Visualizing Big Data Outliers through Distributed Aggregation

Leland Wilkinson

Fig. 1. Outliers revealed in a box plot [72] and letter values box plot [36]. These plots are based on 100,000 values sampled from

a Gaussian (Standard Normal) distribution. By definition, the data contain no probable outliers, yet the ordinary box plot shows
thousands of outliers. This example illustrates why ordinary box plots cannot be used to discover probable outliers.

Abstract— Visualizing outliers in massive datasets requires statistical pre-processing in order to reduce the scale of the problem
to a size amenable to rendering systems like D3, Plotly or analytic systems like R or SAS. This paper presents a new algorithm,
called hdoutliers, for detecting multidimensional outliers. It is unique for a) dealing with a mixture of categorical and continuous
variables, b) dealing with big-p (many columns of data), c) dealing with big-n (many rows of data), d) dealing with outliers that mask
other outliers, and e) dealing consistently with unidimensional and multidimensional datasets. Unlike ad hoc methods found in many
machine learning papers, hdoutliers is based on a distributional model that allows outliers to be tagged with a probability. This

critical feature reduces the likelihood of false discoveries.
Index Terms—Outliers, Anomalies.

1 INTRODUCTION

Barnett and Lewis [6] define an outlier in a set of data as “an observa-
tion (or subset of observations) which appears to be inconsistent with
the remainder of that set of data.” They go on to explain that their defi-
nition rests on the assumption that the data constitute a random sample
from a population and that outliers can be represented as points in a
vector space of random variables. This restriction, shared in this pa-
per, allows us to assign a probability to our judgments that a point
or points are outliers. It excludes other types of anomalies (negative
counts, pregnant males) that can appear in a dataset and are detectable
through logic or knowledge of the world. All outliers are anomalies,
but some anomalies are not outliers.

This paper is concerned with the interplay of visual methods and
outlier detection methods. It is not an attempt to survey the vast field
of outlier detection or to cover the full range of currently available
methods. For general introductions, see the references at the beginning
of the Related Work section below.

1.1 Contributions

Our contributions in this paper are:

e We demonstrate why the classical definition of an outlier (a large
distance of a point from a central location estimate (mean, me-
dian, etc.) is unnecessarily restrictive and often involves a circu-
larity.

e We introduce a new algorithm, called hdoutliers, for multidi-
mensional outliers on n rows by p columns of data that addresses
the curse of dimensionality (large p), scalability (large n), cate-
gorical variables, and non-Normal distributions. This algorithm
is designed to be paired with visualization methods that can help
an analyst explore unusual features in data.
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e We demonstrate why other visual analytic tools cannot reliably
be used to detect multidimensional outliers.

e We introduce some novel applications of outlier detection and
accompanying visualizations based on hdoutliers.

2 RELATED WORK

There are several excellent books on outliers written by statisticians
[6, 31, 64, 71]. Statisticians have also written survey papers [38, 3].
Computer scientists have written books and papers on this topic as
well [1, 14, 35]. The latter include surveys of the statistical sources.

2.1 Univariate Outliers

The detection of outliers in the observed distribution of a single vari-
able spans the entire history of outlier detection [70, 6]. It spans this
history not only because it is the simplest formulation of the problem,
but also because it is deceptively simple.

2.1.1

The word outlier implies lying at an extreme end of a set of ordered
values — far away from the center of those values. The modern history
of outlier detection emerged with methods that depend on a measure
of centrality and a distance from that measure of centrality. As early
as the 1860’s, Chauvenet (cited in [6]) judged an observation to be an
outlier if it lies outside the lower or upper 1/(4n) points of the Normal
distribution. Barnett and Lewis [6] document many other early rules
that depend on the Normal distribution but fail to distinguish between
population and sample variance.

Grubbs [28], in contrast, based his rule on the sample moments of
the Normal:

The Distance from the Center Rule

max |x; — %
_ 1<i<n
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where X and s are the sample mean and standard deviation, respec-
tively.

Grubbs referenced G against the ¢ distribution in order to spot an
upper or lower outlier:



tgt/(Zn),n72

2
n=2+15 00y n2

If one knows that the values on a variable are sampled randomly
from a Normal distribution and if the estimates of location and scale
are unbiased and if one wishes to detect only the largest absolute out-
lier, it is a valid test.

Unfortunately, the usual sample estimates of the mean and stan-
dard deviation are not robust against outliers. So we have a circularity
problem. We assume a null distribution (say, the Normal), estimate its
parameters, and then use those estimates to test whether a point could
have plausibly come from that distribution. But if our alternative hy-
pothesis is that it does not (the usual case), then the outlier should
not be included in the estimation. Barnett and Lewis [6] discuss this
problem in more detail, where they distinguish inclusive and exclusive
methods. They, as well as [64], also discuss robust estimation methods
for overcoming this circularity problem.

Barnett and Lewis discuss other detection methods for non-Normal
distributions. The same principals apply in these cases, namely, that
the sample is random, the population distributions are known and that
the parameter estimates are unbiased.

2.1.2 The Box Plot Rule

A box-plot graphically depicts a batch of data using a few summary
statistics called letter values [72, 25]. The letter values in Tukey’s
original definition are the median and the hinges (medians of the
upper and lower halves of the data). The hinge values correspond
closely, but not necessarily, to the lower quartile (Q1) and the upper
quartile (Q3). Tukey called the difference between the hinges the
Hspread, which corresponds closely to the quantity Q3-Ql, or the
Inter Quartile Range (IQR). In Tukey’s version of the box-plot (see
the upper panel of Figure 1), a box is drawn to span the Hspread. The
median is marked inside the box. Whiskers extend from the edges of
the box to the farthest upper and lower data points (Adjacent values)
inside the so-called inner fences. The upper inner fence is the

upperhinge 1.5 x Hspread

and the lower inner fence is the

lowerhinge — 1.5 X Hspread

Any1 data point beyond the Adjacent values is plotted as an outlying
point.

Tukey designed the box plot (he called it a schematic plot) to be
drawn by hand on a small batch of numbers. The whiskers were de-
signed not to enable outlier detection, but to locate the display on
the interval that supports the bulk of the values. Consequently, he
chose the Hspread to correspond roughly to three standard deviations
on Normally distributed data. This choice led to two consequences:
1) it does not apply to skewed distributions, which constitute the in-
stance many advocates think is the best reason for using a box plot
in the first place, and 2) it does not include sample size in its deriva-
tion, which means that the box plot will falsely flag outliers on larger
samples. As Dawson [19] shows, “regardless of size, at least 30% of
samples drawn from a Normally-distributed population will have one
or more data flagged as outliers.” The top panel of Figure 1 illustrates
this problem for a sample of 100,000 Normally distributed numbers.
Thousands of points are denoted as outliers in the display.

To deal with the skewness problem, Hubert and Vandervieren [37]
and others have suggested modifying the fences rule by using a robust
estimate of skewness. By contrast, Tukey’s approach for this prob-
lem involved transforming the data through his ladder of powers [72]
before drawing the box plot.

IFew statistics packages produce box plots according to Tukey’s definition
[25]. Surprisingly, the boxplot function in the core R package does not, despite
its ancestry inside Tukey’s group at Bell Laboratories.

The Letter-Value-Box-Plot [36] was designed to deal with the sec-
ond problem. The authors compute additional letter values (splitting
the splits) until a statistical measure of fit is satisfied. Each letter-
value region is represented by a rectangle. The lower panel of Fig-
ure 1 shows the result. On the same 100,000 Normal variables, only
two points are identified as outliers.

2.1.3 The Gaps Rule

Suppose that we do not know the population distribution and suppose,
further, that our idea of outliers is that they do not belong to the gen-
erating distribution we suspect underlies our data. Figure 2 shows
two dotplots of batches of data that have the same mean and standard
deviation. Absent knowledge of the parametric distribution, we can-
not apply the usual outlier detection algorithms. Furthermore, we are
more inclined to say the largest point in the right dot plot is an outlier,
whereas the largest point in the left plot, having the same score, is not.

A simple example emphasizes this point. Suppose we give a test to
100 students and find the mean score is 50 and the standard deviation
is 5. Among these students, we find one perfect score of 100. The next
lower score is 65. We might be inclined to suspect the student with a
score of 100 is a genius or a cheat. And if there were three students
with perfect scores in this overall distribution, we might suspect cheat-
ing even more. On the other hand, if the perfect score is at the top of a
chain of scores spaced not more than 5 points apart, we might be less
suspicious. Classical outlier tests would not discriminate among these
possibilities.

These considerations and others led to a different criterion for dis-
covering outliers. Namely, we should look for gaps (spacings) be-
tween the ordered values rather than extremities. A consequence of
this point of view is that we can identify unusual scores in the middle
of distributions as well as in the extremes, as long as they are separated
from other scores by a large gap.

Dixon [20] headed in this direction by developing an outlier test
based on the gap between the largest point and the second largest point,
standardized by the range of scores. His test was originally based on a
Normal distribution, but in subsequent publications, he developed non-
parametric variations. Dixon tabulated percentage points for a range
of Q statistics.
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Tukey [72] considered the more general question of identifying
gaps anywhere in a batch of scores. Wainer and Schacht [75] adapted
Tukey’s gapping idea for a version of the test that weighted extreme
values more than middle ones. They derived an approximate z score
that could be used to test the significance of gaps.

Fig. 2. Dot plots of small batches of data with comparable means and
standard deviations.

Burridge and Taylor [12] developed an outlier test based on the
extreme-value distribution of gaps between points sampled from the
Exponential family of distributions:

x0 —a(0)
b(¢)

where x is a scalar or vector, 0 is a scalar or vector of parameters, @
is a scale parameter, and a(.),b(.),c(.) are functions. This family of
mathematical distributions is quite large (including the Normal, Expo-
nential, Gamma, Beta, Bernoulli, Poisson, and many others).

f(xi:6;,¢) =exp +c(x,9)



2.2 Multivariate Outliers
This section covers methods explicitly designed for higher-
dimensional outlier detection.
2.21

The squared Mahalanobis distance (D?) of a multidimensional point x
from the centroid of a multivariate Normal distribution described by
covariance matrix ¥ and centroid U is

Mahalanobis Distance

D = (x—p)T (x—p)

Figure 3 shows how this works in two dimensions. The left panel
shows a bivariate Normal distribution with level curves inscribed at
different densities. The right panel shows the same level curves as
horizontal slices through this mountain. Each is an ellipse. Distance
to the centroid of the ellipses is measured differently for different di-
rections. The weights are determined by the covariance matrix X. If
¥ is an identity matrix, then D? is equivalent to squared Euclidean
distance.

Fig. 3. Mahalanobis Distance. The left panel shows a bivariate Normal
distribution. The right shows level curves for that distribution. Each
curve corresponds to a value of D?.

With real data, we substitute sample estimates of ( and X in the Ma-
halanobis formula. If the assumptions of the test are true and our esti-
mates are unbiased, the squared Mahalanobis distance is a chi-square
variate with p degrees of freedom. As with univariate outlier tests
based on a Normality assumption, this test is valid only if the assump-
tion of multivariate Normality is met. Unfortunately, this is seldom
true for real data and, furthermore, estimates of the covariance matrix
and centroid are far from robust. Consequently, this outlier test has
limited applicability.

Rousseeuw and Van Zomeren [63] introduce a robust Mahalanobis
Distance estimator that can be used to overcome some of these prob-
lems. Ram Gnanadesikan [26] discusses applications of Gamma prob-
ability plots to these multivariate problems (Gamma is a generalization
of the chi-square distribution). They can be interpreted similarly to the
way univariate probability plots are interpreted.

2.2.2 Multivariate Gap Tests

Multivariate data do not have a simple ordering for computing gaps
between adjacent points. There have been several attempts at getting
around this problem. Rohlf [60] proposed using the edge lengths of
the geometric minimum spanning tree (MST) as a single distribution
measure. Assuming these edges approximate a gamma distribution,
one could construct a gamma probability plot on them or examine the
upper tail for judgments on outliers. There are problems with this
method, however, when variates are correlated [13]. Similar methods
based on the MST have been proposed [52, 57], but they suffer from
the same problem.

2.2.3 Clustering

A popular multivariate outlier detection method has been to cluster the
data and then look for any points that are far from their nearest cluster

centroids [83, 39, 56, 40, 59]. This method works reasonably well for
moderate-size datasets with a few singleton outliers. Most clustering
algorithms do not scale well to larger datasets, however.

A related approach, called Local Outlier Factor (LOF) [11], is sim-
ilar to density-based clustering [30]. Like DBSCAN clustering [22], it
is highly sensitive to the choice of input parameter values.

Most clustering methods are not based on a probability model (see
[24] for an exception) so they are susceptible to false negatives and
false positives.

3 A NEW MULTIVARIATE OUTLIER ALGORITHM

The new algorithm hdoutliers is designed to meet several criteria
uniquely at once:

e It allows us to identify outliers in a mixture of categorical and
continuous variables.

o [t deals with the curse of dimensionality by exploiting random
projections for big-p (number of dimensions).

e It deals with big-n (number of points) by exploiting a one-pass
algorithm to aggregate the data.

e It deals with the problem of masking [6], in which clusters of
outlying points can elude detection by traditional methods.

e [t works for both single-dimensional and multi-dimensional data.

hdoutliers is introduced in Section 3.1 and explained in Section 3.2.

3.1 The Algorithm

1. If there are any categorical variables in the dataset, convert each
categorical variable to a continuous variable by using Correspon-
dence Analysis [27].

2. If there are more than 10,000 columns, use random projections
to reduce the number of columns to p = 4logn/(e%/2 — €3/3),
where € is the error bound on squared distances.

hed

Normalize the columns of the resulting n by p matrix X.

>

Let row(i) be the ith row of X.
5. Let § =.1/(logn)'/P.

6. Initialize exemplars, a list of exemplars with initial entry
[row(1)].

7. Initialize members, a list of lists with initial entry [1]; each exem-
plar will eventually have its own list of affiliated member indices.

8. Now do one pass through X:

forall the row(i), i=1,...,n do
d = distance to closest exemplar, found in exemplars
if d < O then
| add i to members list associated with closest exemplar
else
add row(i) to exemplars
add new list to members, initialized with [i]
end
end

9. Now compute nearest-neighbor distances between all pairs of ex-
emplars in the exemplars list.

10. Fit an Exponential distribution to the upper tail of the nearest-
neighbor distances and compute the upper 1 — o point of the
fitted cumulative distribution function (CDF).

11. For any exemplar that is significantly far from all the other ex-
emplars based on this cutpoint, flag all entries of members corre-
sponding to exemplar as outliers.



3.2 Comments on the Algorithm

1. Correspondence Analysis (CA) begins by representing a cate-
gorical variable with a set of dummy codes, one code (1 or 0)
for each category. These codes comprise a matrix of 1’s and 0’s
with as many columns as there are categories on that variable.
We then compute a principal components decomposition of the
covariance matrix of the dummy codes. This analysis is done
separately for each of k categorical variables in a dataset. CA
scores on the rows are computed on each categorical variable by
multiplying the dummy codes on that row’s variable times the
eigenvectors of the decomposition for that variable. Comput-
ing the decomposition separately for each categorical variable
is equivalent to doing a multiple correspondence analysis sep-
arately for each variable instead of pooling all the categorical
variable dummy codes into one matrix. This application of CA
to deal with visualization of nomial data was first presented in
[61].

2. Euclidean distances in high-dimensional space converge toward
a single value [8, 33]. This can cause problems with nearest-
neighbor calculations. Consequently, we exploit the Johnson-
Lindenstrauss lemma [42] to produce a lower dimensional space
for our calculations. This lemma states that if a metric on X re-
sults from an embedding of X into a Euclidean space, then X
can be embedded in R” with distortion less than 1+ &, where
p ~ O(£?logn). Remarkably, this embedding is achieved by
projecting onto a p-dimensional subspace using random Gaus-
sian coefficients. Because our algorithm depends only on a sim-
ilarity transformation of Euclidean distances, we can logarith-
mically reduce the complexity of the problem through random
projections and avoid the curse of dimensionality. The number
of projected columns based on the formula in this step was based
on € = .2 for the analyses in this paper. The value 10,000 is the
lower limit for the formula’s effectiveness in reducing the num-
ber of dimensions when € = .2.

3. X is now bounded by the unit (hyper) cube. Normalization is
commonly done in clustering [68] and outlier detection [11, 48].
This prevents variables with large variances having dispropor-
tional influence on Euclidean distances. See [18] for an il-
lustration of the effect of transformations on the distribution
of point sets. When variables are on a common scale (as in
the Fisher/Anderson Iris dataset), normalization is generally not
needed.

4. A row represents a p-dimensional vector in a finite vector space.

5. The value of § is designed to be well below the expected value
of the distances between n(n — 1)/2 pairs of points distributed
randomly in a p dimensional unit hypercube [32]. This § value
defines the boundary of an exemplar neighborhood; it is the ra-
dius of each ball.

6. The exemplars list contains a list of row values representing
points within an exemplar neighborhood..

7. The members list of lists contains one list of indices for each
exemplar pointing to members of that exemplar’s neighborhood.

8. The Leader algorithm [30] in this step creates exemplar-
neighborhoods in one pass through the data. It is equivalent to
centering balls in p dimensional space on points in the dataset
that are considered to be exemplars. Unlike k-means clustering,
the Leader algorithm 1) centers balls on actual data points rather
than on centroids of clusters. 2) constrains every ball to the same
radius rather than allowing them to have different diameters, and
3) involves only one pass through the data rather than iterating
to convergence via multiple passes, and 4) produces thousands of
balls rather than a few clusters. In rare instances, the resulting ex-
emplars and members can be dependent on the order of the data,

but not enough to affect the identification of outliers because of
the large number of exemplars produced. We are characterizing
a high-dimensional density by covering it with many small balls.
Even relatively tight clusters produced by a clustering algorithm
will be chopped into pieces by the Leader algorithm.

9. The number of exemplars resulting from & applied even to large
numbers of data points is small enough to allow the simple brute-
force algorithm for finding nearest neighbors.

10. We use a modification of the Burridge and Taylor [12] algorithm
due to Schwarz [67]. For all examples in this paper, & (the criti-
cal value) was set to .05.

11. Flagging all members of an outlying exemplar-neighborhood
means that this algorithm can identify outlying sets of points as
well as outlying singletons.

3.3 Distributed Computation

The hdoutliers algorithm is amenable to distributed computation
because the dataset can be mapped into separate blocks and each block
can be processed separately before merging results. The final reduc-
ing step is a straightforward merging of exemplars and their associated
members across blocks. The H20.ai open-source software [69] imple-
ments this algorithm. It reduces over 100 million rows of data to 5,000
rows of aggregated data in less than 20 seconds.

3.4 Validation

We validate hdoutliers by examining its performance with regard to
1) false positives and 2) false negatives. If the claims for the algorithm
are valid, then we should expect it 1) to find outliers in random data not
more than 100 percent of the time and 2) not to miss outliers when
they are truly due to mixtures of distributions or anomalous instances.

3.4.1

We perform these tests by running the algorithm many times on ran-
dom data. If the algorithm performs as claimed, then it should not
false alarm more frequently than we expect.

False Positives

e Table 1 contains results of a simulation using random distribu-
tions. The entries are based on 1,000 runs of hdoutliers on
Normally distributed variables with ¢ (the critical value) set to
.05. The entries show that hdoutliers is generally conserva-
tive, meaning its false alarm rate does not exceed .05.

e The results were similar for random Exponential and Uniform
variables.

Table 1. Empirical level of hdoutliers test based on null model with
Gaussian variables and critical value a = .05.

p=1 p=5 p=10 p=100
n=100 011 .040 .018 .012
n=500 015 .035 .027 .020
n=1000 .017 .045 .027 .024

3.4.2 False Negatives

We perform these tests by generating data that contain known outliers.
We do this for several different density configurations.

e Figure 4 is based on the dataset in Figure 2. The hdoutliers
identifies the outlier in the right dot plot but finds none in the left.

e Figure 5 shows that hdoutliers correctly identifies the inlier in
the center of both one-dimensional and two-dimensional config-
urations.



e Table 2 shows that hdoutliers correctly identifies the outlier
in a table defined by two categorical variables. The data con-
sist of two columns of strings, one for {A,B,C,W} and one for
{A,B,C.X}. There is only one row with the tuple (W,X). The
hdoutliers also handles mixtures of categorical and continu-
ous variables.

Fig. 5. Inlier datasets; hdoutliers correctly identifies the inliers.

Table 2. Crosstab with an outlier (red entry)

A B C X
A 100 0 0 0
B 0 100 0 0
C 0 0 100 O
w 0 0 0 1

3.4.3 Comparison with other Multidimensional Algorithms

The multidimensional outlier detection algorithm most widely cited
by computer scientists is based on a criterion called the Local Out-
lier Factor (LOF) [11]. Unfortunately, it cannot be compared directly
to hdoutliers because LOF is not grounded in probability theory.
For example, one analysis [84] involves an application of LOF to the
Anderson Iris dataset [2]. The analyst discovers five outliers. This
dataset is well-known to contain three bivariate Normal clusters. The
Mahalanobis distance measure admits no outliers for these clusters at
o = .05; neither does hdoutliers.

Nevertheless, hdoutliers should produce results similar to LOF
when both methods identify comparable numbers of outliers. Figure 6
is based on the dfki dataset in [23]. The left panel shows what the
authors consider to be outliers. The right panel shows the result of
implementing hdoutliers inside a k-means clustering. On each it-
eration of the k-means algorithm, we apply hdoutliers to the points
assigned to each cluster in order to determine if any points belonging
to their nearest cluster should be treated as outliers. The outliers are
then left out of the computation of the cluster centroids.

There are only slight differences between the two implementations.
Notably, hdoutliers refuses to flag several cases that are not signif-
icantly far from their cluster neighbors. While LOF does not scale to
massive datasets the way hdoutliers does, it is reassuring that both
produce similar results on smaller, low-dimensional datasets.
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Fig. 6. Test dataset from [23]. The left plot shows what the authors
consider to be outliers and the right plot is the result produced by
hdoutliers inside a k-means clustering. The outliers are colored red in
both plots.

Figure 7 is based on a dataset in [49]. The left panel shows outliers
flagged by LOF in red. The hdoutliers result, shown in the right
panel, contains no outliers. The sample size is too small to identify
outliers at o = .05.
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Fig. 7. Test dataset from [23]. The red points in the left panel were
identified by LOF as outliers. The right panel shows the result of an
analysis by the hdoutliers algorithm. With a = .05, no points were
identified as outliers. The probability model makes clear that no outliers
in this small batch of points can be identified with any reasonable level
of confidence.

4 VISUALIZATION

This section comprises an outlier tutorial. The main point in the fol-
lowing examples is that a statistical algorithm based on probability
theory is necessary for reliably discovering outliers but visualizations
are necessary for interpreting the results of these discoveries. These
visualizations are not novel. What is new is the application of a
probability-based algorithm to help manage the possibility of false dis-
coveries and, equally important, the failure to discover outliers when
they do exist. Several of the examples illustrate why visual analyt-
ics without such a statistical foundation can lead to serious mistakes.
Finally, by featurizing certain problems, we introduce novel applica-
tions of outlier detection in examples that are not usually considered
amenable to outlier detection.

4.1 Visualizing Unidimensional Outliers

For univariate outlier detection, histograms, probability plots [15], and
dot plots [76] are most useful. Figure 8 shows a dot plot and Normal
probability plot of residuals from a two-factor experiment. In prob-
ability plots, we look for major distortions from a straight line. A
probability plot can be constructed from any parametric distribution
for which a cumulative distribution function can be computed. They
are widely used in experimental design and analysis of residuals.
Even though these univariate displays can be helpful in exploratory
analysis to detect outliers, they do not yield the kind of risk estimate



that hdoutliers or the parametric methods described in the Related
Work sections provide. Without a risk estimate, the chance of false
discoveries is uncontrolled. In practical terms, we might see terror-
ists in groups where none exist. Thus, as in Figure 8, it is helpful to
highlight outliers using a statistical method like hdoutliers. This
approach will also help with false negatives, where significant outliers
may not be visually salient.

Expected Value for Normal Distribution
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Fig. 8. Dot plot and Normal probability plot of residuals from a two-factor
experiment. One lower outlier is evident.

4.2 Low-dimensional visualizations are not reliable ways
to discover high-dimensional outliers

There have been many outlier identification proposals based on look-
ing at axis-parallel views or low-dimensional projections (usually 2D)
that are presumed to reveal high-dimensional outliers (e.g., [44, 34,
43, 47]). This approach is risky. Figure 9 shows why. The data are
samples from a multivariate Normal distribution. The left panel plot
illustrates the problem for two dimensions. The figure incorporates a
95 percent joint confidence ellipse based on the sample distribution of
points. Two points are outside this ellipse. The red point on the left is
at the extreme of both marginal histograms. But the one on the right
is well inside both histograms. Examining the separate histograms
would fail to identify that point.

The right panel plot shows the situation for three dimensions. The
three marginal 2D plots are shown as projections onto the facets of the
3D cube. Each confidence ellipse is based on the pairwise plots. The
red outlying point in the joint distribution is inside all three marginal
ellipses. The 2D scatterplots fail to reveal the 3D outlier. The situation
gets even worse in higher dimensions.

Fig. 9. 2D (left) and 3D (right) joint outliers. The figures show why
lower-dimensional projections cannot be used to discern outliers.

Some have proposed projection methods for finding outliers (e.g.,
[10, 65, 50]). However, finding an outlier in a low-dimensional pro-
jection does not guarantee that it is an outlier in higher-dimensional
ambient space. Table 3 shows a simple example. When distances are
computed on the first two columns, the sixth point (row) has the largest
nearest-neighbor distance. In six dimensions, however, the most outly-
ing point is the fourth. The scatterplot matrix of these data (Figure 10)

is of little help for peeking into six dimensions. Non-axis-parallel pro-
jections (e.g., principal components [6], tSNE [74]) suffer from similar
problems. The sixth point is still the most outlying in a plot of the first
two principle components, for example. The situation only gets worse
with more variables

Table 3. Data for which outlier identification varies with dimensionality
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Fig. 10. Scatterplot matrix of data in Table 3.

Parallel coordinates, another 2D display, have been advocated for
the purpose of outlier detection [55, 4, 41]. Figure 11 shows why
this is risky. The figure shows parallel coordinates on four variables
from the Adult dataset in the UCI repository [46]. The hdoutliers
algorithm discovered two outliers out of 32,561 cases. The profiles
appear to run through the middle of the densities even though they are
multivariate outliers. The popular conception that outliers will appear
at the edges of parallel coordinates displays is false (for reasons similar
to those underlying Figure 9). As this example shows, real outliers
can sometimes appear to have typical profiles in a parallel coordinates
display. No amount of transparency or filtering to reduce overplotting
can ameliorate this problem unless the outliers are known in advance.

4.3 Using statistical algorithms to highlight outliers in vi-
sualizations

While visualizations alone cannot be used to detect multidimensional
outliers, they are invaluable for inspecting and understanding outliers
detected by statistical methods. This section covers a variety of visual-
izations that lend themselves to outlier description. In each case, there
is a productive partnership between the statistical outlier detector and
the visualization.



4.3.1 Parallel Coordinates

Although parallel coordinates are generally useless for discovering
outliers, they can be useful for inspecting outlier profiles detected by
a statistical algorithm. The two outliers highlighted in Figure 11 are
characterized by their profiles on each of the four variables. Even
though the individual values on each variable may seem typical, it can
be useful to consider the joint configurations represented by each pro-
file. On the four variables taken together, these two cases are indeed
outliers.

1 T I
age weight education hours

Fig. 11. Parallel coordinates plot of five variables from the Adult dataset
in the UCI data repository. The red profiles are multivariate outliers.
Even though the profiles are plotted with 50% opacity, the 32,561 pro-
files mask much of the detail. Using color [54] or stacking [17] would not
help to unmask the outliers.

4.3.2 Regression Residuals

The conventional statistical wisdom for dealing with outliers in a re-
gression context is to examine residuals using a variety of diagnostic
graphics and statistics [5, 7, 16]. Following this advice is critical be-
fore promoting any particular regression model on a dataset. It is a
necessary but not sufficient strategy, however. The reason is that some
outliers have a high influence on the regression and can pull the esti-
mates so close to them that they are masked.

Figure 12, derived from an example in [64], shows how this can
happen in even the simplest bivariate regression. The data are mea-
surements of light intensity and temperature of a sample of stars. In
the left panel, the ordinary least squares (OLS) regression line is pulled
down by the four outliers in the lower right corner, leaving a bad fit to
the bulk of the points. We would detect most, but not all, of the out-
liers in a residual plot. The right pane, based on a least median of
squares regression (LMS) [62], shows six red points as regression out-
liers. They are, in fact, dwarf stars.

There are numerous robust regression models, but LMS has the low-
est breakdown point against outliers [21]. Therefore, the most prudent
approach to regression modeling is to compute the fit both ways and
see if the regression coefficients and residual plots differ substantially.
If they do, then LMS should be the choice. Otherwise, the simpler
OLS model is preferable.

4.3.3 Time Series Outliers

Detecting time series outliers requires some pre-processing. In par-
ticular, we need to fit a time series model and then examine residu-
als. Fitting parametric models like ARIMA [9] can be useful for this
purpose, but appropriate model identification can be complicated. A
simpler approach is to fit a nonparametric smoother. The example in
Figure 13 was fit by a kernel smoother with a biweight function on the
running mean. The data are measurements of snowfall at a Greenland
weather station, used in [77]. The outliers (red dots) are presumably
due to malfunctions in the recording equipment.
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Fig. 12. Ordinary Least Squares regression (left panel) and Least Me-
dian of Squares (LMS) regression (right panel) on attributes of stars.
Data are from [64]

Computing outlying series for multiple time series is straightfor-
ward with the hdoutliers algorithm. We simply treat each series as
a row in the data matrix. For n series on p time points, we have a
p-dimensional outlier problem. Figure 14 shows series for 20 years
of the Bureau of Labor Statistics Unemployment data. The red series
clearly indicate the consequences of the Great Recession. This exam-
ple illustrates why a probability-based outlier method is so important.
We could rank the series by their average levels of unemployment or
use one of the other ad-hoc multidimensional outlier detectors, but we
would have no way of knowing how many at the top are significant
outliers. The Local Outlier Factor (LOF) algorithm [11], for exam-
ple, does not provide a probability-based cutoff for determining the
number of outliers.

3.0

24 -

SNOW _HI
o B
| |

o
=)
1
.

0.6 T . T T
0 2,000 4,000 6,000
Time

8,000

Fig. 13. Outlying measurements of snow cover at a Greenland weather
station.

4.3.4 |Ipsative Outliers

An ipsative outlier is a case that is an outlier with respect to itself.
That is, we standardize values within each case (row) and then look
for outliers in each standardized profile. Any profile with an outlier
identified by hdoutliers is considered noteworthy; in other words,
we can characterize a person simply by referring to his outliers. It is
easiest to understand this concept by examining a graphic. Figure 15
shows an outlying profile for a baseball player who is hit by pitches
more frequently than we would expect from looking at his other char-
acteristics. This player may not be hit by pitches significantly more
than other players, however. We are instead interested in a player with
a highly unusual profile that can be described simply by his outlier(s).
In every other respect, the player is not necessarily noteworthy. This
method should not be used, of course, unless there are enough features
to merit computing the statistical outlier model on a case.
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Fig. 14. US Unemployment series outliers. The shock and ensuing
recovery from the Great Recession is clearly indicated in the outliers.
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Fig. 15. One baseball player’s profile showing an outlier (hit by pitch)
that deviates significantly from his other features.

4.3.5 Text Outliers

An important application for multivariate outlier detection involves
document analysis. Given a collection of documents (Twitter mes-
sages, Wikipedia pages, emails, news pages, etc.), one might want to
discover any document that is an outlier with respect to the others. The
simplest approach to this problem is to use a bag-of-words model. We
collect all the words in the documents, stem them to resolve variants,
remove stopwords and punctuation, and then apply the tf-idf measure
[66] on the words within each document. The resulting vectors for
each document are then submitted to hdoutliers.

Figure 16 shows the results for an analysis of 21 novels from the
Guttenberg Web site [29]. This problem requires the use of random
projections. Before projection, there are 21,021 columns (tf-idf mea-
sures) in the dataset. After projection there are 653. Not surprisingly,
Ulysses stands out as an outlier. Distinctively, it contains numerous
neologisms.

Tristram Shandy was identified by hdoutliers as the second
largest, but not significant, outlier. It too contains numerous neolo-
gisms. These two novels lie outside most of the points in Figure 16.
Not all multivariate outliers will fall on the periphery of 2D projec-
tions, however, as we showed in Section 4.2.

Without the random projection stage of hdoutliers, these outliers
could not be recognized. The number of dimensions is far too large
for even distributed versions of LOF and other algorithms.
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Fig. 16. Document outliers. Nonmetric multidimensional scaling on ma-
trix of Spearman correlations computed on tfidf scores. The stress for
this solution is .163 and one document (Ulysses) is flagged as an outlier
by hdoutliers.

4.3.6 Graph Outliers

There are several possibilities related to finding outliers in graphs. One
popular application is the discovery of outliers among nodes of a net-
work graph. The best way to exploit hdoutliers in this context is
to featurize the nodes. Common candidates are Prominence, Tran-
sitivity (Watts-Strogatz Clustering Coefficient), Closeness Centrality,
Betweenness Centrality, Node Degree, Average Degree of Neighbors,
and Page Rank [53]. Figure 17 shows an example for the Les Miser-
ables dataset [45]. The nodes were featurized for Betweenness Cen-
trality in order to discover any extraordinarily influential characters.
Not surprisingly, Valjean is connected to significantly more characters
than anyone else in the book. Notice that Valjean’s node is not at the
periphery of the graph layout. His outlyingness is a consequence of his
centrality, which not surprisingly places him near the centroid of the
layout. Other graph theoretic measures could reveal outliers in other
nodes or edges of the graph.
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Fig. 17. Les Miserables characters network graph. Valjean is identified
as outlying on Betweenness Centrality.



An alternative application involves discovering outlying graphs in
a collection of graphs. For this problem, we need to find a way to
characterize a whole graph and to derive a distance measure that can
be fed to hdoutliers. This application depends on assuming the col-
lection of graphs is derived from a common population model and that
any outliers involve a contamination from some alternative model. We
need a measure of the distance between two graphs to do this. Unfor-
tunately, graph matching and related graph edit distance calculations
have impractical complexities. Approximate distances are easier to
calculate, however [73]. The approach we take is as follows:

First, we compute the adjacency matrix for each graph. We then
convert the adjacencies above the diagonal to a single binary string.
When doing that, however, we have to reorder the adjacency matrix
to a canonical form; otherwise, arbitrary input orderings could affect
distance calculations on the string. A simple way to do this is to com-
pute the eigendecomposition of the Laplacian matrix and permute the
adjacencies according to the ordering of the values of the eigenvec-
tor corresponding to the smallest nonzero eigenvalue. After permuting
and encoding the adjacency matrices into strings, we compute the Lev-
enshtein distances [51] between pairs of strings. Finally, we assemble
the nearest-neighbor distances from the resulting distance matrix and
subject them to the hdoutliers algorithm.

Figure 18 shows an example of this approach using the Karate Club
graph [82]. We generated 15 random minimum spanning tree graphs
having the same number of nodes as the Karate Club graph. Then
we applied the above procedure to identify outliers. The Karate Club
graph was strongly flagged as an outlier by the algorithm.

Large collections of graphs (as in social networks) present
formidable computational problems for this type of application. These
problems usually require distributed computation on many computing
nodes. Fortunately, the distributed version of the hdoutliers algo-
rithm is well-suited for large-scale problems.

Fig. 18. Karate Club graph (red) is an outlier with respect to comparably
scaled random minimum spanning tree graphs.

4.3.7 Scagnostics Outliers

Scagnostics [80] can be used to identify outlying scatterplots in a large
collection of scatterplots. Because the calculations are relatively effi-
cient, these measures can be computed on many thousands of plots in
practical time. This outlier application is multivariate, because there
are nine scagnostics for each scatterplot, so a multivariate detection
algorithm like hdoutliers is required.

Figure 19 shows two outlying scatterplots identified by
hdoutliers when applied to a dataset of baseball player char-
acteristics featured in [81]. While the left plot in the figure is clearly
unusual, the surprising result is to see an evidently bivariate Normal
scatterplot of Weight against Height in the right plot. Although the
dataset includes many physical and performance features of real
baseball players, the type of Normal bivariate distribution found
in many introductory statistics books is an outlier among the 120
scatterplots considered in this example.
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Fig. 19. Scatterplot outliers based on Scagnostics computed on 120
scatterplots of baseball player features. A sample of the 120 scatterplots
is shown in blue.

4.3.8 Geographic Outliers

We can compute spatial outliers using the hdoutliers algorithm.
More frequently, however, maps are a convenient way to display the
results of outlier detection on non-spatial exogenous variables. Fig-
ure 20 shows an example of outlier detection on marriage and divorce
rates by US state. The quantile plot in the left subframe reveals how
extreme is this outlier.
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Fig. 20. Marriage and Divorce rates in the US. There is one state that is
an outlier.

5 CONCLUSION

There is a huge assortment of papers on outlier detection in the ma-
chine learning community; only a fraction is cited here. While many
of these approaches are ingenious, few rest on a foundation that takes
risk into account. If we label something as an outlier, we had better be
able to quantify or control our risk.

Outliers are anomalies. An anomaly is not a thing; literally,
anomaly means lack of a law. It is a judgment based on evidence.
Sometimes evidence is a collection of facts. Sometimes it is a collec-
tion of indications that cause us to modify our prior belief that what
we are observing is not unusual. The statistical detection of outliers is
concerned with the latter case. Lacking certainty of the process that
generated what we think might be an outlier, we must derive a judg-
ment that an observation is inconsistent with our belief in that process.

In order to be consistent in our behavior, we need to assign a prob-
ability to the strength of our belief that we are looking at an outlier.
Methods that do not do this, that simply rank discrepancies or flag ob-
servations above an arbitrary threshold (like most of the algorithms in
the Related Work section), can lead to inconsistent results.

The hdoutliers algorithm reduces the risk of making a false out-
lier discovery for a broad class of prior beliefs. Even for unusual ap-
plications such as the graph outlier problem, this algorithm provides a
foundation for framing the judgment concerning an outlier. And im-
portantly for the applications in this paper, hdoutliers is designed
specifically to guide, protect, and deepen our visual analysis of data.
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