CONTRIBUTED RESEARCH ARTICLE 1

MultiJoin: An R package for efficiently

joining files on disk
by Markus Loecher

Abstract Database joins of multiple tables on common keys are a powerful paradigm. In the absence
of a database or for very large tables we propose an efficient disk based merge based on the Unix
join utility. A combination of file compression, named pipes and regular Unix pipes allows the user
simulateneous join queries on multiple tables. The R package MultiJoin provides easy-to-use wrapper
functions which launch such compound join queries.

Review of Unix join

The Unix join utility scans two files at once and for each pair of input lines with identical join fields,
writes a merged line to standard output. The join field can be specified and one of the files can b
replaced by standard input. Note that both files must be sorted on the join fields.

We distinguish between left joins which print only lines with common keys ("intersection") and full
joins where every unique key value produces a line ("union"). The "-a" option activates the full join by
also printing unpairable lines We present two use cases:

1. Multivariate spatiotemporal data such as weather recordings. Assume one file per hour contain-
ing M measured variables such as temperature, air pressure, precipitation, etc. (columns) for N
locations (rows). We assume the latter to be the key.

2. Word count files from Google Ngram
3. User demographics

The FullJoin function

The main functionality of the package is provided by the flexible Fulljoin function which can handle
compressed files as well as desired manipulations during the join such as selecting columns or rows,
sorting, applying regular expressions, etc. For the following examples, we adopt simple file names
such as ftrl.txt, ftr2.txt... If the files on disk do not have to be uncompressed or filtered in any way the
following call performs a full join on 4 files each of which contains 3 columns, the first of which is the

key.
FullJoin(files=paste@("ftr",1:4,".txt"), NumFields = rep(3, 4),missingValue="0", suffix = "")
producing
join -al1-a2-0"01.21.32.22.3"-e0-11-21 ftr1.txt ftr2.txt
| join -a1-a2-0"01.21.31.41.52.22.3" -e 0 -11-21- ftr3.txt
| join -a1-a2-0"01.21.31.41.51.61.72.22.3" -e @ -11-21- ftr4.txt

The next example illustrates how named pipes (FIFOs) can be used to uncompress and filter files
before sending them to the join command chain. Here, we only keep columns 1 (the key) and 3:

FullJoin(paste@("ftr”,1:3,".txt.gz"), mycat = "gunzip -cf ", filterStr = " | cut -f1,3", suffix = "")

producing

gunzip -cf ./ftrl.txt.gz | cut -f1,3 > /tmp/fifol &

gunzip -cf ./ftr2.txt.gz | cut -f1,3 > /tmp/fifo2 &

gunzip -cf ./ftr3.txt.gz | cut -f1,3 > /tmp/fifo3 &

join -a1-a2-0"01.22.2" -e NA-11-21 /tmp/fifol /tmp/fifo2
| join -a1-a2-0"01.21.32.2" -eNA-11-21- /tmp/fifo3

Note the default use of the -e NA option which specifies NA to be the filling character for missing
values. Specifying the argument FullJoin(...,missingValue="0") changed that to a zero in the
previous example. We can also add a suffix which would for example compress the result from the
compound join and write to a file.

FullJoin(pasteo("ftr",1:3,".txt.gz"), mycat = "gunzip -cf ", filterStr = " | cut -f1,3", suffix =" | gzip :

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 2

Alternatively, we can directly read the output into a data structure within R.

x= FullJoin(paste@("ftr"”,1:3,".txt.gz"), mycat = "gunzip -cf ", filterStr = " | cut -f1,3", suffix =" ")
Benchmarks
We can conveniently benchmark the function execution by adding the prefix = "time" option to the

call or -alternatively- use the R function proc. time(). Figure 1 shows the results for joining a varying

20000 60000 100000
[Ll 11

50 100
] ICens o[250
- — 200
— — 150
— — 100
© — — 50
3
o 10 20
«
o 250 — —
200 — —
150 — —
100 — . —
0 Jeee o o | ~

I I I I I [T I I I I
20000 60000 100000

r

Figure 1: CPU time taken to join 10/20/50/100 compressed files, respectively, as a function of the
number of rows. The number of columns are 6 for each file and the elapsed time is measured in
seconds.

number of compressed files and writing the output to a temporary file. Both slope and intercept seem
to depend on the number of files.

Summary

For situations where data are accesssed infrequently and hence typically stored on disk, the R package
MultiJoin provides easy-to-use wrapper functions which launch compound join queries. We utilize
the efficiency of the Unix join command and the convenience of Unix pipes and FIFOs to chain the
intermediate outputs together. We hope to fill a niche where users both (i) abstain from unsing a full
database solution and (ii) it is not feasible to read the data into R and then join with e.g. the R package
data.table.

Markus Loecher

Berlin School of Economics and Law
Badensche Str. 52, 10825 Berlin
Germany
mloecher@hwr-berlin.de

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

mailto:mloecher@hwr-berlin.de

	MultiJoin: An R package for efficiently joining files on disk
	Review of Unix join
	The FullJoin function
	Benchmarks
	Summary

