x improvement in execution time
can be expected because the Openblas libraries will make use of all available cpu’s in a modern PC. The R
function sessionInfo() can be used to find which versions of the blas and lapack libraries are being used by the
current R session.

The step in dmm() which benefits most from use of R with Openblas is the construction of the dyadic
model equations. This involves a 5-fold matrix multiply with each matrix of order n (number of animals with
data).

There are various ways of geting access to a version of R compiled with Openblas libraries. The fol-
lowwing hints apply to R under the Linux operating system.

• Use a version of Linux which comes with an R package compiled with Openblas. Solus and Void Linux
do this, Debian does not.

• Install R from the source code. I recommend doing this in your home directory, away from the package
system. The openblas package will need to have been installed.

The source code will be a file like R-4.0.4.tar.gz. Unpack it and it will make a subdirecty R-4.0.4. Go
into the subdirectory to do the configure and compile.

Before compiling set the configuration options as follows

./configure –enable-threads –enable-openmp –with-blas –with-lapack

and replace libRblas.so and libRlapack.so in the ’lib’ subdirectory with links to /usr/lib/x86_64-linux-
gnu/openblas/libblas.so.3 and /usr/lib/x86_64-linux-gnu/openblas/liblapack.so.3 respectively. This is
where the openblas package install under Debian. In other distributions it may be elsewhere.

After ./configure simply do

make

and R will compile and place the R binary in the ’bin’ subdirectory. You can start this version of R by
giving the path /src/R-4.0.4/bin/R or you can make an alias in .bashrc

You can install R elsewhere by

make install –prefix=where-to-install

but this is unnecessary and can cause confusion if there is another install of R on the system

• There are ways of compiling R from source with alternate libraries within the package system using the
update-alternatives command.

• There is an ropenblas() package available on CRAN which will link Openblas libraries to the current R
session.
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9 Analysis of a large multivariate dataset
The dataset merino.df is a set of real data from an Australian Merino sheep research flock with a multi-
generation pedigree, eight fixed effects, and 11 traits related to wool production. It is used here as a display
of the utility of dmm() for analysis of a multivariate dataset with many of the real world complications. It
contains pedigree records for 4449 individuals, 1593 of which have missing data, leaving 2856 individuals
with complete data.

9.1 Data preparation
We start with a preprocessing of the datafile using the mdf() function

>library(dmm)

>data(merino.df)

> str(merino.df)

'data.frame': 4449 obs. of 22 variables:

$ Id : Factor w/ 3831 levels "50-0001","50-0009",..: NA NA NA NA NA NA NA NA NA 1 ...

$ SId : Factor w/ 136 levels "47-1438","47-2093",..: NA NA NA NA NA NA NA NA NA NA ...

$ DId : Factor w/ 999 levels "42-3693","42-3725",..: 4 12 85 92 126 129 160 166 71 65 ...

$ Sex : Factor w/ 2 levels "M","F": NA NA NA NA NA NA NA NA 2 1 ...

$ Yearbi : Factor w/ 18 levels "50","51","52",..: 1 1 1 1 1 1 1 1 1 1 ...

$ YearSbi: Factor w/ 18 levels "47","48","50",..: NA NA NA NA NA NA NA NA NA NA ...

$ YearDbi: Factor w/ 22 levels "42","43","44",..: 1 1 5 5 5 5 5 5 4 4 ...

$ Mob : Factor w/ 2 levels "1","2": NA NA NA NA NA NA NA NA NA NA ...

$ Agem : Factor w/ 2 levels "3","9": NA NA NA NA NA NA NA NA NA 1 ...

$ Birwt : num NA NA NA NA NA NA NA NA NA 3.6 ...

$ Weanwt : num NA NA NA NA NA NA NA NA NA 22.7 ...

$ Birls : Factor w/ 2 levels "1","2": NA NA NA NA NA NA NA NA 1 1 ...

$ Weanls : Factor w/ 2 levels "1","2": NA NA NA NA NA NA NA NA NA 1 ...

$ Crimp : num NA NA NA NA NA NA NA NA NA 12.3 ...

$ Densty : num NA NA NA NA NA NA NA NA NA 37.8 ...

$ Diamtr : num NA NA NA NA NA NA NA NA NA 21 ...

$ Yield : num NA NA NA NA NA NA NA NA NA 55.2 ...

$ Bodywt : num NA NA NA NA NA NA NA NA NA 39.3 ...

$ Wrinkl : int NA NA NA NA NA NA NA NA NA 4 ...

$ Length : num NA NA NA NA NA NA NA NA NA 8.7 ...

$ Flcwt : num NA NA NA NA NA NA NA NA NA 4.49 ...

$ Woolwt : num NA NA NA NA NA NA NA NA NA 2.48 ...

>

> merino.mdf <- mdf(merino.df,pedcols=c(1:3),factorcols=c(4:9,12:13),

ycols=c(10:11,14:22),sexcode=c("M","F"),

relmat=c("E","A","AA","AD","DD","D","S.hopi"))

Loading required package: Matrix

Loading required package: lattice

Pedigree Id check:

No of rows with Id in original dataframe = 4449

No of sex codes not in sexcode[] so changed to NA = 642

No of rows with Sex == NA removed from dataframe = 642

No of rows with Id == NA removed from dataframe = 1

No of rows with duplicated Id removed from dataframe = 8

No of rows remaining after duplicates and NA's removed = 3798

No of SId's with no matching Id = 5

No of DId's with no matching Id = 211

Length of dataframe with base Id's added = 4014
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Renumber pedigree Id's:

Add matrix of multivariate traits:

Setup pedigree for nadiv():

Make relationship matrices:

starting to make D....done

starting to make D....done

starting to make D....done

S-inverse made: Starting to make S....done

Return mdf as an object of class mdf:

containing the dataframe as mdf$df:

and the relationship matrices as mdf$rel:

>

> str(merino.mdf$df)

'data.frame': 4014 obs. of 12 variables:

$ Id : int 1 2 3 4 5 6 7 8 9 10 ...

$ SId : int NA NA NA NA NA NA NA NA NA NA ...

$ DId : int NA NA NA NA NA NA NA NA NA NA ...

$ Sex : Factor w/ 2 levels "F","M": 2 2 2 2 2 1 1 1 1 1 ...

$ Yearbi : Factor w/ 18 levels "50","51","52",..: NA NA NA NA NA NA NA NA NA NA ...

$ YearSbi: Factor w/ 18 levels "47","48","50",..: NA NA NA NA NA NA NA NA NA NA ...

$ YearDbi: Factor w/ 22 levels "42","43","44",..: NA NA NA NA NA NA NA NA NA NA ...

$ Mob : Factor w/ 2 levels "1","2": NA NA NA NA NA NA NA NA NA NA ...

$ Agem : Factor w/ 2 levels "3","9": NA NA NA NA NA NA NA NA NA NA ...

$ Birls : Factor w/ 2 levels "1","2": NA NA NA NA NA NA NA NA NA NA ...

$ Weanls : Factor w/ 2 levels "1","2": NA NA NA NA NA NA NA NA NA NA ...

$ Ymat : num [1:4014, 1:11] NA NA NA NA NA NA NA NA NA NA ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr "47-1438" "48-1430" "48-1846" "48-1149" ...

.. ..$ : chr "Birwt" "Weanwt" "Crimp" "Densty" ...

>

We can see that mdf() has renumbered the Id’s, deleted some individua;s with missing codes, added som base
sires and dams, and made up the traits into a matrix called ’Ymat’ to facilitate multi-trait analyses. It has
also made all types of relationship matrix and appended these to the mdf object. For the sexlinked genetic
relationship matrix we have assumed that dosage compensation operates by inactivation of the paternal X
chromosome in females ("hopi" model). We could equally as well have assumed random inactivation of one
of the female X chromosomes ("hori" model). The two models ("hopi" and "hori") lead to different sexlinked
genetic relationship matrices but the same variance component estimates. It is unclear from the literature which
model applies to sheep, but it is certain that sheep, along with all mammals, use some form of X chromosome
inactivation in females, so for present purpose the choice between "hori" or "hopi" does not matter.

9.2 Fixed effects
In the Australian pastoral environment year of birth has a major effect on the growth and productivity of
sheep, so Yearbi and YearDbi are important fixed effects. Males and females differ in wool production and
are usually grazed separately after puberty, so Sex is a fixed effect. In the present dataset, males and females
were measured at different ages ( males at 12 months, females at 15 months) in some years, and both at 15
months in other years. So Agem is a fixed effect, but it only has 2 levels in some years, and in those years it
is confounded with Sex. The female flock was divided into two grazing mobs, so Mob may have an effect but
it could vary from year to year. Twin lambs suffer a penalty in wool production. There is an argument that
adjusting for litter size (single or twin at either birth or weaning) as a fixed effect could remove some genetic
variation as well as any environmental effects of twinning. So the effects Birls and Weanls are problematic
and will require some consideration.
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It is possible to use ’age of dam’ as a factor instead of ’YearDbi’ and this leads to an equivalent model. One
can not fit both ’age of dam’ and ’YearDbi’ in the presence of ’Yearbi’ as the three are completely confounded.
We are going to stay with ’YearDbi’.

The easiest way to arrive at a satisfactory fixed effects model is to just use aov()( before trying to use
dmm())

> junk <- aov(Ymat ~ 1 + C(Sex, sum) + C(Yearbi, sum) + C(YearDbi, sum) +

C(Mob, sum) + C(Agem,sum) + C(Birls, sum) + C(Weanls, sum),merino.mdf$df)

> summary(junk)

Response Birwt :

Df Sum Sq Mean Sq F value Pr(>F)

C(Sex, sum) 1 26.19 26.185 105.5230 < 2.2e-16 ***

C(Yearbi, sum) 14 120.54 8.610 34.6962 < 2.2e-16 ***

C(YearDbi, sum) 20 18.82 0.941 3.7925 2.778e-08 ***

C(Mob, sum) 1 0.22 0.222 0.8947 0.3443

C(Agem, sum) 1 0.19 0.194 0.7811 0.3769

C(Birls, sum) 1 174.90 174.898 704.8159 < 2.2e-16 ***

C(Weanls, sum) 1 0.42 0.415 1.6724 0.1961

Residuals 2381 590.84 0.248

---

.....

Response Woolwt :

Df Sum Sq Mean Sq F value Pr(>F)

C(Sex, sum) 1 546.61 546.61 3340.7998 < 2.2e-16 ***

C(Yearbi, sum) 14 447.67 31.98 195.4356 < 2.2e-16 ***

C(YearDbi, sum) 20 3.44 0.17 1.0523 0.395260

C(Mob, sum) 1 0.19 0.19 1.1596 0.281652

C(Agem, sum) 1 130.99 130.99 800.5997 < 2.2e-16 ***

C(Birls, sum) 1 6.47 6.47 39.5323 3.826e-10 ***

C(Weanls, sum) 1 1.21 1.21 7.3768 0.006655 **

Residuals 2381 389.57 0.16

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

1593 observations deleted due to missingness

>

> anova(junk)

Analysis of Variance Table

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.99951 435614 11 2371 < 2.2e-16 ***

C(Sex, sum) 1 0.81591 955 11 2371 < 2.2e-16 ***

C(Yearbi, sum) 14 2.91382 61 154 26191 < 2.2e-16 ***

C(YearDbi, sum) 20 0.16811 2 220 26191 4.198e-13 ***

C(Mob, sum) 1 0.00592 1 11 2371 0.2278

C(Agem, sum) 1 0.61968 351 11 2371 < 2.2e-16 ***

C(Birls, sum) 1 0.26530 78 11 2371 < 2.2e-16 ***

C(Weanls, sum) 1 0.04392 10 11 2371 < 2.2e-16 ***

Residuals 2381

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

>

So there is an immediate problem with multiple traits - some fixed effects are significant for some traits and
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not for others. For example Agem does not affect Birwt because it is not relevant to that trait. Weanls is
significant only for Woolwt, Flcwt and Bodywt. Mob is significant only for Length and then only at P = 0.05.

We have to make an overall decision, because dmm() fits the same model to all traits. The manova table
(see anova(junk) above) is probably the best guide. It shows all fixed effects are significant except mob. So
we will fit all except mob, but there may be some debate later about Birls and Weanls being partly genetic.

9.3 Elementary partitioning of individual additive genetic and environmental varia-
tion

We should first do the usual analysis assuming additivity at the individual level.

> merino.fitia <- dmm(merino.mdf,Ymat ~ 1 + C(Sex, sum) + C(Yearbi, sum) +

C(YearDbi, sum) + C(Agem,sum) + C(Birls, sum) + C(Weanls, sum),

components = c("VarE(I)","VarG(Ia)"))

Dyadic mixed model fit for datafile: merino.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 43

no of traits (l) = 11

Setup antemodel matrices:

No of factors with specific components: 0

No of non-specific components partitioned: 2

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 4014

no of individuals with data and X codes (n) = 2642

Rank of X: 43 No of Fixed Effects: 43

OLS-fixed-effects step completed:

DME substep:

No of components defined = 2

No of components estimable = 2

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:

> merino.fitia$dme.corre

VarE(I) VarG(Ia)

VarE(I) 1.0000000 0.4169643

VarG(Ia) 0.4169643 1.0000000

>

Just as a matter if interest, this run took 1 min real time and used 28Gb of memory in the author’s PC. The
correlation of 0.4169 between VarE(I) and VarG(Ia) is not a serious collinearity. We therefore inspect the
results with some confidence.

> gsummary(merino.fitia)

Call:

gsummary.dmm(dmmobj = merino.fitia)

Proportion of phenotypic var/covariance partitioned by DME:

to each component (OLS-fixed-effects):
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Trait Estimate StdErr CI95lo CI95hi

VarE(I) Birwt 0.681 0.0109 0.660 0.702

VarG(Ia) Birwt 0.319 0.0109 0.298 0.340

VarP(I) Birwt 1.000 0.0000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Weanwt 0.805 0.00989 0.786 0.825

VarG(Ia) Weanwt 0.195 0.00989 0.175 0.214

VarP(I) Weanwt 1.000 0.00000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Crimp 0.544 0.0124 0.520 0.568

VarG(Ia) Crimp 0.456 0.0124 0.432 0.480

VarP(I) Crimp 1.000 0.0000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Densty 0.434 0.0137 0.407 0.461

VarG(Ia) Densty 0.566 0.0138 0.539 0.593

VarP(I) Densty 1.000 0.0000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Diamtr 0.467 0.0133 0.441 0.493

VarG(Ia) Diamtr 0.533 0.0133 0.507 0.559

VarP(I) Diamtr 1.000 0.0000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Yield 0.634 0.0113 0.612 0.656

VarG(Ia) Yield 0.366 0.0113 0.344 0.388

VarP(I) Yield 1.000 0.0000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Bodywt 0.824 0.00978 0.804 0.843

VarG(Ia) Bodywt 0.176 0.00978 0.157 0.196

VarP(I) Bodywt 1.000 0.00000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Wrinkl 0.563 0.0121 0.539 0.587

VarG(Ia) Wrinkl 0.437 0.0121 0.413 0.461

VarP(I) Wrinkl 1.000 0.0000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Length 0.685 0.0108 0.663 0.706

VarG(Ia) Length 0.315 0.0108 0.294 0.337

VarP(I) Length 1.000 0.0000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Flcwt 0.875 0.00954 0.856 0.893

VarG(Ia) Flcwt 0.125 0.00955 0.107 0.144

VarP(I) Flcwt 1.000 0.00000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt 0.819 0.00981 0.800 0.838

VarG(Ia) Woolwt 0.181 0.00981 0.162 0.200
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VarP(I) Woolwt 1.000 0.00000 1.000 1.000

Correlation corresponding to each var/covariance component:

partitioned by DME (OLS-fixed-effects):

.....

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Birwt 0.174 0.0272 0.121 0.228

VarG(Ia) Woolwt:Birwt 0.295 0.0371 0.223 0.368

VarP(I) Woolwt:Birwt 0.201 0.0185 0.165 0.237

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Weanwt 0.222 0.0248 0.173 0.270

VarG(Ia) Woolwt:Weanwt 0.334 0.0468 0.242 0.425

VarP(I) Woolwt:Weanwt 0.243 0.0183 0.207 0.278

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Crimp -0.181 0.0301 -0.240 -0.122

VarG(Ia) Woolwt:Crimp -0.433 0.0306 -0.493 -0.373

VarP(I) Woolwt:Crimp -0.245 0.0181 -0.281 -0.210

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Densty 0.125 0.0344 0.0581 0.193

VarG(Ia) Woolwt:Densty 0.193 0.0283 0.1377 0.248

VarP(I) Woolwt:Densty 0.137 0.0186 0.1000 0.173

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Diamtr 0.239 0.0325 0.175 0.302

VarG(Ia) Woolwt:Diamtr 0.158 0.0288 0.102 0.215

VarP(I) Woolwt:Diamtr 0.197 0.0184 0.161 0.233

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Yield 0.356 0.0253 0.306 0.406

VarG(Ia) Woolwt:Yield 0.716 0.0302 0.657 0.776

VarP(I) Woolwt:Yield 0.441 0.0162 0.409 0.473

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Bodywt 0.4556 0.0225 0.412 0.500

VarG(Ia) Woolwt:Bodywt 0.0226 0.0493 -0.074 0.119

VarP(I) Woolwt:Bodywt 0.3783 0.0170 0.345 0.412

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Wrinkl 0.1955 0.0302 0.1363 0.2548

VarG(Ia) Woolwt:Wrinkl -0.0212 0.0331 -0.0861 0.0438

VarP(I) Woolwt:Wrinkl 0.1269 0.0187 0.0901 0.1636

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Length 0.567 0.0223 0.523 0.611

VarG(Ia) Woolwt:Length 0.294 0.0336 0.228 0.360

VarP(I) Woolwt:Length 0.495 0.0155 0.464 0.525

Traitpair Estimate StdErr CI95lo CI95hi
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VarE(I) Woolwt:Flcwt 0.912 0.00863 0.895 0.929

VarG(Ia) Woolwt:Flcwt 0.783 0.02397 0.736 0.830

VarP(I) Woolwt:Flcwt 0.890 0.00675 0.877 0.903

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Woolwt 1 0 1 1

VarG(Ia) Woolwt:Woolwt 1 0 1 1

VarP(I) Woolwt:Woolwt 1 0 1 1

.....

Phenotypic var/covariance from components partitioned by DME (OLS-fixed-effects):

Traitpair Estimate StdErr CI95lo CI95hi

1 Birwt:Birwt 0.25214 0.00478 0.2428 0.26151

2 Birwt:Weanwt 0.48728 0.02660 0.4351 0.53942

......

111 Woolwt:Birwt 0.04130 0.00391 0.0336 0.04896

112 Woolwt:Weanwt 0.27624 0.02175 0.2336 0.31886

113 Woolwt:Crimp -0.20183 0.01560 -0.2324 -0.17126

114 Woolwt:Densty 0.54453 0.07539 0.3968 0.69229

115 Woolwt:Diamtr 0.16279 0.01567 0.1321 0.19351

116 Woolwt:Yield 0.95607 0.04124 0.8752 1.03691

117 Woolwt:Bodywt 0.69503 0.03512 0.6262 0.76386

118 Woolwt:Wrinkl 0.06342 0.00949 0.0448 0.08202

119 Woolwt:Length 0.18846 0.00725 0.1742 0.20268

120 Woolwt:Flcwt 0.20090 0.00432 0.1924 0.20937

121 Woolwt:Woolwt 0.16717 0.00319 0.1609 0.17343

Just looking at the proportion of variance for "VarG(Ia)" ( ie additive heritability) we find that most wool
traits have a heritability of around 0.4 in agreement with published results ( eg Brown and Turner(1968) [4]).
The exceptions are Woolwt which is only 0.18 (and Flcwt which is almost the same thing except it includes
grease and dirt) and Bodywt. This is unexpected so it bears further investigation.

Also listed are the genetic correlations of Woolwt with other traits. These are important in relation to se-
lection for Woolwt. All these genetic correlations look reasonable and relate well to other published estimates.
In particular the important genetic correlation of Woolwt with Diamtr is 0.16 agrees closely with published
results.

If one were to list all the parameter estimates there would be a printout of around 20 pages. The reason for
the traitset and componentset arguments to gsummary() should now be obvious. It is important to be able to
browse subsets of the results.

The standard errors of parameter estimates all appear acceptable, and this is another good indicator of a
reasonable model for the data and absence of collinearities.

The results for fitting this simple model would seem to be a sound base, and useful for comparison with
other more complex models.

9.4 Investigation of maternal additive genetic and maternal environmental variation
We now extend the model to include maternal additive genetic and maternal environmental variances, and their
genetic and environmental covariances with individual variation. The aim is to see if maternal effects on wool
traits are large enough to warrant consideration in selection studies.

> merino.fitiama <- dmm(merino.mdf,Ymat ~ 1 + C(Sex, sum) + C(Yearbi, sum) +

C(YearDbi, sum) + C(Agem,sum) + C(Birls, sum) + C(Weanls, sum),

components = c("VarE(I)","VarG(Ia)", "VarE(M)", "VarG(Ma)", "CovG(Ia,Ma)",
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"CovG(Ma,Ia)","CovE(I,M)", "CovE(M,I)"))

Dyadic mixed model fit for datafile: merino.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 43

no of traits (l) = 11

Setup antemodel matrices:

No of factors with specific components: 0

No of non-specific components partitioned: 8

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 4014

no of individuals with data and X codes (n) = 2642

Rank of X: 43 No of Fixed Effects: 43

OLS-fixed-effects step completed:

DME substep:

No of components defined = 8

No of components estimable = 8

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:

>

> round(merino.fitiama$dme.corre,digits=3)

VarE(I) VarG(Ia) VarE(M) VarG(Ma) CovG(Ia,Ma) CovG(Ma,Ia) CovE(I,M)

VarE(I) 1.000 0.417 0.486 0.332 0.211 0.211 0.000

VarG(Ia) 0.417 1.000 0.373 0.478 0.593 0.593 0.181

VarE(M) 0.486 0.373 1.000 0.682 0.434 0.434 0.000

VarG(Ma) 0.332 0.478 0.682 1.000 0.695 0.695 0.144

CovG(Ia,Ma) 0.211 0.593 0.434 0.695 1.000 0.479 0.370

CovG(Ma,Ia) 0.211 0.593 0.434 0.695 0.479 1.000 0.092

CovE(I,M) 0.000 0.181 0.000 0.144 0.370 0.092 1.000

CovE(M,I) 0.000 0.181 0.000 0.144 0.092 0.370 0.000

CovE(M,I)

VarE(I) 0.000

VarG(Ia) 0.181

VarE(M) 0.000

VarG(Ma) 0.144

CovG(Ia,Ma) 0.092

CovG(Ma,Ia) 0.370

CovE(I,M) 0.000

CovE(M,I) 1.000

>

The above run took 2 mins real time and used 29Gb of memory, so adding 6 more components has only
doubled the processing time.

The correlations among columns of the dyadic model equation matrix (W ) are surprisingly good, the
largest being 0.69 between VarG(Ma) and CovG(Ia,Ma). We can proceed with some confidence to look at
parameter estimates. Just 3 traits for a start ( the gsummary output for all traits is now so long it exceeds my
scrollback length).

> gsummary(merino.fitiama, traitset=c("Birwt","Diamtr","Woolwt"))

Call:
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gsummary.dmm(dmmobj = merino.fitiama, traitset = c("Birwt", "Diamtr",

"Woolwt"))

Proportion of phenotypic var/covariance partitioned by DME:

to each component (OLS-fixed-effects):

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Birwt 0.4137 0.0174 0.3795 0.44788

VarG(Ia) Birwt 0.1961 0.0129 0.1708 0.22146

VarE(M) Birwt 0.1404 0.0117 0.1175 0.16329

VarG(Ma) Birwt 0.2243 0.0141 0.1966 0.25197

CovG(Ia,Ma) Birwt -0.0271 0.0119 -0.0505 -0.00377

CovG(Ma,Ia) Birwt -0.0271 0.0119 -0.0505 -0.00377

CovE(I,M) Birwt 0.0399 0.0187 0.0033 0.07645

CovE(M,I) Birwt 0.0399 0.0187 0.0033 0.07645

VarP(I) Birwt 1.0000 0.0000 1.0000 1.00000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Diamtr 0.4670 0.0217 0.42451 0.50956

VarG(Ia) Diamtr 0.6156 0.0280 0.56076 0.67042

VarE(M) Diamtr 0.0501 0.0138 0.02302 0.07721

VarG(Ma) Diamtr 0.0185 0.0140 -0.00895 0.04598

CovG(Ia,Ma) Diamtr -0.0368 0.0145 -0.06523 -0.00835

CovG(Ma,Ia) Diamtr -0.0368 0.0145 -0.06523 -0.00835

CovE(I,M) Diamtr -0.0388 0.0249 -0.08765 0.00998

CovE(M,I) Diamtr -0.0388 0.0249 -0.08765 0.00998

VarP(I) Diamtr 1.0000 0.0000 1.00000 1.00000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt 0.6994 0.0235 0.6533 0.7455

VarG(Ia) Woolwt 0.1899 0.0142 0.1620 0.2178

VarE(M) Woolwt 0.0357 0.0126 0.0109 0.0604

VarG(Ma) Woolwt 0.0797 0.0133 0.0536 0.1057

CovG(Ia,Ma) Woolwt -0.0528 0.0133 -0.0789 -0.0266

CovG(Ma,Ia) Woolwt -0.0528 0.0133 -0.0789 -0.0266

CovE(I,M) Woolwt 0.0505 0.0205 0.0103 0.0907

CovE(M,I) Woolwt 0.0505 0.0205 0.0103 0.0907

VarP(I) Woolwt 1.0000 0.0000 1.0000 1.0000

Correlation corresponding to each var/covariance component:

partitioned by DME (OLS-fixed-effects):

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Birwt:Birwt 1.000 0.0000 1.00000 1.0000

VarG(Ia) Birwt:Birwt 1.000 0.0000 1.00000 1.0000

VarE(M) Birwt:Birwt 1.000 0.0000 1.00000 1.0000

VarG(Ma) Birwt:Birwt 1.000 0.0000 1.00000 1.0000

CovG(Ia,Ma) Birwt:Birwt -0.129 0.0527 -0.23261 -0.0261

CovG(Ma,Ia) Birwt:Birwt -0.129 0.0527 -0.23261 -0.0261

CovE(I,M) Birwt:Birwt 0.165 0.0804 0.00791 0.3230

CovE(M,I) Birwt:Birwt 0.165 0.0804 0.00791 0.3230

VarP(I) Birwt:Birwt 1.000 0.0000 1.00000 1.0000
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Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Birwt:Diamtr 0.0118 0.0488 -0.0838 0.107

VarG(Ia) Birwt:Diamtr -0.2417 0.0336 -0.3075 -0.176

VarE(M) Birwt:Diamtr 0.3388 0.1653 0.0147 0.663

VarG(Ma) Birwt:Diamtr 0.8375 0.3687 0.1149 1.560

CovG(Ia,Ma) Birwt:Diamtr -0.2671 0.2537 -0.7644 0.230

CovG(Ma,Ia) Birwt:Diamtr -0.1086 0.0355 -0.1781 -0.039

CovE(I,M) Birwt:Diamtr 0.5157 0.1676 0.1872 0.844

CovE(M,I) Birwt:Diamtr 0.0790 0.0842 -0.0861 0.244

VarP(I) Birwt:Diamtr 0.0417 0.0341 -0.0251 0.108

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Birwt:Woolwt 0.153 0.0366 0.08112 0.2245

VarG(Ia) Birwt:Woolwt 0.313 0.0553 0.20441 0.4212

VarE(M) Birwt:Woolwt 0.329 0.1665 0.00307 0.6557

VarG(Ma) Birwt:Woolwt 0.546 0.0901 0.36901 0.7223

CovG(Ia,Ma) Birwt:Woolwt -0.248 0.0993 -0.44216 -0.0530

CovG(Ma,Ia) Birwt:Woolwt -0.184 0.0599 -0.30120 -0.0664

CovE(I,M) Birwt:Woolwt 0.470 0.1889 0.10012 0.8408

CovE(M,I) Birwt:Woolwt 0.078 0.0656 -0.05060 0.2067

VarP(I) Birwt:Woolwt 0.252 0.0313 0.19021 0.3128

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diamtr:Birwt 0.0118 0.0488 -0.0838 0.107

VarG(Ia) Diamtr:Birwt -0.2417 0.0336 -0.3075 -0.176

VarE(M) Diamtr:Birwt 0.3388 0.1653 0.0147 0.663

VarG(Ma) Diamtr:Birwt 0.8375 0.3687 0.1149 1.560

CovG(Ia,Ma) Diamtr:Birwt -0.1086 0.0355 -0.1781 -0.039

CovG(Ma,Ia) Diamtr:Birwt -0.2671 0.2537 -0.7644 0.230

CovE(I,M) Diamtr:Birwt 0.0790 0.0842 -0.0861 0.244

CovE(M,I) Diamtr:Birwt 0.5157 0.1676 0.1872 0.844

VarP(I) Diamtr:Birwt 0.0417 0.0341 -0.0251 0.108

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diamtr:Diamtr 1.000 0.000 1.000 1.0000

VarG(Ia) Diamtr:Diamtr 1.000 0.000 1.000 1.0000

VarE(M) Diamtr:Diamtr 1.000 0.000 1.000 1.0000

VarG(Ma) Diamtr:Diamtr 1.000 0.000 1.000 1.0000

CovG(Ia,Ma) Diamtr:Diamtr -0.345 0.113 -0.566 -0.1233

CovG(Ma,Ia) Diamtr:Diamtr -0.345 0.113 -0.566 -0.1233

CovE(I,M) Diamtr:Diamtr -0.254 0.165 -0.577 0.0694

CovE(M,I) Diamtr:Diamtr -0.254 0.165 -0.577 0.0694

VarP(I) Diamtr:Diamtr 1.000 0.000 1.000 1.0000

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diamtr:Woolwt 0.225 0.0377 0.151 0.2986

VarG(Ia) Diamtr:Woolwt 0.187 0.0347 0.119 0.2555

VarE(M) Diamtr:Woolwt 0.450 0.2992 -0.137 1.0363

VarG(Ma) Diamtr:Woolwt 0.913 0.4136 0.102 1.7239

CovG(Ia,Ma) Diamtr:Woolwt -0.039 0.0612 -0.159 0.0809

CovG(Ma,Ia) Diamtr:Woolwt -0.600 0.2966 -1.182 -0.0192

CovE(I,M) Diamtr:Woolwt -0.258 0.1854 -0.621 0.1055
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CovE(M,I) Diamtr:Woolwt 0.139 0.1229 -0.102 0.3795

VarP(I) Diamtr:Woolwt 0.195 0.0346 0.127 0.2629

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Birwt 0.153 0.0366 0.08112 0.2245

VarG(Ia) Woolwt:Birwt 0.313 0.0553 0.20441 0.4212

VarE(M) Woolwt:Birwt 0.329 0.1665 0.00307 0.6557

VarG(Ma) Woolwt:Birwt 0.546 0.0901 0.36901 0.7223

CovG(Ia,Ma) Woolwt:Birwt -0.184 0.0599 -0.30120 -0.0664

CovG(Ma,Ia) Woolwt:Birwt -0.248 0.0993 -0.44216 -0.0530

CovE(I,M) Woolwt:Birwt 0.078 0.0656 -0.05060 0.2067

CovE(M,I) Woolwt:Birwt 0.470 0.1889 0.10012 0.8408

VarP(I) Woolwt:Birwt 0.252 0.0313 0.19021 0.3128

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Diamtr 0.225 0.0377 0.151 0.2986

VarG(Ia) Woolwt:Diamtr 0.187 0.0347 0.119 0.2555

VarE(M) Woolwt:Diamtr 0.450 0.2992 -0.137 1.0363

VarG(Ma) Woolwt:Diamtr 0.913 0.4136 0.102 1.7239

CovG(Ia,Ma) Woolwt:Diamtr -0.600 0.2966 -1.182 -0.0192

CovG(Ma,Ia) Woolwt:Diamtr -0.039 0.0612 -0.159 0.0809

CovE(I,M) Woolwt:Diamtr 0.139 0.1229 -0.102 0.3795

CovE(M,I) Woolwt:Diamtr -0.258 0.1854 -0.621 0.1055

VarP(I) Woolwt:Diamtr 0.195 0.0346 0.127 0.2629

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Woolwt 1.000 0.0000 1.0000 1.000

VarG(Ia) Woolwt:Woolwt 1.000 0.0000 1.0000 1.000

VarE(M) Woolwt:Woolwt 1.000 0.0000 1.0000 1.000

VarG(Ma) Woolwt:Woolwt 1.000 0.0000 1.0000 1.000

CovG(Ia,Ma) Woolwt:Woolwt -0.429 0.0866 -0.5987 -0.259

CovG(Ma,Ia) Woolwt:Woolwt -0.429 0.0866 -0.5987 -0.259

CovE(I,M) Woolwt:Woolwt 0.320 0.1422 0.0408 0.598

CovE(M,I) Woolwt:Woolwt 0.320 0.1422 0.0408 0.598

VarP(I) Woolwt:Woolwt 1.000 0.0000 1.0000 1.000

Phenotypic var/covariance from components partitioned by DME (OLS-fixed-effects):

Traitpair Estimate StdErr CI95lo CI95hi

1 Birwt:Birwt 0.3089 0.00950 0.2903 0.3275

2 Birwt:Diamtr 0.0469 0.03812 -0.0279 0.1216

3 Birwt:Woolwt 0.0603 0.00777 0.0451 0.0755

4 Diamtr:Birwt 0.0469 0.03812 -0.0279 0.1216

5 Diamtr:Diamtr 4.0907 0.15276 3.7913 4.3902

6 Diamtr:Woolwt 0.1701 0.03116 0.1091 0.2312

7 Woolwt:Birwt 0.0603 0.00777 0.0451 0.0755

8 Woolwt:Diamtr 0.1701 0.03116 0.1091 0.2312

9 Woolwt:Woolwt 0.1861 0.00635 0.1736 0.1985

>

There is very little maternal additive genetic variance, except for traits ’Birwt’ and ’Weanwt’. There is
a slight amount for ’Bodywt’, ’Flcwt’, and ’Woolwt’. For wool traits other than weight there is near-zero
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"VarG(Ma)". The genetic and environmental covariances of individual and maternal effcts are negligable for
all traits.

The possibility that fitting ’Birls’ and ’Weanls’ fixed effects had obscured any maternal efects was inves-
tigated with a run omitting the above two fixed effects. The result was almost the same as above, and is not
reported.

9.5 Investigation of individual additive genetic sexlinked variation
We now try extending the model in a different direction. We wish to see if there is evidence for existence of
genetic sexlinked variation, so we fit "VarGs(Ia)" in addition to the basic model of "VarE(I)" + "VarG(Ia)". In
this context, with "VarGs(Ia)" fitted, "VarG(Ia)" should be interpreted as autosomal additive genetic variance.

> merino.fitiasl <- dmm(merino.mdf,Ymat ~ 1 + C(Sex, sum) + C(Yearbi, sum) +

C(YearDbi, sum) + C(Agem, sum) + C(Birls,sum) + C(Weanls, sum),

components = c("VarE(I)", "VarG(Ia)","VarGs(Ia)"))

Dyadic mixed model fit for datafile: merino.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 43

no of traits (l) = 11

Setup antemodel matrices:

No of factors with specific components: 0

No of non-specific components partitioned: 3

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 4014

no of individuals with data and X codes (n) = 2642

Rank of X: 43 No of Fixed Effects: 43

OLS-fixed-effects step completed:

DME substep:

No of components defined = 3

No of components estimable = 3

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:

>

> gsummary(merino.fitiasl)

Call:

gsummary.dmm(dmmobj = merino.fitiasl)

Proportion of phenotypic var/covariance partitioned by DME:

to each component (OLS-fixed-effects):

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Birwt 0.208 0.02229 0.165 0.252

VarG(Ia) Birwt 0.194 0.00897 0.176 0.211

VarGs(Ia) Birwt 0.598 0.02240 0.554 0.642

VarP(I) Birwt 1.000 0.00000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi
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VarE(I) Weanwt 0.442 0.0231 0.3972 0.488

VarG(Ia) Weanwt 0.118 0.0098 0.0991 0.138

VarGs(Ia) Weanwt 0.439 0.0242 0.3917 0.487

VarP(I) Weanwt 1.000 0.0000 1.0000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Crimp 0.409 0.01996 0.370 0.448

VarG(Ia) Crimp 0.367 0.00985 0.348 0.386

VarGs(Ia) Crimp 0.224 0.01984 0.185 0.263

VarP(I) Crimp 1.000 0.00000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Densty 0.50436 0.0191 0.4669 0.5418

VarG(Ia) Densty 0.49331 0.0109 0.4719 0.5147

VarGs(Ia) Densty 0.00233 0.0193 -0.0355 0.0402

VarP(I) Densty 1.00000 0.0000 1.0000 1.0000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Diamtr 0.5116 0.01746 0.4774 0.5459

VarG(Ia) Diamtr 0.4314 0.00944 0.4129 0.4499

VarGs(Ia) Diamtr 0.0569 0.01768 0.0223 0.0916

VarP(I) Diamtr 1.0000 0.00000 1.0000 1.0000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Yield 0.534 0.0234 0.4879 0.579

VarG(Ia) Yield 0.344 0.0118 0.3209 0.367

VarGs(Ia) Yield 0.122 0.0239 0.0755 0.169

VarP(I) Yield 1.000 0.0000 1.0000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Bodywt 0.631 0.0226 0.586 0.675

VarG(Ia) Bodywt 0.137 0.0102 0.117 0.157

VarGs(Ia) Bodywt 0.233 0.0241 0.186 0.280

VarP(I) Bodywt 1.000 0.0000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Wrinkl 0.5160 0.0226 0.4717 0.560

VarG(Ia) Wrinkl 0.4149 0.0121 0.3912 0.439

VarGs(Ia) Wrinkl 0.0691 0.0229 0.0242 0.114

VarP(I) Wrinkl 1.0000 0.0000 1.0000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Length 0.547 0.01862 0.510 0.583

VarG(Ia) Length 0.251 0.00876 0.234 0.268

VarGs(Ia) Length 0.202 0.01928 0.164 0.240

VarP(I) Length 1.000 0.00000 1.000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Flcwt 0.6305 0.02083 0.5897 0.6713

VarG(Ia) Flcwt 0.0808 0.00922 0.0627 0.0988

VarGs(Ia) Flcwt 0.2888 0.02236 0.2449 0.3326

VarP(I) Flcwt 1.0000 0.00000 1.0000 1.0000
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Trait Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt 0.657 0.02116 0.615 0.698

VarG(Ia) Woolwt 0.147 0.00964 0.128 0.165

VarGs(Ia) Woolwt 0.196 0.02254 0.152 0.241

VarP(I) Woolwt 1.000 0.00000 1.000 1.000

Correlation corresponding to each var/covariance component:

partitioned by DME (OLS-fixed-effects):

....

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Birwt -0.0433 0.0717 -0.184 0.0973

VarG(Ia) Woolwt:Birwt 0.2115 0.0512 0.111 0.3118

VarGs(Ia) Woolwt:Birwt 0.6284 0.0640 0.503 0.7538

VarP(I) Woolwt:Birwt 0.2350 0.0162 0.203 0.2668

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Weanwt 0.198 0.0484 0.103 0.292

VarG(Ia) Woolwt:Weanwt 0.347 0.0681 0.214 0.481

VarGs(Ia) Woolwt:Weanwt 0.467 0.0730 0.323 0.610

VarP(I) Woolwt:Weanwt 0.289 0.0170 0.256 0.323

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Crimp -0.0175 0.0467 -0.109 0.0741

VarG(Ia) Woolwt:Crimp -0.3813 0.0360 -0.452 -0.3107

VarGs(Ia) Woolwt:Crimp -0.6502 0.0948 -0.836 -0.4644

VarP(I) Woolwt:Crimp -0.2339 0.0158 -0.265 -0.2030

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Densty -0.0171 0.0442 -0.1036 0.0695

VarG(Ia) Woolwt:Densty 0.1421 0.0319 0.0795 0.2047

VarGs(Ia) Woolwt:Densty 0.8900 1.2007 -1.4633 3.2434

VarP(I) Woolwt:Densty 0.0475 0.0163 0.0155 0.0794

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Diamtr 0.208 0.0399 0.1297 0.286

VarG(Ia) Woolwt:Diamtr 0.160 0.0323 0.0972 0.224

VarGs(Ia) Woolwt:Diamtr 0.769 0.1981 0.3809 1.158

VarP(I) Woolwt:Diamtr 0.242 0.0152 0.2125 0.272

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Yield 0.391 0.0404 0.3121 0.471

VarG(Ia) Woolwt:Yield 0.773 0.0366 0.7009 0.845

VarGs(Ia) Woolwt:Yield 0.231 0.1301 -0.0242 0.486

VarP(I) Woolwt:Yield 0.441 0.0156 0.4105 0.472

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Bodywt 0.4281 0.0379 0.354 0.5023

VarG(Ia) Woolwt:Bodywt -0.0895 0.0722 -0.231 0.0519

VarGs(Ia) Woolwt:Bodywt 0.4269 0.0940 0.243 0.6111

VarP(I) Woolwt:Bodywt 0.3542 0.0163 0.322 0.3860
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Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Wrinkl 0.2142 0.0459 0.1242 0.3042

VarG(Ia) Woolwt:Wrinkl -0.0230 0.0390 -0.0995 0.0535

VarGs(Ia) Woolwt:Wrinkl -0.0365 0.2342 -0.4956 0.4226

VarP(I) Woolwt:Wrinkl 0.1148 0.0177 0.0802 0.1494

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Length 0.551 0.0331 0.486 0.616

VarG(Ia) Woolwt:Length 0.277 0.0393 0.200 0.355

VarGs(Ia) Woolwt:Length 0.690 0.0803 0.533 0.848

VarP(I) Woolwt:Length 0.521 0.0131 0.495 0.547

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Flcwt 0.927 0.01419 0.899 0.955

VarG(Ia) Woolwt:Flcwt 0.783 0.03260 0.719 0.847

VarGs(Ia) Woolwt:Flcwt 0.895 0.03237 0.832 0.958

VarP(I) Woolwt:Flcwt 0.895 0.00612 0.883 0.907

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Woolwt 1 0 1 1

VarG(Ia) Woolwt:Woolwt 1 0 1 1

VarGs(Ia) Woolwt:Woolwt 1 0 1 1

VarP(I) Woolwt:Woolwt 1 0 1 1

.....

>

First look at the proportions. There is a significant "VarGs(Ia)" proportion for Birwt, Weanwt, Crimp,
Yield, Bodywt, Length, Flcwt, and Woolwt. In most cases this extra component of variance has come out of
VarE(I), which is thereby reduced.

For Woolwt and Flcwt we now have 2 genetic components of variance (VarG(Ia) and VarGs(Ia)) which add
up to about 0.35 of the phenotypic variance. This may explain why published results for heritability of Woolwt
of around 0.4 disagree with the current analysis. Older published estimates come from either paternal half-
sisters or dam-daughter analyses, which would be expected to include sexlinked genetic variance (Fairbairn
and Roff(2006) [6]). Matthew Wolak (personal communication) has conducted an extensive study of the
effect of ignoring sexlinked additive genetic variance components when estimating additive genetic variance
components (presumed autosomal), and has concluded that even in analyses using full pedigree information
there is likely to be a bias in estimates of additive genetic variance. In the present analysis based on full
pedigree information and including male obsevations the sexlinked variation of Woolwt exists, so the the
"VarG(Ia)" component estimate may be biased when sexlinkage is ignored, but should be unbiased when
"VarGs(Ia)" is also fitted. For other traits, the sexlinked component is small, and they end up with heritabilities
which agree with published figures.

If there is a real sexlinked additive genetic component for Flcwt and Woolwt, it is interesting to ask which
physical components of wool weight show it. It can be seen that there is no "VarGs(Ia)" for Densty or Diamtr
or Wrinkl, but there is for Length and Bodywt. So the components which are set early in life do not show it.

The standard errors of these proportions are sometimes a little larger than those when only VarE(I) and
VarG(Ia) are fitted, but there is nothing to indicate an overfitting or too much collinearity.

The genetic correlations require more caution in interpretation. The standard errors are larger than when
just VarE(I) and VarG(Ia) are fitted. One should also be wary of attaching too much importance to genetic
correlations for traits for which the corresponding proportion(s) are close to zero. For example, the important
Diamtr x Woolwt correlation - for VarG(Ia) the 0.16 is believable and significant and agrees with published
results (Brown and Turner(1968) [4]), but for VarGs(Ia) the 0.76 should be ignored. Correlations among
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delicately balanced near zero quantities are not of interest. On the other hand, the 0.69 correlation for VarGs(Ia)
for Length x Woolwt is large and significant and means something.

The consequences of a VarGs(Ia) component for selection are interesting. Genetic change in a population
can be divided into four pathways

• male-to-male

• male-to-female

• female-to-male

• female-to-female

If there is a lot of sexlinked additive genetic variance, the male-to-male pathway is ineffective, because a male
passes its X chromasome only to daughters. This may explain why breeding programs involving selection for
Woolwt are sometimes less effective than anticipated . Selection tends to be concentrated on males because
the intensity can be higher and the male-to-male generation interval is small.

A more comprehensive study of the consequences of selection for Woolwt under this sexlinked additive
model must await further development of the gresponse() function, which currently does not have the facility
to deal with sexlinked components of variation.

There is also a need to check the above conclusions with other datasets. A recognition of the presence of
sexlinked additive genetic variation for wool traits in Australian Merino sheep would have consequences for
the implementation of breeding plans. One needs to be sure of its correctness and general applicability before
proceeding with field recommendations. One simple independent check would be to look separately at the
genetic superiority of male and female offspring of selected males.

There is one additional check which we can do. We can rerun the analysis using the dmeopt="pcr" argu-
ment. This will tell us how serious the collinearities are and offers an option to remove them by constraining
the estimates (see section 7.4). Unfortunately the model with 11 traits exceeds the array size limit in R if "pcr"
is used. What we can do is revert to just one trait.

> merinokeep.mdf <- mdf(merino.df,pedcols=c(1:3),factorcols=c(4:9,12:13),

ycols=c(10:11,14:22),sexcode=c("M","F"),

relmat=c("E","A","S.hopi"),keep=T)

.....

>

> merino.fitiaslpcr <- dmm(merinokeep.mdf, Woolwt ~ 1 + C(Sex, sum) +

C(Yearbi, sum) + C(YearDbi, sum) + C(Agem, sum) + C(Birls,sum) +

C(Weanls, sum), components = c("VarE(I)", "VarG(Ia)","VarGs(Ia)"),

dmeopt="pcr")

Dyadic mixed model fit for datafile: merinokeep.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

No of individual variance components partitioned(v): 3

OLS-fixed-effects step:

no of fixed effect df (k) = 43

no of traits (l) = 1

Setup antemodel matrices:

no of individuals in pedigree (m) = 4014

no of individuals with data and X codes (n) = 2735

Rank of X: 43 No of Fixed Effects: 43

OLS-fixed-effects step completed:

DME substep:

PCR option on dyadic model equations:

.....

TRAINING: % variance explained
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1 comps 2 comps 3 comps

X 77.81599 96.22261 100.00000

evec 0.03008 0.03997 0.04277

DME substep with OLS-fixed-effects completed:

>

> attributes(merino.fitiaslpcr)

$names

[1] "aov" "mdf" "fixform"

[4] "b" "seb" "vara"

[7] "totn" "degf" "dme.mean"

[10] "dme.var" "dme.correl" "pcr.loadings"

[13] "dmeopt" "siga" "sesiga"

[16] "vard" "degfd" "component"

[19] "correlation" "correlation.variance" "correlation.se"

[22] "fraction" "fraction.variance" "fraction.se"

[25] "variance.components" "variance.components.se" "phenotypic.variance"

[28] "phenotypic.variance.se" "observed.variance"

$call

dmm.default(mdf = merinokeep.mdf, fixform = Woolwt ~ 1 + C(Sex,

sum) + C(Yearbi, sum) + C(YearDbi, sum) + C(Agem, sum) +

C(Birls, sum) + C(Weanls, sum), components = c("VarE(I)",

"VarG(Ia)", "VarGs(Ia)"), dmeopt = "pcr")

$class

[1] "dmm"

> merino.fitiaslpcr$pcr.loadings

Loadings:

Comp 1 Comp 2 Comp 3

`VarE(I)` 0.235 -0.563 0.792

`VarG(Ia)` 0.892 0.450

`VarGs(Ia)` 0.387 -0.693 -0.608

Comp 1 Comp 2 Comp 3

SS loadings 1.000 1.000 1.000

Proportion Var 0.333 0.333 0.333

Cumulative Var 0.333 0.667 1.000

>

The "% variance explained" shows that we can delete one principal component and still analyse 96.22
percent of the variation. The loadings show that if we proceed with just 2 principal components we are
applying the constraint

0.792×VarE(I)−0.608×VarGs(Ia) = 0

which defines a plane in 3D component space to which the estimates are confined. If we proceed with two
principal components we get the following

> merino.fitiaslpcr2 <- dmm(merinokeep.mdf, Woolwt ~ 1 + C(Sex, sum) +

C(Yearbi, sum) + C(YearDbi, sum) + C(Agem, sum) + C(Birls,sum) +

C(Weanls, sum), components = c("VarE(I)", "VarG(Ia)","VarGs(Ia)"),
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dmeopt="pcr",dmekeepfit=T,ncomp=2)

Dyadic mixed model fit for datafile: merinokeep.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 43

no of traits (l) = 1

Setup antemodel matrices:

No of factors with specific components: 0

No of non-specific components partitioned: 3

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 4014

no of individuals with data and X codes (n) = 2735

Rank of X: 43 No of Fixed Effects: 43

OLS-fixed-effects step completed:

DME substep:

No of components defined = 3

No of components estimable = 3

Checking dyadic model equations:

PCR option on dyadic model equations:

Data: X dimension: 7480225 3

Y dimension: 7480225 1

Fit method: svdpc

Number of components considered: 2

VALIDATION: RMSEP

Cross-validated using 10 random segments.

(Intercept) 1 comps 2 comps

CV 0.1611 0.1611 0.1611

adjCV 0.1611 0.1611 0.1611

TRAINING: % variance explained

1 comps 2 comps

X 77.81599 96.22261

evec 0.03008 0.03997

DME substep with OLS-fixed-effects completed:

>

> gsummary(merino.fitiaslpcr2)

Call:

gsummary.dmm(dmmobj = merino.fitiaslpcr2)

Proportion of phenotypic var/covariance partitioned by DME:

to each component (OLS-fixed-effects):

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt 0.365 0.00796 0.349 0.381

VarG(Ia) Woolwt 0.147 0.01750 0.112 0.181

VarGs(Ia) Woolwt 0.488 0.00970 0.469 0.507

VarP(I) Woolwt 1.000 0.00000 1.000 1.000
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Correlation corresponding to each var/covariance component:

partitioned by DME (OLS-fixed-effects):

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Woolwt 1 0 1 1

VarG(Ia) Woolwt:Woolwt 1 0 1 1

VarGs(Ia) Woolwt:Woolwt 1 0 1 1

VarP(I) Woolwt:Woolwt 1 0 1 1

Phenotypic var/covariance from components partitioned by DME (OLS-fixed-effects):

Traitpair Estimate StdErr CI95lo CI95hi

1 Woolwt:Woolwt 0.146 0.00712 0.132 0.16

>

These estimates compare favourably with those obtained with the default dmeopt="qr" argument. The
standard errors are smaller, the estimates are similar, and the assumption of independence is not violated
because the two principal components used are uncorrelated.

We conclude that one can have some confidence in the default dmeopt="qr" results and that the presence
of an individual additive genetic sexlinked component of variance is real and of a significant magnitude.

9.6 Investigation of maternal additive genetic sexlinked variation
It is possible for maternal additive effects to be sexlinked. To investigate this we need to add the component
"VarGs(Ma)". It would not make sense to fit this component without also fitting a maternal additive autosomal
componment. So we need to resurrect "VarG(Ma)" even though we have already concluded that it is insignifi-
cant for most traits. Also to fit maternal genetic effects without a corresponding maternal environmental effect
would be inappropriate, so we also resurrect "VarE(M)". We will, however, avoid the covariances (individual
x maternal) previously fitted. We fit a 6 component model as follows.

> merino.fitiamasl <- dmm(merino.mdf,Ymat ~ 1 + C(Sex, sum) + C(Yearbi, sum) +

C(YearDbi, sum) + C(Agem,sum) + C(Birls, sum) + C(Weanls, sum),

components = c("VarE(I)","VarG(Ia)","VarGs(Ia)","VarE(M)","VarG(Ma)",

"VarGs(Ma)"))

Dyadic mixed model fit for datafile: merino.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 43

no of traits (l) = 11

Setup antemodel matrices:

No of factors with specific components: 0

No of non-specific components partitioned: 6

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 4014

no of individuals with data and X codes (n) = 2642

Rank of X: 43 No of Fixed Effects: 43

OLS-fixed-effects step completed:

DME substep:

No of components defined = 6

114



No of components estimable = 6

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:

>

> round(merino.fitiamasl$dme.corre,digits=3)

VarE(I) VarG(Ia) VarGs(Ia) VarE(M) VarG(Ma) VarGs(Ma)

VarE(I) 1.000 0.417 0.754 0.486 0.332 0.392

VarG(Ia) 0.417 1.000 0.558 0.373 0.478 0.452

VarGs(Ia) 0.754 0.558 1.000 0.658 0.674 0.797

VarE(M) 0.486 0.373 0.658 1.000 0.682 0.807

VarG(Ma) 0.332 0.478 0.674 0.682 1.000 0.846

VarGs(Ma) 0.392 0.452 0.797 0.807 0.846 1.000

>

> gsummary(dmmobj = merino.fitiamasl, traitset = c("Birwt","Diamtr", "Woolwt"))

Call:

gsummary.dmm(dmmobj = merino.fitiamasl, traitset = c("Birwt",

"Diamtr", "Woolwt"))

Proportion of phenotypic var/covariance partitioned by DME:

to each component (OLS-fixed-effects):

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Birwt 0.3802 0.02192 0.3373 0.423

VarG(Ia) Birwt 0.1365 0.00659 0.1236 0.149

VarGs(Ia) Birwt 0.0987 0.02682 0.0461 0.151

VarE(M) Birwt 0.0720 0.01122 0.0500 0.094

VarG(Ma) Birwt 0.0986 0.00804 0.0829 0.114

VarGs(Ma) Birwt 0.2139 0.01557 0.1834 0.244

VarP(I) Birwt 1.0000 0.00000 1.0000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Diamtr 0.40157 0.02475 0.3531 0.4501

VarG(Ia) Diamtr 0.42181 0.00912 0.4039 0.4397

VarGs(Ia) Diamtr 0.08907 0.03038 0.0295 0.1486

VarE(M) Diamtr 0.06726 0.01271 0.0424 0.0922

VarG(Ma) Diamtr 0.00812 0.00904 -0.0096 0.0258

VarGs(Ma) Diamtr 0.01218 0.01738 -0.0219 0.0462

VarP(I) Diamtr 1.00000 0.00000 1.0000 1.0000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt 0.58630 0.02550 0.5363 0.6363

VarG(Ia) Woolwt 0.12212 0.00787 0.1067 0.1375

VarGs(Ia) Woolwt 0.15043 0.03223 0.0873 0.2136

VarE(M) Woolwt 0.03789 0.01344 0.0116 0.0642

VarG(Ma) Woolwt 0.00493 0.00957 -0.0138 0.0237

VarGs(Ma) Woolwt 0.09832 0.01847 0.0621 0.1345

VarP(I) Woolwt 1.00000 0.00000 1.0000 1.0000

Correlation corresponding to each var/covariance component:
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partitioned by DME (OLS-fixed-effects):

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Birwt:Birwt 1 0 1 1

VarG(Ia) Birwt:Birwt 1 0 1 1

VarGs(Ia) Birwt:Birwt 1 0 1 1

VarE(M) Birwt:Birwt 1 0 1 1

VarG(Ma) Birwt:Birwt 1 0 1 1

VarGs(Ma) Birwt:Birwt 1 0 1 1

VarP(I) Birwt:Birwt 1 0 1 1

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Birwt:Diamtr -0.0955 0.0644 -0.2218 0.0308

VarG(Ia) Birwt:Diamtr -0.3268 0.0290 -0.3836 -0.2700

VarGs(Ia) Birwt:Diamtr 0.6062 0.3522 -0.0841 1.2966

VarE(M) Birwt:Diamtr 0.4145 0.1851 0.0516 0.7773

VarG(Ma) Birwt:Diamtr 0.7088 0.4994 -0.2701 1.6876

VarGs(Ma) Birwt:Diamtr 0.8744 0.6524 -0.4042 2.1530

VarP(I) Birwt:Diamtr 0.0346 0.0126 0.0099 0.0593

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Birwt:Woolwt 0.113 0.0539 0.00694 0.218

VarG(Ia) Birwt:Woolwt 0.207 0.0528 0.10343 0.310

VarGs(Ia) Birwt:Woolwt 0.124 0.2187 -0.30437 0.553

VarE(M) Birwt:Woolwt 0.510 0.2282 0.06284 0.957

VarG(Ma) Birwt:Woolwt 0.324 0.3921 -0.44458 1.092

VarGs(Ma) Birwt:Woolwt 0.298 0.1115 0.07924 0.516

VarP(I) Birwt:Woolwt 0.172 0.0126 0.14728 0.197

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diamtr:Birwt -0.0955 0.0644 -0.2218 0.0308

VarG(Ia) Diamtr:Birwt -0.3268 0.0290 -0.3836 -0.2700

VarGs(Ia) Diamtr:Birwt 0.6062 0.3522 -0.0841 1.2966

VarE(M) Diamtr:Birwt 0.4145 0.1851 0.0516 0.7773

VarG(Ma) Diamtr:Birwt 0.7088 0.4994 -0.2701 1.6876

VarGs(Ma) Diamtr:Birwt 0.8744 0.6524 -0.4042 2.1530

VarP(I) Diamtr:Birwt 0.0346 0.0126 0.0099 0.0593

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diamtr:Diamtr 1 0 1.00 1.00

VarG(Ia) Diamtr:Diamtr 1 0 1.00 1.00

VarGs(Ia) Diamtr:Diamtr 1 0 1.00 1.00

VarE(M) Diamtr:Diamtr 1 0 1.00 1.00

VarG(Ma) Diamtr:Diamtr 1 0 1.00 1.00

VarGs(Ma) Diamtr:Diamtr 1 1 -0.96 2.96

VarP(I) Diamtr:Diamtr 1 0 1.00 1.00

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diamtr:Woolwt 0.243 0.0552 0.1350 0.351

VarG(Ia) Diamtr:Woolwt 0.160 0.0321 0.0973 0.223

VarGs(Ia) Diamtr:Woolwt 0.792 0.2738 0.2553 1.329

VarE(M) Diamtr:Woolwt 0.389 0.2456 -0.0924 0.870

VarG(Ma) Diamtr:Woolwt -0.317 8.3706 -16.7234 16.090
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VarGs(Ma) Diamtr:Woolwt 0.616 0.5470 -0.4565 1.688

VarP(I) Diamtr:Woolwt 0.285 0.0133 0.2589 0.311

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Birwt 0.113 0.0539 0.00694 0.218

VarG(Ia) Woolwt:Birwt 0.207 0.0528 0.10343 0.310

VarGs(Ia) Woolwt:Birwt 0.124 0.2187 -0.30437 0.553

VarE(M) Woolwt:Birwt 0.510 0.2282 0.06284 0.957

VarG(Ma) Woolwt:Birwt 0.324 0.3921 -0.44458 1.092

VarGs(Ma) Woolwt:Birwt 0.298 0.1115 0.07924 0.516

VarP(I) Woolwt:Birwt 0.172 0.0126 0.14728 0.197

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Diamtr 0.243 0.0552 0.1350 0.351

VarG(Ia) Woolwt:Diamtr 0.160 0.0321 0.0973 0.223

VarGs(Ia) Woolwt:Diamtr 0.792 0.2738 0.2553 1.329

VarE(M) Woolwt:Diamtr 0.389 0.2456 -0.0924 0.870

VarG(Ma) Woolwt:Diamtr -0.317 8.3706 -16.7234 16.090

VarGs(Ma) Woolwt:Diamtr 0.616 0.5470 -0.4565 1.688

VarP(I) Woolwt:Diamtr 0.285 0.0133 0.2589 0.311

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Woolwt 1 0 1 1

VarG(Ia) Woolwt:Woolwt 1 0 1 1

VarGs(Ia) Woolwt:Woolwt 1 0 1 1

VarE(M) Woolwt:Woolwt 1 0 1 1

VarG(Ma) Woolwt:Woolwt 1 0 1 1

VarGs(Ma) Woolwt:Woolwt 1 0 1 1

VarP(I) Woolwt:Woolwt 1 0 1 1

Phenotypic var/covariance from components partitioned by DME (OLS-fixed-effects):

Traitpair Estimate StdErr CI95lo CI95hi

1 Birwt:Birwt 0.4049 0.00478 0.3955 0.4142

2 Birwt:Diamtr 0.0528 0.01918 0.0152 0.0904

3 Birwt:Woolwt 0.0519 0.00391 0.0443 0.0596

4 Diamtr:Birwt 0.0528 0.01918 0.0152 0.0904

5 Diamtr:Diamtr 5.7428 0.07685 5.5922 5.8935

6 Diamtr:Woolwt 0.3242 0.01567 0.2935 0.3550

7 Woolwt:Birwt 0.0519 0.00391 0.0443 0.0596

8 Woolwt:Diamtr 0.3242 0.01567 0.2935 0.3550

9 Woolwt:Woolwt 0.2254 0.00319 0.2191 0.2317

>

On initial inspection this model seems to be a reasonable fit. The standard errors of estimates of proportions
are generally as small as those in previous models. There is evidence of "VarGs(Ma)" being a significant
proportion of the variance for Birwt and Woolwt. For these traits the other maternal components are reduced,
indicating that "VarGs(Ma)" has taken variance away from the autosomal genetic and environmental maternal
components. In the case of Birwt, the individual sexlinked component is also reduced, but not for Woolwt.

There are more collinearities in this model than in previous models. The column correlations have two
exceeding 0.8 and two more exceeding 0.7. We need to rerun with dmeopt="pcr" and see what effect removing
the collinearities has on the estimates. Again we have to revert to one trait
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> merinokeep.mdf <- mdf(merino.df,pedcols=c(1:3),factorcols=c(4:9,12:13),

ycols=c(10:11,14:22),sexcode=c("M","F"),

relmat=c("E","A","S.hopi"),keep=T)

.....

> merino.fitiamaslpcr <- dmm(merinokeep.mdf, Woolwt ~ 1 + C(Sex, sum) +

C(Yearbi, sum) + C(YearDbi, sum) + C(Agem, sum) + C(Birls,sum) +

C(Weanls, sum), components = c("VarE(I)", "VarG(Ia)","VarGs(Ia)",

"VarE(M)","VarG(Ma)","VarGs(Ma)"), dmeopt="pcr")

Dyadic mixed model fit for datafile: merinokeep.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 43

no of traits (l) = 1

Setup antemodel matrices:

No of factors with specific components: 0

No of non-specific components partitioned: 6

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 4014

no of individuals with data and X codes (n) = 2735

Rank of X: 43 No of Fixed Effects: 43

OLS-fixed-effects step completed:

DME substep:

No of components defined = 6

No of components estimable = 6

Checking dyadic model equations:

PCR option on dyadic model equations:

Data: X dimension: 7480225 6

Y dimension: 7480225 1

Fit method: svdpc

Number of components considered: 6

VALIDATION: RMSEP

Cross-validated using 10 random segments.

(Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps

CV 0.1611 0.1611 0.1611 0.1611 0.1611 0.1611 0.1611

adjCV 0.1611 0.1611 0.1611 0.1611 0.1611 0.1611 0.1611

TRAINING: % variance explained

1 comps 2 comps 3 comps 4 comps 5 comps 6 comps

X 71.64997 85.71700 93.01582 96.65201 99.60010 100.00000

evec 0.01946 0.02729 0.03319 0.04001 0.04196 0.04297

DME substep with OLS-fixed-effects completed:

>

> merino.fitiamaslpcr$pcr.loadings

Loadings:

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6

`VarE(I)` 0.112 -0.115 0.344 -0.528 -0.457 0.606

`VarG(Ia)` 0.324 -0.918 0.214
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`VarGs(Ia)` 0.250 0.247 -0.604 -0.711

`VarE(M)` 0.388 0.217 0.604 0.548 -0.338 -0.151

`VarG(Ma)` 0.611 0.191 -0.660 -0.392

`VarGs(Ma)` 0.545 0.235 0.139 -0.100 0.719 0.320

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6

SS loadings 1.000 1.000 1.000 1.000 1.000 1.000

Proportion Var 0.167 0.167 0.167 0.167 0.167 0.167

Cumulative Var 0.167 0.333 0.500 0.667 0.833 1.000

>

This shows that we can omit principal components 5 and 6 and still analyze 96.65 percent of the variation.
The constraints implied by dropping components 5 and 6 are shown by the respective columns of the loadings.
If we rerun the "pcr" analysis with only 4 principal components we get

> merino.fitiamaslpcr2 <- dmm(merinokeep.mdf, Woolwt ~ 1 + C(Sex, sum) +

C(Yearbi, sum) + C(YearDbi, sum) + C(Agem, sum) + C(Birls,sum) +

C(Weanls, sum), components = c("VarE(I)", "VarG(Ia)","VarGs(Ia)",

"VarE(M)","VarG(Ma)","VarGs(Ma)"), dmeopt="pcr",ncomp=4)

Dyadic mixed model fit for datafile: merinokeep.mdf

.....

DME substep with OLS-fixed-effects completed:

>

> gsummary(merino.fitiamaslpcr2)

Call:

gsummary.dmm(dmmobj = merino.fitiamaslpcr2)

Proportion of phenotypic var/covariance partitioned by DME:

to each component (OLS-fixed-effects):

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt 3.54e-01 0.01390 0.3270 0.381

VarG(Ia) Woolwt 1.63e-01 0.01204 0.1390 0.186

VarGs(Ia) Woolwt 3.72e-01 0.01130 0.3495 0.394

VarE(M) Woolwt 5.80e-09 Inf -Inf Inf

VarG(Ma) Woolwt 5.80e-09 Inf -Inf Inf

VarGs(Ma) Woolwt 1.12e-01 0.00642 0.0989 0.124

VarP(I) Woolwt 1.00e+00 0.00000 1.0000 1.000

Correlation corresponding to each var/covariance component:

partitioned by DME (OLS-fixed-effects):

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt:Woolwt 1 0 1.00 1.00

VarG(Ia) Woolwt:Woolwt 1 0 1.00 1.00

VarGs(Ia) Woolwt:Woolwt 1 0 1.00 1.00

VarE(M) Woolwt:Woolwt 1 1 -0.96 2.96

VarG(Ma) Woolwt:Woolwt 1 1 -0.96 2.96

VarGs(Ma) Woolwt:Woolwt 1 0 1.00 1.00

VarP(I) Woolwt:Woolwt 1 0 1.00 1.00

Phenotypic var/covariance from components partitioned by DME (OLS-fixed-effects):
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Traitpair Estimate StdErr CI95lo CI95hi

1 Woolwt:Woolwt 0.172 0.00477 0.163 0.182

>

So we have some nasty standard errors and near-zero estimates for "VarE(M)" and "VarG(Ma)" suggesting
that they should not be fitted. However the estimates for the other components are similar to those obtained
with dmeopt="qr" and their standard errors are small. We conclude that the components "VarGs(Ia)" and
"VarGs(Ma)" are real and of sufficient magnitude to warrant inclusion in the model. If the constrained estimate
obtained with "pcr" do not differ greatly from the unconstrained estimates obtained with "qr" it is an indication
that the collinearities are not serious. If we were to drop "VarE(M)" and "VarG(Ma)" some of the strongest
column correlations would be removed. We will pursue this course for the final run with fixedgls=T in the
following section.

9.7 Final analysis and GLS-b estimates
It is convenient to use OLS-b estimates when investigating models, then finish off with an iterative GLS-b run
to obtain bias-corrected ML estimates. We shall now do this omitting "VarE(M)" and "VarG(Ma)" as noted
above.

> merino.fitgls <- dmm(merino.mdf, Ymat ~ 1 + C(Sex, sum) + C(Yearbi, sum) +

C(YearDbi, sum) + C(Agem, sum) + C(Birls,sum) + C(Weanls, sum),

components = c("VarE(I)", "VarG(Ia)","VarGs(Ia)","VarGs(Ma)"),fixedgls=T)

Dyadic mixed model fit for datafile: merino.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 43

no of traits (l) = 11

Setup antemodel matrices:

No of factors with specific components: 0

No of non-specific components partitioned: 4

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 4014

no of individuals with data and X codes (n) = 2642

Rank of X: 43 No of Fixed Effects: 43

OLS-fixed-effects step completed:

DME substep:

No of components defined = 4

No of components estimable = 4

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:

GLS-fixed-effects step:

Warning: Multivariate GLS is not same as multiple univariate GLS's

Error in matrix(0, am$n * am$n * am$l * am$l, am$v) :

too many elements specified

>

So we cannot complete the GLS-b step with 11 traits - One of the arrays used exceeds the R limit of 231 −1
elements. So lets do it with one trait
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> merino.fitgls <- dmm(merinokeep.mdf, Woolwt ~ 1 + C(Sex, sum) + C(Yearbi, sum) +

C(YearDbi, sum) + C(Agem, sum) + C(Birls,sum) + C(Weanls, sum),

components = c("VarE(I)", "VarG(Ia)","VarGs(Ia)","VarGs(Ma)"),fixedgls=T)

Dyadic mixed model fit for datafile: merinokeep.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

OLS-fixed-effects step:

no of fixed effect df (k) = 43

no of traits (l) = 1

Setup antemodel matrices:

No of factors with specific components: 0

No of non-specific components partitioned: 4

No of factors with specific components: 0

No of specific variance components partitioned (per component): 0

No of specific variance and covariance components partitioned (per component): 0

no of individuals in pedigree (m) = 4014

no of individuals with data and X codes (n) = 2735

Rank of X: 43 No of Fixed Effects: 43

OLS-fixed-effects step completed:

DME substep:

No of components defined = 4

No of components estimable = 4

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep with OLS-fixed-effects completed:

GLS-fixed-effects step:

Round = 1 Stopcrit = 0.01292653

Round = 2 Stopcrit = 0.002585923

Iteration(gls-fixed-effects) completed - count = 2

Convergence achieved

GLS-fixed-effects step completed successfully:

DME substep:

Components to genetic parameters and SE's:

GLS-fixed-effects - genetic parameters with nonspecific components:

DME substep completed:

>

>

> gsummary(merino.fitgls,fixedgls=T)

Call:

gsummary.dmm(dmmobj = merino.fitgls, fixedgls = T)

Proportion of phenotypic var/covariance partitioned by DME:

to each component (OLS-fixed-effects):

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt 0.7485 0.0283 0.692933 0.8040

VarG(Ia) Woolwt 0.1561 0.0102 0.136055 0.1761

VarGs(Ia) Woolwt 0.0675 0.0399 -0.010722 0.1458

VarGs(Ma) Woolwt 0.0279 0.0145 -0.000569 0.0564

VarP(I) Woolwt 1.0000 0.0000 1.000000 1.0000

......
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Phenotypic var/covariance from components partitioned by DME (OLS-fixed-effects):

Traitpair Estimate StdErr CI95lo CI95hi

1 Woolwt:Woolwt 0.165 0.00311 0.159 0.171

Proportion of phenotypic var/covariance partitioned by DME:

to each component (GLS-fixed-effects):

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Woolwt 0.7407 0.02829 0.68525 0.7961

VarG(Ia) Woolwt 0.1555 0.00998 0.13594 0.1751

VarGs(Ia) Woolwt 0.0779 0.03983 -0.00011 0.1560

VarGs(Ma) Woolwt 0.0259 0.01449 -0.00254 0.0543

VarP(I) Woolwt 1.0000 0.00000 1.00000 1.0000

.....

Phenotypic var/covariance from components partitioned by DME (GLS-fixed-effects):

Traitpair Estimate StdErr CI95lo CI95hi

1 Woolwt:Woolwt 0.166 0.00312 0.16 0.172

>

The OLS-fixed-effects and GLS-fixed-effects estimates are almost identical for this trait. GLS-fixed-effects
offers a slight improvement in the standard errors. In my experience this is what happens whenever the model is
reasonable for the dataset and the dataset is sufficiently large. What causes OLS-fixed-effects and GLS-fixed-
effects to differ is correlations among the residuals, and that only happens when the model is inappropriate.

We conclude that the above 4 component model is appropriate and proceed with some further analysis of
genetic (co)variation among wool traits.

9.8 Investigation of genetic (co)variation among Merino wool traits
Wool is a more complicated product than most production traits to which quantitative genetics is applied. It
takes a number of measured traits to describe the quantity and quality of the wool obtained from a sheep, and
a further number of traits to understand its relationship to the sheep as a whole.

Now that we have an appropriate model for estimating genetic (co)variance components for wool traits,
we can take a closer look at the genetic corelations and what they might imply about the structure of the wool
genome.

We start with a final run of the ’best’ model, and them embark on a study of the structure of each genetic
(co)variance matrix (VarG(Ia), VarGs(Ia), and VarGs(Ma)).

> merino.fitlast <- dmm(merino.mdf, Ymat ~ 1 + C(Sex, sum) + C(Yearbi, sum) +

C(YearDbi, sum) + C(Agem, sum) + C(Birls,sum) + C(Weanls, sum),

components = c("VarE(I)", "VarG(Ia)","VarGs(Ia)","VarGs(Ma)"))

.....

>

One of the difficulties of principal components analysis is that its results are seriously biased if all traits
are not measured in the same units. The traditional way of dealing with this is to do everything in standard
deviation units, that is to use a correlation matrix uinstead of a covariance matrix. In our case this would
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amount to scaling to genetic standard deviation units. However we are not going to do that, we are going
to scale to phenotypic standard deviation units which is the traditional approach of quantitative genetics to
scaling. To do this we need to do a principal component analysis on the matrix shown below for the two trait
case

HG(Ia) =

[
h2

1 h1h2rG(Ia)
h1h2rG(Ia) h2

2

]
and similar matrices for Gs(Ia) and Gs(Ma).
One reason for this approach is to avoid giving excess weight to traits for which the proportion of variance

is small. By putting heritabilities (or proportion of variance) on the diagonal we are weighting each trait by its
heritability. That is what is required if we wish to compare genetic variation of various traits.

The H matrices are not the same as the matrix GP−1 from the multivariate breeders equation 14. That
matrix is in trait units and is not symmetric and is for prediction of genetic change. Here we are attempting to
study genetic variation itself, not prediction.

The required H matrices are readily calculated from variance component estimates as follows. First extract
the required covariance matrices

> covgia <- matrix(merino.fitlast$siga["VarG(Ia)",],11,11,

dimnames=list(dimnames(merino.fitlast$b)[[2]],dimnames(merino.fitlast$b)[[2]]))

> covgsia <- matrix(merino.fitlast$siga["VarGs(Ia)",],11,11,

dimnames=list(dimnames(merino.fitlast$b)[[2]],dimnames(merino.fitlast$b)[[2]]))

> covgsma <- matrix(merino.fitlast$siga["VarGs(Ma)",],11,11,

dimnames=list(dimnames(merino.fitlast$b)[[2]],dimnames(merino.fitlast$b)[[2]]))

> covpia <- merino.fitlast$phenotypic.variance

Then do the HG(Ia) matrix and its principal component analysis

> pdiag <- diag(1/sqrt(diag(covpia)))

> covhia <- pdiag %*% covgia %*% pdiag

> dimnames(covhia) <- dimnames(covgia)

> covhia

Birwt Weanwt Crimp Densty Diamtr

Birwt 0.185250434 0.03929988 -0.03353903 0.099824593 -0.09390297

Weanwt 0.039299878 0.10941694 -0.04923602 -0.088406290 0.07556103

Crimp -0.033539029 -0.04923602 0.37070449 0.068197321 -0.08545129

Densty 0.099824593 -0.08840629 0.06819732 0.492360864 -0.36754001

Diamtr -0.093902972 0.07556103 -0.08545129 -0.367540007 0.43504635

Yield 0.076601452 0.07578843 -0.19534958 0.008542196 0.01562528

Bodywt 0.033581775 0.09258608 -0.03186814 -0.101092848 0.07110460

Wrinkl -0.059993649 -0.08225562 0.11941112 0.022897920 0.12636478

Length 0.003896161 0.04859919 -0.12248895 -0.145037715 0.02423141

Flcwt 0.012666618 0.01374432 -0.00896495 0.046896192 0.02653705

Woolwt 0.031968963 0.04022985 -0.08175608 0.035292205 0.03720690

Yield Bodywt Wrinkl Length Flcwt

Birwt 0.0766014519 0.0335817755 -0.059993649 0.003896161 0.01266662

Weanwt 0.0757884344 0.0925860805 -0.082255622 0.048599189 0.01374432

Crimp -0.1953495806 -0.0318681375 0.119411117 -0.122488953 -0.00896495

Densty 0.0085421965 -0.1010928476 0.022897920 -0.145037715 0.04689619

Diamtr 0.0156252782 0.0711045965 0.126364776 0.024231412 0.02653705

Yield 0.3373245271 0.0007260227 -0.157966278 0.166419417 0.03442103

Bodywt 0.0007260227 0.1368491936 -0.044559996 0.007385097 -0.01056552

Wrinkl -0.1579662783 -0.0445599956 0.399766067 -0.223431622 0.05312845

Length 0.1664194166 0.0073850966 -0.223431622 0.229604913 -0.01642479
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Flcwt 0.0344210271 -0.0105655207 0.053128447 -0.016424791 0.07006928

Woolwt 0.1580510425 -0.0118929591 -0.005243948 0.046841331 0.07292928

Woolwt

Birwt 0.031968963

Weanwt 0.040229846

Crimp -0.081756079

Densty 0.035292205

Diamtr 0.037206896

Yield 0.158051042

Bodywt -0.011892959

Wrinkl -0.005243948

Length 0.046841331

Flcwt 0.072929279

Woolwt 0.123820403

>

> covhia.list <- list(cov=covhia,center=rep(0,11),n.obs=2599)

> prinhia <- princomp(covmat=covhia.list)

> summary(prinhia)

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard deviation 0.9957620 0.9192753 0.6441519 0.48108792 0.44317179

Proportion of Variance 0.3430688 0.2923892 0.1435643 0.08007906 0.06795389

Cumulative Proportion 0.3430688 0.6354580 0.7790223 0.85910138 0.92705527

Comp.6 Comp.7 Comp.8 Comp.9 Comp.10

Standard deviation 0.30851264 0.2368932 0.20775519 0.116454014 0.0529312089

Proportion of Variance 0.03293184 0.0194167 0.01493392 0.004692227 0.0009693792

Cumulative Proportion 0.95998711 0.9794038 0.99433773 0.999029954 0.9999993333

Comp.11

Standard deviation 1.388134e-03

Proportion of Variance 6.667039e-07

Cumulative Proportion 1.000000e+00

>

> loadings(prinhia)

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10

Birwt -0.243 -0.572 0.721 -0.233 0.144

Weanwt 0.203 -0.460 -0.326 0.654 -0.452

Crimp -0.372 0.256 0.335 -0.226 0.778

Densty -0.555 -0.405 -0.290 -0.290 0.267 -0.291 -0.433

Diamtr 0.450 0.470 -0.265 0.577 -0.310 -0.227

Yield 0.308 -0.412 -0.359 0.359 0.599

Bodywt 0.152 0.111 -0.575 -0.201 -0.314 0.230 -0.385 -0.530

Wrinkl -0.249 0.486 -0.538 0.261 0.199 -0.468 -0.284

Length 0.341 -0.241 0.229 0.261 0.256 0.194 -0.239 -0.378 -0.274 -0.559

Flcwt -0.289 0.196 -0.218 -0.602 -0.178 -0.109 0.159

Woolwt 0.113 -0.149 -0.397 0.316 -0.164 -0.238 -0.151 0.350

Comp.11

Birwt

Weanwt

Crimp

Densty -0.108

Diamtr

124



Yield 0.313

Bodywt

Wrinkl

Length -0.117

Flcwt 0.627

Woolwt -0.686

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9

SS loadings 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Proportion Var 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091

Cumulative Var 0.091 0.182 0.273 0.364 0.455 0.545 0.636 0.727 0.818

Comp.10 Comp.11

SS loadings 1.000 1.000

Proportion Var 0.091 0.091

Cumulative Var 0.909 1.000

>

Then construct the HGs(Ia) matrix and do its principal component analysis

> covhsia <- pdiag %*% covgsia %*% pdiag

> dimnames(covhsia) <- dimnames(covgsia)

> covhsia

Birwt Weanwt Crimp Densty Diamtr

Birwt 0.060128044 -2.570243e-02 -0.060687741 0.008348901 0.05209222

Weanwt -0.025702433 4.315879e-02 0.061761044 -0.003353315 -0.02661258

Crimp -0.060687741 6.176104e-02 0.159211280 -0.014082210 -0.09986772

Densty 0.008348901 -3.353315e-03 -0.014082210 0.001774278 0.01177068

Diamtr 0.052092218 -2.661258e-02 -0.099867718 0.011770679 0.09047465

Yield 0.047431553 -2.191617e-02 -0.056677638 0.007172361 0.03608505

Bodywt 0.016112986 5.055761e-02 0.035293668 0.003982618 0.01385322

Wrinkl -0.004737217 -2.861619e-02 0.008036627 -0.004155290 -0.01149093

Length 0.002021006 1.725220e-04 -0.095304872 0.010574906 0.10112966

Flcwt 0.022473403 9.346233e-05 -0.087593073 0.011411457 0.11699630

Woolwt 0.048915663 -1.786171e-02 -0.138921426 0.016499676 0.11833350

Yield Bodywt Wrinkl Length Flcwt

Birwt 0.047431553 0.016112986 -0.0047372169 0.0020210061 2.247340e-02

Weanwt -0.021916172 0.050557606 -0.0286161921 0.0001725220 9.346233e-05

Crimp -0.056677638 0.035293668 0.0080366270 -0.0953048716 -8.759307e-02

Densty 0.007172361 0.003982618 -0.0041552896 0.0105749065 1.141146e-02

Diamtr 0.036085050 0.013853220 -0.0114909298 0.1011296643 1.169963e-01

Yield 0.047598384 0.013098530 -0.0214068355 -0.0134504843 -1.201379e-02

Bodywt 0.013098530 0.111362916 -0.0615829646 0.0224709056 3.270802e-02

Wrinkl -0.021406835 -0.061582965 0.1005839556 0.0001208749 3.500162e-03

Length -0.013450484 0.022470906 0.0001208749 0.2469677111 2.356635e-01

Flcwt -0.012013793 0.032708021 0.0035001621 0.2356634618 2.692642e-01

Woolwt 0.039745698 0.040076273 -0.0315794032 0.1957919828 1.822150e-01

Woolwt

Birwt 0.04891566

Weanwt -0.01786171

Crimp -0.13892143

Densty 0.01649968

Diamtr 0.11833350

Yield 0.03974570

Bodywt 0.04007627
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Wrinkl -0.03157940

Length 0.19579198

Flcwt 0.18221497

Woolwt 0.21701532

>

> covhsia.list <- list(cov=covhsia, center=rep(0,11), n.obs=2599)

> prinhsia <- princomp(covmat=covhsia.list)

> summary(prinhsia)

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard deviation 0.8942314 0.4953254 0.4440996 0.25763953 0.18687404

Proportion of Variance 0.5934147 0.1820705 0.1463589 0.04925876 0.02591531

Cumulative Proportion 0.5934147 0.7754853 0.9218442 0.97110296 0.99701827

Comp.6 Comp.7 Comp.8 Comp.9

Standard deviation 0.063386995 2.394215e-04 1.554766e-04 7.119635e-05

Proportion of Variance 0.002981665 4.253877e-08 1.793860e-08 3.761612e-09

Cumulative Proportion 0.999999934 1.000000e+00 1.000000e+00 1.000000e+00

Comp.10 Comp.11

Standard deviation 4.762722e-05 1.586003e-05

Proportion of Variance 1.683329e-09 1.866666e-10

Cumulative Proportion 1.000000e+00 1.000000e+00

>

> loadings(prinhsia)

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10

Birwt 0.105 0.319 -0.221 -0.501 -0.129 0.751

Weanwt -0.372 -0.192 0.106 0.659 -0.610

Crimp -0.320 -0.544 -0.260 -0.460 -0.512 -0.205

Densty

Diamtr 0.302 0.192 -0.228 0.251 0.506 -0.289 -0.613 0.149

Yield 0.334 -0.285 -0.127 -0.109 -0.249 0.362 -0.436 -0.616

Bodywt -0.334 -0.598 -0.339 -0.257 0.205 -0.201 0.257 0.437

Wrinkl 0.592 -0.542 -0.516 -0.184 0.191

Length 0.512 -0.296 0.211 0.243 -0.243 0.512 0.396 0.133 -0.213

Flcwt 0.525 -0.319 0.191 -0.325 0.516 -0.358 -0.161 0.233

Woolwt 0.495 -0.184 0.196 -0.506 -0.524 -0.124 -0.361

Comp.11

Birwt

Weanwt

Crimp

Densty 0.996

Diamtr

Yield

Bodywt

Wrinkl

Length

Flcwt

Woolwt

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9

SS loadings 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Proportion Var 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
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Cumulative Var 0.091 0.182 0.273 0.364 0.455 0.545 0.636 0.727 0.818

Comp.10 Comp.11

SS loadings 1.000 1.000

Proportion Var 0.091 0.091

Cumulative Var 0.909 1.000

>

Then construct the HGs(Ma) matrix and do its principal component analysis

> covhsma <- pdiag %*% covgsma %*% pdiag

> dimnames(covhsma) <- dimnames(covgsma)

> covhsma

Birwt Weanwt Crimp Densty Diamtr

Birwt 0.267363026 0.137241387 0.0340141735 0.0224145197 -0.0027497253

Weanwt 0.137241387 0.206176335 -0.0025871132 0.0269415586 -0.0070518859

Crimp 0.034014174 -0.002587113 0.0366677689 0.0007726814 -0.0052437348

Densty 0.022414520 0.026941559 0.0007726814 0.0046208666 0.0007816775

Diamtr -0.002749725 -0.007051886 -0.0052437348 0.0007816775 0.0071639766

Yield -0.050803949 -0.026813088 -0.0219610494 -0.0094145295 -0.0043997441

Bodywt 0.073497448 0.099223370 0.0104932768 0.0117539224 -0.0102842487

Wrinkl 0.049807133 0.039388864 0.0143645776 0.0057306131 -0.0013607385

Length -0.011232973 -0.012591844 -0.0191543654 -0.0045433551 0.0030477222

Flcwt 0.031466941 0.060447774 0.0166763649 0.0026909844 -0.0087321184

Woolwt -0.006234029 0.029886280 0.0171577640 -0.0027997247 -0.0108419599

Yield Bodywt Wrinkl Length Flcwt

Birwt -0.050803949 0.07349745 0.049807133 -0.011232973 0.031466941

Weanwt -0.026813088 0.09922337 0.039388864 -0.012591844 0.060447774

Crimp -0.021961049 0.01049328 0.014364578 -0.019154365 0.016676365

Densty -0.009414529 0.01175392 0.005730613 -0.004543355 0.002690984

Diamtr -0.004399744 -0.01028425 -0.001360738 0.003047722 -0.008732118

Yield 0.043100910 -0.01277511 -0.014046311 0.026590788 0.010112202

Bodywt -0.012775111 0.05591314 0.022014273 -0.011791399 0.038009444

Wrinkl -0.014046311 0.02201427 0.015504705 -0.006105715 0.020147123

Length 0.026590788 -0.01179140 -0.006105715 0.026340875 0.002615934

Flcwt 0.010112202 0.03800944 0.020147123 0.002615934 0.075838894

Woolwt 0.020990923 0.02575638 0.013663099 0.006666227 0.071446316

Woolwt

Birwt -0.006234029

Weanwt 0.029886280

Crimp 0.017157764

Densty -0.002799725

Diamtr -0.010841960

Yield 0.020990923

Bodywt 0.025756376

Wrinkl 0.013663099

Length 0.006666227

Flcwt 0.071446316

Woolwt 0.076916059

>

>

> covhsma.list <- list(cov=covhsma, center=rep(0,11), n.obs=2599)

> prinhsma <- princomp(covmat=covhsma.list)

> summary(prinhsma)

Importance of components:
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Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard deviation 0.6794515 0.4198404 0.3065772 0.25493113 0.12124967

Proportion of Variance 0.5660258 0.2161165 0.1152388 0.07968288 0.01802521

Cumulative Proportion 0.5660258 0.7821423 0.8973811 0.97706403 0.99508924

Comp.6 Comp.7 Comp.8 Comp.9

Standard deviation 0.063285913 3.249387e-04 1.407503e-04 9.169898e-05

Proportion of Variance 0.004910587 1.294560e-07 2.428947e-08 1.030975e-08

Cumulative Proportion 0.999999831 1.000000e+00 1.000000e+00 1.000000e+00

Comp.10 Comp.11

Standard deviation 6.037734e-05 2.042471e-05

Proportion of Variance 4.469585e-09 5.114829e-10

Cumulative Proportion 1.000000e+00 1.000000e+00

>

> loadings(prinhsma)

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10

Birwt -0.667 -0.470 0.371 -0.390 0.139 0.148

Weanwt -0.588 0.240 -0.612 0.105 0.114 -0.121 0.191 0.354

Crimp 0.477 0.412 -0.138 -0.389 -0.301 -0.308 0.439 0.208

Densty 0.122

Diamtr 0.602 0.105 0.597 -0.508

Yield 0.133 0.270 -0.544 -0.424 -0.113 0.292 0.540 0.114

Bodywt -0.310 0.167 -0.135 0.147 -0.490 -0.105 -0.129 -0.745

Wrinkl -0.163 0.119 0.196 -0.436 -0.241 0.797 -0.167

Length -0.577 0.221 -0.540 -0.277 -0.409 -0.260

Flcwt -0.204 0.513 0.290 0.281 0.528 -0.490 -0.101

Woolwt 0.585 0.360 -0.206 0.685

Comp.11

Birwt

Weanwt -0.116

Crimp

Densty 0.976

Diamtr

Yield 0.169

Bodywt

Wrinkl

Length

Flcwt

Woolwt

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9

SS loadings 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Proportion Var 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091

Cumulative Var 0.091 0.182 0.273 0.364 0.455 0.545 0.636 0.727 0.818

Comp.10 Comp.11

SS loadings 1.000 1.000

Proportion Var 0.091 0.091

Cumulative Var 0.909 1.000

>

Now we are ready to interpret these analyses. First some general observations. The first principal com-
ponent of an H matrix defines the direction in 11-dimensional space in which it is easiest to achieve genetic

128



change by selection. The last (11th in this case) principal component defines the direction in which it is most
difficult to achieve genetic change by selection. All of the significant components, that is those which explain
5 percent or more of the variance, define directions in which it is possible to achieve genetic change by selec-
tion. The remaining non-significant components define directions in which it is very difficult or impossible to
achieve genetic change by selection. Thus the insignificant components are also of interest. In the present case
the structure of the genetic correlation matrices constrains the potential for genetic change quite dramatically.
In all three cases (G(Ia), Gs(Ia), and Gs(Ma)) there are only 4 to 6 significant components - we have 11 traits,
but genetic variation is confined to a 4 to 6 dimensional subspace.

A word of caution. This does not mean that we can not change individual traits. There has been ample
demonstration of that in single-trait selection experiments (Turner, Brooker, and Dolling(1970) [28]). Nor does
it mean that the 4 to 6 principal components are the only possible directions of change, there can be change in
directions indicated by any mixture of the significant components. What it means is that we can not change
certain combinations of traits. Multi-trait selection is known to be more difficult than single-trait selection.
Adverse genetic correlations may be due to the sheer physical impossibility of some trait combinations or
they may be due to more subtle biological limitations, or they may be simply a genetic phenomenon such as
pleiotropy or linkage.

Another word of caution. The relationship between traits may be nonlinear. For exampls

Woolwt = Flcwt ×Yield

For this reason a precise interpretation of the numerical values of the loading coefficients for any principal
component is not advisable. Each component is a linear function of the traits, but it may be approximating a
set of relationships which are not linear.

Now let us look specifically at the individual autosomal additive genetic variation , that is the principal
components of matrix covhia. There are 6 significant principal components but the first 4 are most notable.
We attempt to interpret their loadings as follows

Comp.1 Large sheep with coarse, long fibres and low wrinkle. And the opposite.

Comp.2 Coarse fibred sheep with short fibres and high wrinkle. And the opposite

Comp.3 Fine fibred sheep with low yield (lots of grease), low Woolwt, low wrinkle and high crimp frequency.
And the opposite.

Comp.4 Small sheep with poor growth. And the opposite.

Among the insignificant components we might note that Comp.11 defines the impossibility of changing
Flcwt and Woolwt in opposite directions, and also that Comp.9 and Comp.10 define the virtial impossibility
of changing Densty and Diamtr in opposite directions. The latter case has been extensively studied and it is
understood that Densty and Diamtr have a common cause because they are the outcome of a development
system in which the number of follicle papilla cells determines both the number and size of follicles and fibres
(Moore and Jackson (1984) [21], Moore, Jackson, and Lax (1989) [22]).

None of the above principal components put much emphasis on Woolwt - for the simple reason that it has
a lower individual additive heritability than most other traits.

We now look at individual sexlinked additive genetic variation. There are only 3 significant principal
components of matrix covhsia. We interpret their loadings as follows

Comp.1 High Woolwt and long coarse fibres. And the opposite.

Comp.2 Large at birth but do not grow, low crimp and short coarse fibres. And the opposite.

Comp.3 Small sheep with low growth and not wrinkled. And the opposite.

Comp.3 is similar to Comp.4 of the individual autosomal additive genetic variance.
We also look at maternal sexlinked additive genetic variation. There are 4 significant principal components

of matrix covhsma. We interpret their loadings as follows
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Comp.1 Small sheep with low growth and not wrinkled. And the opposite.

Comp.2 Small at birth but grow large and high Woolwt. And the opposite.

Comp.3 Small at birth but grow. High crimp and Woolwt. And the opposite.

Comp.4 Low yield, short fibres, high crimp. And the opposite

Again Comp.1 is similar to Comp.3 of covhsia and to Comp.4 of covhia.
The most striking thing across all three analyses is the close tie between body size and growth, on one

hand, and wool length growth rate, Crimp and Woolwt, on the other. The only suggestion of independence is
around Densty and Diamtr and only for individual additive variation.

It is tempting to interpret the independence of these principal components, as suggesting that there are
independent sets of genes affecting variation in each orthogonal direction. I have never seen a proof that such
a conclusion can be drawn. Certainly the G(Ia), Gs(Ia), and Gs(Ma) effects are independent - they are defined
that way. But the principal components within each of these may or may not indicate separate gene effects or
separate parts of the genome.

There remains the problem of response to selection. If we select for Woolwt, which of the above com-
ponents change, and what does that mean? If we select for the commercially desirable combination of high
Woolwt and low Diamtr, which components change? If we favour large sheep, what are the consequences
for wool traits? We have to leave these questions until gresponse() function has been extended to deal with
sexlinked variation.

9.9 Conclusions
We have shown that genetic variation in Woolwt comes from three sources, individual autosomal additive
gene effects, individual sexlinked additive gene effects, an maternal sexlinked additive gene effects. The
heritabilities of Woolwt from these three sources sum to the heritability of 0.40 found in published work.
This is explained by published estimates being largely based on dam-daughter analyses which would include
sexlinked genetic variation.

The genetic correlations among the 11 traits studied severely constrain the directions in which genetic
improvement could be achieved, to 4 to 6 dimensions in the 11 dimensional trait space. One dimension,
which was identified as a sort of small,low growth to large, high growth axis, was affected by all 3 types of
gene effects, individual autosomal additive, individual sexlinked additive, and maternal sexlinked additive.
Another dimension, associated with changing Densty and Diamtr in opposite directions, was only affected by
individual autosomal additive gene effects. The ways in which correlations constrain genetic improvement are
given by the nonsignificant dimensions of variation.

There is some concern that we should have looked at whether the genetic parameters estimated here are
sex-specific. That is, are the genetic parameters different for rams and ewes and are the cross-sex genetic
corelations different from unity? Work extending dmm() to allow sex-specific analyses has been completed
and is described in a separate document dmmClassSpecific.pdf [13].

There have been some problems, but we have done enough to show that dmm() can be useful for quan-
titative genetic analysis of a sizeable multi-trait research dataset with a multi-generation pedigree and some
significant fixed effects.
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10 Wish list
Further development of dmm() and associated functions is likely. Some areas requiring attention are

• Using an error term other than ’Residual’ from the monadic model to form the dyadic model equations
and consequent variance component estimates. This would allow repeated measures models

• Extending the gresponse() function to deal with individual sexlinked and maternal sexlinked genetic
variation. An initial (somewhat experimental) attempt at this has been made in release (dmm_1.6-2)

• Exploration of other regression techniques for solving the dyadic model equations. On my list are
bootstrap methods and total least squares. The latter would allow for errors in the pedigree information
as well as in the traits observed

• Allowing variance components to be split among levels of a fixed effect. For example with Sex as
a fixed effect it is possible to form male-male, female-female, female-male, and male-female dyads
and do their dyadic model equations separately thus leading to sex-specific variance components and
genetic parameters. An initial attampt at this has been made in release (dmm_2.1-1). This work is now
completed. dmm can do class-specific varaince component estimates.

• Do something about the very restrictive array size requirements with options fixedgls=T and dmeopt="pcr"

• Do something about the excessive memory requirtements of option dmeopt="fgls" which leads to REML
estimates of variance components. The Gremlin R package [33] is most suitable for obtaining REML
estimates of variance components.

• There has been no reference to the excellent R package pedigreemm which implements an entirely
different approach to analysis of mixed model pedigree data. Some comparison of methods and results
would be desirable.

• Look at sparse matrix techniques, possibly with the Matrix package

Suggestions and criticisms are welcome. The work started out of a need to analyse certain types of sheep
breeding research data, and grew into an exploration of the feasibility of directly solving the dyadic model
equations. With this narrow base, it could benefit from some input form other areas.
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