trackeR: Infrastructure for Running, Cycling and
Swimming Data from GPS-Enabled Tracking
Devices in R

Hannah Frick Ioannis Kosmidis
University College London University of Warwick
The Alan Turing Institute

Abstract

This introduction to the R package trackeR is a modified version of Frick and Kosmidis
(2017), published in the Journal of Statistical Software. The majority of changes and
additions in the text are due to work by Ioannis Kosmidis, which involved the complete
rewrite of most of the trackeR codebase at version 1.1.0, in order to make the package
faster across the board and include support of all running, cycling and swimming and
sport-specific units and variables, fix bugs, and implement new features and enhancements.

The use of GPS-enabled tracking devices and heart rate monitors is becoming increas-
ingly common in sports and fitness activities. The trackeR package aims to fill the gap
between the routine collection of data from such devices and their analyses in R. The
package provides methods to import tracking data into data structures which preserve
units of measurement and are organised in sessions. The package implements core in-
frastructure for relevant summaries and visualisations, as well as support for handling
units of measurement. There are also methods for relevant analytic tools such as time
spent in zones, work capacity above critical power (known as W’), and distribution and
concentration profiles. A case study illustrates how the latter can be used to summarise
the information from training sessions and use it in more advanced statistical analyses.

Keywords: sports, tracking, work capacity, running, cycling, distribution profiles.

1. Introduction

Recent technological advances allow the collection of detailed data on fitness activities and on
multiple aspects of training and competition in professional sport. The focus of this paper is
on data collected by GPS-enabled tracking devices and heart rate monitors. Such devices are
routinely used in fitness activities such as running, cycling, and swimming and also during
training in sports like field hockey and football. Basic questions associated with tracking
data include how often, much, or hard an individual or a group trains, and a more advanced
outlook tries to explain the impact of training on athlete physiology or performance.

Tools for basic analytics are usually offered by the manufacturers of the tracking devices,
such as Garmin, Polar, and Catapult, and through a wide range of applications for devices
such as smartphones and smartwatches, e.g., Strava Running and Cycling GPS, Endomondo
— Running & Walking, and Runtastic Running GPS Tracker. A notable open-source effort
is Golden Cheetah (http://www.goldencheetah.org), which has now, perhaps, become the

http://www.goldencheetah.org

2 trackeR: Infrastructure for Running, Cycling and Swimming Data in R

gold standard in terms of facilities for importing tracking data from cycling activities and for
associated analytics. However, Golden Cheetah is not designed to offer general flexibility in
the statistical analysis of such sports tracking data.

The R system for statistical computing (R Core Team 2015) with its ecosystem of add-on
packages provides a wide range of possibilities for the handling and analysis of tracking data.

GPS-enabled tracking devices typically record irregularly sampled spatio-temporal data. In-
frastructure for such data is provided in the trajectories package (Pebesma and Klus 2015),
which is developed around the “STIDF” class of the spacetime package (Pebesma 2012). How-
ever, the “STIDF” class does not accommodate missing values in positional or temporal infor-
mation. Since this is commonly the case in data from GPS-enabled tracking devices (e.g.,
sequences of missing values in the positional data because the GPS signal is temporarily lost),
a different approach is taken in trackeR (see Section 4). Other packages that offer tools for
spatio-temporal data include adehabtitatLT (Calenge 2006), trip (Sumner 2015) and move
(Kranstauber and Smolla 2015). The main focus of those packages is on animal tracking,
e.g., estimation of habitat choices, and they are not directly suitable for tracking the various
aspects of athlete activity.

Despite the wide range of R packages available, there is only a handful of packages specific
to sport data and their analysis. The available packages focus on topics such as sports man-
agement (RemdrPlugin.SM, Champely 2012), ranking sports teams (mvglmmRank, Karl and
Broatch 2015), and accessing betting odds (pinnacle.API, Blume, Jhirad, and Gassem 2015).
SportsAnalytics is a package that focuses on the analysis of performance data, and currently
offers only “a selection of data sets, functions to fetch sports data, examples, and demos” (Eu-
gster 2013). The cycleRtools package (Mackie 2015) provides functionality to import cycling
data into R as well as tools for cycling-specific, descriptive analyses.

The trackeR package aims to fill the gap between the routine collection of data from GPS-
enabled tracking devices and the analyses of such data within the R ecosystem. The package
provides utilities to import sports data from GPS-enabled devices, and, after careful process-
ing, organises them in data objects which are organised in separate sessions/workouts and
carry information about the units of measurement (e.g., distance and speed units) as well
as of any data operations that have been carried out (e.g., smoothing). The package also
implements core infrastructure for the handling of measurement units and for summarising
and visualising tracking data. It also provides functionality for calculating time in zones (e.g.,
Seiler and Kjerland 2006), work capacity W’ (Skiba, Chidnok, Vanhatalo, and Jones 2012),
and distribution and concentration profiles (Kosmidis and Passfield 2015), including a few
methods for the analysis of these profiles.

Section 2 gives an overview of the package and introduces the basic objects and the meth-
ods that apply to them. Section 3 describes the importing utilities, and Section 4 details
the structure and construction of the “trackeRdata” object, which is at the core of trackeR.
Section 5 is devoted to the calculation of relevant summaries (time in zones, work capac-
ity, distribution and concentration profiles) and the corresponding methods for visualisation.
Section 6 and Section 7 focus on basic methods for unit manipulation as well as smoothing
and thresholding. The case study in Section 8 investigates the key features in 27 sessions
through a functional principal components analysis (e.g., Ramsay and Silverman 2005) on
the concentration profiles for speed.

Hannah Frick, Ioannis Kosmidis 3
|

(readTCX@BB) (readJSON) ‘/ |)‘
N

data.frame
readContainer
trackeRdata

trackeRdata

Figure 1: Package structure - Functionality to read tracking data.

2. Package structure

Figures 1 and 2 show a schematic overview of the package structure, split into two parts for
reading data and further operations. Squared boxes indicate objects of a particular class,
diamonds indicate files of a particular format, and boxes with rounded corners represent
methods that apply to those objects. The respective class and method names are given in
the boxes. An arrow from an object/file type to a method indicates that the method applies
to objects of the respective class; an arrow from a method to an object indicates that the
method outputs objects of the respective class. A bi-directional arrow between a method and
an object indicates that the method’s input and output are of the same class, such as the
method threshold () and objects of class “trackeRdata”. Arrows to or from groups of boxes
apply to each box in the group. For example, the method changeUnits() applies to objects
of classes “trackeRdataZones”, “trackeRdataSummary”, “trackeRWprime”, “distrProfile”,
and “conProfile”.

Data in various formats are imported and stored in the central data object of
class “trackeRdata” from which summaries for descriptive purposes or further analyses can be
derived. Methods for visualisation and data handling are available for data objects and sum-
mary objects. A list of all functionality is provided in Tables 1 and 2. For convenience, most
camel-case function names in Tables 1 and 2 are aliased to function names were words are sep-
arated by underscores, e.g. concentrationProfile() and concentration_profile(), and
readContainer () and read_container().

3. Import utilities

trackeR provides utilities for data in common formats from GPS-enabled tracking devices.
The family of the supplied reading functions, read* (), currently includes functions for read-
ing TCX (Training Centre XML), GPX (as exported by Strava but other versions should
work, too), DB3 (for SQLite, used, e.g., by devices from GPSports) and Golden Cheetah’s

trackeR: Infrastructure for Running, Cycling and Swimming Data in R

Function Class Description
readTCX () TCX file read TCX file
readGPX () GPX file read GPX file
readDB3() DB3 file (SQLite) read DB3 file
readJSON () Golden Cheetah’s read JSON file
JSON file
readContainer() TCX/GPX/DB3/JSON read a TCX/GPX/DB3/JSON file
file
readDirectory() TCX/GPX/DB3/JSON read all TCX/GPX/DB3/JSON
files files in a
directory
trackeRdata() “data.frame” construct a “trackeRdata” object
cO) “conProfile”, combine sessions
“distrProfile”,
“trackeRdata”
sort() “trackeRdata” sort sessions by start time
unique () “trackeRdata” extract unique sessions
] “trackeRdata” subset sessions
plot () “trackeRdata” plot session profiles
plotRoute () “trackeRdata” plot route on a static map
leafletRoute() “trackeRdata” plot route on an interactive map
threshold () “trackeRdata” apply lower and upper bounds on data
range
smoother () “conProfile”, smooth data by applying a summary
“distrProfile”, function such as mean or median to a
“trackeRdata” window
getUnits () “conProfile”, access units of measurement
“distrProfile”,
“trackeRdata”,
“trackeRdataSummary”,
“trackeRdataZones”,
“trackeRWprime”
changeUnits () “conProfile”, change units of measurement
“distrProfile”,
“trackeRdata”,
“trackeRdataSummary”,
“trackeRdataZones”,
“trackeRWprime”
nsessions() “conProfile”, number of sessions
“distrProfile”,
“trackeRdata”,
“trackeRdataSummary”,
“trackeRdataZones”,
“trackeRWprime”
fortify() “conProfile”, convert object into a data frame for
“distrProfile”, plotting
“trackeRdata”,
“trackeRdataSummary”,
“trackeRWprime”

Table 1: Functions available in the trackeR package (part 1).

Hannah Frick, Ioannis Kosmidis

Function Class Description

summary () “trackeRdata” summarise sessions

print () “trackeRdata”, print sessions summaries
“trackeRdataSummary”

plot “conProfile”,
“distrProfile”,
“trackeRdata”,
“trackeRdataSummary”,
“trackeRdataZones”,
“trackeRfpca”,
“trackeRWprime”

timeline () “trackeRdata”, plot timeline summary
“trackeRdataSummary”

zones () “trackeRdata” time spent in zones

Wprime () “trackeRdata” calculate W’ balance or W' ex-

pended

plot () “trackeRWprime” plot W' balance or W' expended

session_times() “trackeRdata”, return the start and end date and
“trackeRdataSummary” time of its session

session_duration() “trackeRdata”, return the duration of each ses-
“trackeRdataSummary” sion

get_sport () “conProfile”, return the sports of each session
“distrProfile”, in the object
“trackeRdata”,
“trackeRdataSummary”,
“trackeRWprime”

concentrationProfile() “distrProfile”, calculate concentration profiles
“trackeRdata”

distributionProfile() “trackeRdata” calculate distribution profiles

ridges() “conProfile”, ridgeline plots of concentra-
“distrProfile”, tion/distribution profiles
“trackeRdata”

profile2fd () “conProfile”, convert profiles to “fd” class
“distrProfile”

funPCA() “conProfile”, functional principal components
“distrProfile” analysis

Table 2: Functions available in the trackeR package (part 2).

6 trackeR: Infrastructure for Running, Cycling and Swimming Data in R

threshold
NP4

trackeRdata
summary
plot

distributionProfile

zones

/ trackeRfpca
— trackeRdataZones
distrProfile ﬁ
funPCA

trackeRdataSummary

conProfile profile2fd

i

trackeRWprime

fda::fd

changeUnits (timeline) (concentrationProfile)

Figure 2: Package structure - Functionality to analyse tracking data.

JSON files. These functions read the tracking data, and return a data.frame with a specific
structure.

The following code chunk illustrates the use of the readTCX () function using a TCX file that
ships with the package and shows the name and type of variables that are present in the
resulting data frame.

R> filepath <- system.file("extdata/tcx", "2013-06-01-183220.TCX.gz",
+ package = "trackeR")

R> runDF <- readTCX(file = filepath, timezone = "GMT")

R> str(runDF)

'data.frame': 3881 obs. of 11 variables:

$ time : POSIXct, format: "2013-06-01 17:32:20"
$ latitude : num 50.8 50.8 50.8 50.8 50.8 ...

$ longitude :num -1.7 -1.7 -1.7 -1.7 -1.7 ...

$ altitude : num 83.4 83.8 84 83.8 83.6 ...

$ distance :num 1.26 3.3 7.12 11.12 16.76 ...

$ heart_rate :num b6 61 61 71 71 74 74 85 85 85 ...
$ speed :num 0.885 1.209 1.801 2.205 2.756 ...

Hannah Frick, Ioannis Kosmidis 7

$ cadence_running: num 60 63 70 78 83 84 84 85 85 86 ...
$ cadence_cycling: logi NA NA NA NA NA NA ...
$ power : logi NA NA NA NA NA NA ...
$ temperature : logi NA NA NA NA NA NA ...

- attr(*, "sport")= chr "running"
- attr(x, "file")= chr "/private/var/folders/3t/00tlvfn14zq5v45q93q3y63cm0000gn/T/RtmpZ5Y4

Power is not available in the above data frame because the data has been identified to come
from a running training by regex matching its contents with a sport-determining list of key-
words. Times are taken here to be in GMT. The default for argument timezone is "" and is
system-specific; see 7as.P0SIXct for details.

trackeR can accommodate the addition of extra formats by simply authoring appropriate
import functions. Such functions should take as input the path of the file to be read and
return a data frame with the same structure and attributes as in the above example.

4. “trackeRdata” class

4.1. Object structure

The core object of trackeR has class “trackeRdata”. The “trackeRdata” objects are session-
based, unit-aware and operation-aware structures, which organise the data in a list of mul-
tivariate zoo objects (Zeileis and Grothendieck 2005) with one element per session. The
observations within each session are ordered according to the time stamps as these are read
from the GPS-enabled tracking devices. Each “trackeRdata” object has an attribute on the
measurement units of the data it holds, and, if applicable, an attribute detailing the opera-
tions, such as smoothing, it has gone through.

“trackeRdata” objects result from the constructor function trackeRdata(), which takes as
input the output of the read*() functions. Apart from the allocation of observations into
distinct sessions, the constructor function also performs some data processing, including basic
sanity checks (for example, removing observations with negative or missing values for cumula-
tive distance or speed), handling of measurement units, correction of distances using altitude
data if required, and data imputation, discussed in Section 4.5.

4.2. Constructor function

The interface of the constructor function for class “trackeRdata’” is

trackeRdata(dat, units = NULL, sport = NULL, session_threshold = 2,
correct_distances = FALSE, from_distances = TRUE, country = NULL,
mask = TRUE, lgap = 30, lskip = 5, m = 11, silent = FALSE)

dat is the data frame containing the tracking data and units is used to specify the units of

measurement. Table 3 shows the currently supported units and notes the units that are used

by default when units = NULL. The argument sport indicate the sport from which the data is
YA YRR

coming from and must be “running”, “cycling”, “swimming”. This affects the calculation of W’
(based on power or speed for cycling and running, respectively) and the thresholds applied

8 trackeR: Infrastructure for Running, Cycling and Swimming Data in R

before plotting the session data. The other arguments are specific to the data processing
operations, which are briefly described in the following subsections.

4.3. Identifying distinct sessions

The constructor function groups the observations into sessions according to their time stamps.
Specifically, the time stamps in the data from the read*() functions are first sorted, and all
consecutive observations whose time stamps are no further apart from each other than a
specified threshold t* are considered to belong to a distinct session. The value of t* is set via
the session_threshold argument of the trackeRdata() function and it defaults to 2 hours.

4.4. Distance correction using altitude data

If the distances in the data have been calculated solely based on latitude and longitude data,
without taking into account the altitude, then the distance covered can be underestimated.
The correct_distances argument of the trackeRdata() function controls whether the dis-
tances should be corrected for altitude changes.

If the uncorrected distance covered at time point ¢; is da;, then setting correct_distances
= TRUE uses the Pythagorean theorem to correct the distance covered between time point ¢;_
and time point ¢; to

di —di—1 = \/(dQ,i —doi—1)? + (ai — ai—1)?,

where d; and a; are the corrected cumulative distance and the altitude at time ¢;, respectively.

If no altitude measurements are available, these are extracted from SRTM 90m Digital Ele-
vation Data via the raster package (Hijmans 2015) using the latitude and longitude measure-
ments. The arguments country and mask control the extraction of altitudes.

4.5. Imputation process

Occasionally, there is a large time difference between consecutive observations in the same
session, sometimes of the order of several minutes. This can happen, for example, if the
device is intentionally paused by the athlete or if the proprietary algorithm controlling the
operating sampling rate of the device detects no significant change in position. For example,
in the manual of a GPS device, the Forerunner© 310XT, it is stated that “The Forerunner
uses smart recording. It records key points when you change direction, speed, or heart rate”
(Garmin Ltd. 2013). In both cases, interpolating directly to get the speed or power will lead
to overestimation of the total workload within those intervals.

We assume that such intervals appear only when there is no significant work happening, and
hence impute them with observations with zero speed (for running) or zero speed and power
(for cycling).

Figure 3 shows a schematic representation of the imputation process for speed. The parame-
ters lgap, m and [y, control the imputation, and can be specified via the 1gap, m and 1skip
arguments of the trackeRdata() function, respectively.

If the observations at times ¢; and ¢;4; are more than ly,, seconds apart, then it is assumed

that there is no significant work happening between ¢; and t;11. The number of imputed
records in the interval is m, and consists of two ’outer’ records and m — 2 ’inner’ records. The

Hannah Frick, Ioannis Kosmidis
Si Si+1
t; ti+1
tiv1 — ;i > lgap
Si 0 0 0 0 0 0 0 0 0 0 0 Si+1
....................... Lo
X xq}\ x%“ X » x%“ ><COXV x(\“ ch‘(“ XO}V
&3

t: t* o %m %\ ’éw ’:N %\ %m ’é'\- ’éw * t:

(3 1 +1 i+1

lskip lskip

Figure 3: Hlustration of the imputation process for speed with m = 11.

‘outer’ records are Iy, seconds apart from the existing observations forming the beginning
and the end of the interval, respectively. The ’inner’ records are h = (t;4+1—t; —2ls5ip)/(m—1)
seconds apart.

The imputed records between ¢; and t; 1 have zero speed or power, and the latitude, longitude
and altitude measurements are set to their values at time t;. All other variables are set to NA.

trackeRdata() also adds five records at the beginning and five at the end of a session, based
on the assumption that there is no activity before and after the available records. These
observations have zero speed or power, their latitude, longitude and altitude measurements
are as in the first and last observations, respectively, and all other variables are set to NA.
The imputed records are one second apart from each other and from the first and the last
observation, respectively.

After the imputation process, the cumulative distances are updated based on the imputed
speeds and the time differences between consecutive observations, according to

diy1 = d;i + 5i(tig1 — t;)

where s; and d; denote the speed and cumulative distance at time point t;, respectively.

The following code chunk takes as input the raw data in the data frame runDF and constructs
the corresponding “trackeRdata” object.

R> runTr0 <- trackeRdata(runDF)

The print () method for “trackeRdata” objects displays some basic summaries about the
sessions, including the sports present in the sessions, the number of sessions, training coverage,
total training duration and the units for each of the variables.

R> runTrO

10 trackeR: Infrastructure for Running, Cycling and Swimming Data in R

A trackeRdata object
Sports: running

Training coverage: from 2013-06-01 18:32:15 to 2013-06-01 19:37:56
Number of sessions: 1
Training duration: 1.09 h

Units
latitude degree cycling
longitude degree cycling
altitude m cycling
distance m cycling
heart_rate bpm cycling
speed m_per_s cycling
cadence_cycling rev_per_min cycling
power W cycling
temperature C cycling
pace min_per_km cycling
duration min cycling
latitude degree running
longitude degree running
altitude m running
distance m running
heart_rate bpm running
speed m_per_s running
cadence_running steps_per_min running
temperature C running
pace min_per_km running
duration min running
latitude degree swimming
longitude degree swimming
altitude m swimming
distance m swimming
heart_rate bpm swimming
speed m_per_s swimming
temperature C swimming
pace min_per_km swimming
duration min swimming

The function readContainer () is a convenience wrapper that calls the suitable reading func-
tion and, then, trackeRdata() for the data processing and the organisation of the data in a
“trackeRdata” object (see 7readContainer for the available arguments). For example

R> runTrl <- readContainer(filepath, type = "tcx", timezone = "GMT")
R> identical (runTr0O, runTrl)

(1] TRUE

Hannah Frick, Ioannis Kosmidis 11

The function readDirectory() allows the user to read all files of a supported format in a
directory, rather than calling, e.g., readContainer () on each file separately. For example,
the following chunk of code will read a directory with one cycling, one running and, one
swimming session, constructs the corresponding trackeRdata object, and then extracts the
sports for each session.

R> gpxDir <- system.file("extdata/gpx", package = "trackeR")
R> workouts <- readDirectory(gpxDir, verbose = FALSE)
R> get_sport (workouts)

[1] "running" "cycling" "swimming"

Using the argument aggregate, the user can decide if all data are first combined in a data
frame and then split into sessions solely based on the time difference between consecutive
observations. This way, e.g., warm-up and cool-down phases are put into the same session as
the central part of training, even if they are recorded in separate container files. Alternatively,
data from different container files are always stored in separate sessions.

trackeR ships with two “trackeRdata” objects containing 1 and 27 running sessions, respec-
tively, and which can be loaded via

R> data("run", package = "trackeR")
R> data("runs", package = "trackeR")

We will use those objects for the illustrations throughout the paper.

5. Session summaries and visualisation

trackeR provides methods for summarising sessions in terms of scalar summaries, the time
spent exercising in specified zones, the concept of work capacity, and distribution and con-
centration profiles.

5.1. Visualisation

For a first visual inspection of the data, the plot () method shows by default the evolution
of heart rate and pace over the course of the selected sessions. For example, Figure 4 shows
the evolution of heart rate and pace for the first three sessions in the runs object.

R> plot(runs, session = 1:3)

The route covered during a session can also be displayed on a static map via the plotRoute ()
method. The plotRoute() method uses the ggmap package (Kahle and Wickham 2013) and,
hence, can work with the sources and maps supported by ggmap. For example, Figure 5 shows
the route covered during session 4 in runs using a map downloaded from Google. Interactive
maps can be produced with leafletPlot (), using the leaflet package (Cheng and Xie 2016).

R> plotRoute(runs, session = 4, zoom = 13)

12 trackeR: Infrastructure for Running, Cycling and Swimming Data in R

1: running 2: running 3: running
2013-06-01 2013-06-02 2013-06-03
150 T /\/_/\// /__/\/—/ _
[0]
/\/\/\-/\ =8
O —~
Si=
=&
1001 o
50
154
104 gg
X
—_— | T TR R AL LR R SSRA
Q) Q » QS Q S INY Q Q INY Q Q Q \\)
S X S N S D X 5 N D S N % S
NN N SN S N NJ N N N

Time

Figure 4: Heart rate and pace over the course of sessions 1-3.

5.2. Scalar summaries

Each session can be summarised through common summary statistics using the summary ()
method. Such a session summary includes estimates of the total distance covered, the total
duration, the time spent moving, and work to rest ratio. It also includes averages of speed,
pace, cadence, power, and heart rate, calculated based on total duration or the time spent
moving.

An athlete is considered to be moving if the speed is larger than some threshold s*. This
threshold can be set via the moving_threshold argument of the summary () method, and the
package assumes that anything between not moving at all and walking with a speed below
that threshold is resting. The default value for moving_threshold has been set to 1 meter
per second for running, which is just below the speed humans prefer to walk at on average
(1.4 meters per second; see Bohannon 1997), 0.5 meter per second for swimming and 2 meters
per second for cycling.

The “average speed moving” is calculated as total distance covered divided by time moving
while “average speed” is calculated as total distance divided by total duration. The average
pace (moving) is calculated as the inverse of the average speed (moving). The work to rest
ratio is calculated as time moving divided by (total duration - time moving). The averages
for cadence, power, and heart rate (total and moving) are weighted averages with weights
depending on the time difference to the next observation. These averages also need to take
into account missingness in the observations. For a variable of interest V', we can calculate a

Hannah Frick, Ioannis Kosmidis

4 : running
. B, b
o) 2
pad x\\“\'p &
Westfield Park £
57.18- = Royal Aberdeen
Persley ; Golf Club
& 4
£ % onmouth
Mg s.c ocaf f‘{afl\lfﬂ'
Graat Northarm p,y 3 &
2 &
57.17- arer &Y Hihon o =
B
A %
vy O OLD ABERDEEN
T
Ao b 2
iy, e] Speed
Provost Frag,, o 2
& Calrncry Rd 12
® 57.16- 3 T %, @ Kirlps Links Golf Course
3 i s 2 9
_.g Aberdeen Royal, ¢ E£ i 1
© Infirmary ¥ 2 6
—
oz 3
B oo
57.15- % By, 0
e
I (V2 e o
we e
y;-r.Q"r"ﬁ
P o J\‘\ﬂl»"BV
i o M A
57.14 ¥ g , s> Nigg Bay Golf Club @
k> &
. S Victoria RA i
L R - o2 d‘b_> o
o s }&
‘_.&v,-.«“"‘ ¢ & Duthie Park
57.13-% 2 ¢ o
%@, p s & / ; ap cata 112018 Gaogle
-2.150 -2.125 -2.100 -2.075 -2.050
Longitude

Figure 5: Route covered during session 4 on a map from Google.

weighted mean for the total session while accounting for missing values via
AK;
gt
A

and its counterpart for the part of the session spent in motion via

Z v AZKZI(SZ > S*)
Z ZZZ» AiKZ’I(Si > S*)
where v; is the value of V at time point ¢;, K; is 1 if v; is available, i.e., not missing, and 0

otherwise, I(-) denotes the indicator function, and A; = ¢; — ¢;—1 the time difference between
observations at ¢; and ¢;_1.

The summary () method for “trackeRdata” objects returns a data frame which can be used
for further analysis. The return object is classed as “trackeRdataSummary” for which several
methods are available. With the print () method, one can set the number of digits printed for
the scalar summary statistics. The following example shows the summaries for sessions 1-2

with the default number of digits of 2 and then the summary of session 1 with 3 digits for
comparison.

14 trackeR: Infrastructure for Running, Cycling and Swimming Data in R

R> summary(runs, session = 1:2)
x*x Session 1 : running *

Session times: 2013-06-01 18:32:15 - 2013-06-01 19:37:56
Distance: 14130.7 m

Duration: 65.68 mins

Moving time: 64.17 mins

Average speed: 3.59 m_per_s

Average speed moving: 3.67 m_per_s

Average pace (per 1 km): 4:38 min:sec

Average pace moving (per 1 km): 4:32 min:sec
Average cadence running: 88.66 steps_per_min
Average cadence cycling: NA rev_per_min

Average cadence running moving: 88.87 steps_per_min
Average cadence cycling moving: NA rev_per_min
Average power: NA W

Average power moving: NA W

Average heart rate: 141.11 bpm

Average heart rate moving: 141.13 bpm

Average heart rate resting: 136.76 bpm

Average temperature: NA C

Total elevation gain: 94.2 m

Work to rest ratio: 42.31

***k Session 2 : running ***

Session times: 2013-06-02 07:23:43 - 2013-06-02 08:09:47
Distance: 9450.24 m

Duration: 46.07 mins

Moving time: 44.13 mins

Average speed: 3.42 m_per_s

Average speed moving: 3.57 m_per_s

Average pace (per 1 km): 4:52 min:sec

Average pace moving (per 1 km): 4:40 min:sec
Average cadence running: 88.21 steps_per_min
Average cadence cycling: NA rev_per_min

Average cadence running moving: 88.25 steps_per_min
Average cadence cycling moving: NA rev_per_min
Average power: NA W

Average power moving: NA W

Average heart rate: 139.48 bpm

Average heart rate moving: 139.44 bpm

Average heart rate resting: 141.16 bpm

Average temperature: NA C

Total elevation gain: 124.52 m

Work to rest ratio: 22.83

Hannah Frick, Ioannis Kosmidis

Moving thresholds: 2.0 (cycling) 1.0 (running) 0.5 (swimming) m_per_s
Unit reference sport: running

R> runSummary <- summary(runs, session = 1)
R> print(runSummary, digits = 3)

x*x Session 1 : running *

Session times: 2013-06-01 18:32:15 - 2013-06-01 19:37:56
Distance: 14130.7 m

Duration: 65.683 mins

Moving time: 64.167 mins

Average speed: 3.586 m_per_s

Average speed moving: 3.67 m_per_s

Average pace (per 1 km): 4:38 min:sec

Average pace moving (per 1 km): 4:32 min:sec

Average cadence running: 88.664 steps_per_min
Average cadence cycling: NA rev_per_min

Average cadence running moving: 88.874 steps_per_min
Average cadence cycling moving: NA rev_per_min
Average power: NA W

Average power moving: NA W

Average heart rate: 141.107 bpm

Average heart rate moving: 141.131 bpm

Average heart rate resting: 136.762 bpm

Average temperature: NA C

Total elevation gain: 94.196 m

Work to rest ratio: 42.308

Moving thresholds: 2.0 (cycling) 1.0 (running) 0.5 (swimming) m_per_s
Unit reference sport: running

The plot () method shows the evolution of the various summary statistics over calender time
or over the course of the sessions. For example, the following code chunk produces Figure 6.

R> runSummaryFull <- summary (runs)
R> plot(runSummaryFull, group = c("total"”, "moving"),
+ what = c("avgSpeed", '"distance", "duration', "avgHeartRate"))

5.3. Times in zones
A common way to summarise and characterise a session is to calculate how much time was
spent exercising in certain zones, e.g., heart rate zones.

The zones() method for sessions returns an object of class “trackeRdataZones” for which
methods changeUnits() and plot() are provided. The user can specify the variables, such

15

16 trackeR: Infrastructure for Running, Cycling and Swimming Data in R

type total moving
1704
Q
160 S
—_0
150 4 S8
é =
140 3
(0]
130 4
4.5
4.0
3.5+ 2
3.0 38
B D
2.54 o}
2.0
15
20000 -
15000 - 7
£
10000 8
5000 -
1004
751 o
. c
38
50 - 55
=}
25 -
Jun 03 Jun 10 Jun 17 Jun 24 Jul 01
Date

Figure 6: Selected session summaries for all 27 sessions.

as heart rate and speed, and their respective zones via the arguments what and breaks,
respectively. Figure 7 shows a graphical representation of the zones summary, making it easier
to see that more (relative) time was spent training with high speed (> 4m/s) in sessions 3
and 4 than in sessions 1 and 2. The following code chunk illustrates three equivalent ways to
specify the zones for a single variable: 1) in the standard way through arguments what and
breaks 2) if breaks is a named list, argument what can be left unspecified and 3) if only a
single variable is to be evaluated, breaks can also be a vector.

R> runZones <- zones(runs[1:4], what = "speed",

+ breaks = list(speed = c(0, 2:6, 12.5)))

R> runZones <- zones(runs[1:4], breaks = list(speed = c(0, 2:6, 12.5)))
R> runZones <- zones(runs[1:4], what = "speed", breaks = c(0, 2:6, 12.5))
R> plot(runZones)

Hannah Frick, Ioannis Kosmidis

speed
[m/s]

60
Session
4

3

Percent

2
201

> 2 » & & &
NS 4 ¥ & g

X

Zones

Figure 7: Zone summaries for speed of sessions 1-4.

5.4. Quantifying work capacity

The critical power model (Monod and Scherrer 1965) describes the relationship between the
power output P and the time t. to exhaustion at that power output

P = (Wj/t.) + CP (1)

in terms of two parameters W/ and CP. The critical power (CP) is defined by Monod and
Scherrer (1965) as “the maximum rate (of work) that [can be kept] up for a very long time
without fatigue.” Skiba et al. (2012) describe CP as “a power output that could theoretically be
maintained indefinitely on the basis of principally ’aerobic’ metabolism.” W’ (read W prime)
represents a finite work capacity above CP. Skiba et al. (2012) assume that W’ gets depleted
during exercise with a power output above CP but also replenished during exercise with a
power output of or below CP. We denote as W' the general concept of work capacity above
CP, and W'(t) is the state of W’ at time t. The latter is also sometimes referred to as
W' balance at time t. Additionally, the initial state of W' at the start of an exercise t = tg is
W§ = W'(to), which is one of the parameters in the critical power model (Equation 1). Total
depletion of Wy results in the inability to produce a power output above CP. Thus, knowledge
of the current state W’(t), i.e., how much of that finite work capacity W}, is left at time ¢, is
important to an athlete, particularly in a race.

While this concept is most commonly applied to cycling, where the power output is routinely
measured, Skiba et al. (2012) suggest that it can also be applied to running, substituting power
and critical power by speed and critical speed, respectively. For running, the model postulates
that each runner has a finite capacity in terms of distance covered above the critical speed.
Depending on how much the runner exceeds this critical speed, the finite capacity W/ is being
exhausted in shorter times. Below we describe the models for depletion and replenishment of
work capacity and how they are combined in trackeR.

Depletion of work capacity

Assuming constant power for periods of exertion above CP, Skiba, Fulford, Clarke, Vanhatalo,

17

18 trackeR: Infrastructure for Running, Cycling and Swimming Data in R

and Jones (2015) assume that W’ is depleted at a rate directly proportional to the difference
between the power output and CP

%W’(t) =—(P-CP). (2)
Solving Equation 2 for W'(t) gives
W'(t)=—(P—-CP)t+ D (3)

where D € R is constant over t.

Suppose that the exercise over time ty = 0 to t, = T can be split into n intervals with
breakpoints tg, t1,...,t, such that the power output within each interval is constant, that is
P(t) = P, for t € [ti—1,t;), i € {1,...,n}. Then, using Equation 3, the change in W’(t) over
the interval can be expressed as

W/(ti) = W'(ti1) = —(Pi — CP)(t; — ti-1).- (4)

Replenishing of work capacity

Skiba et al. (2015) assume that the periods with a power output at or below CP are periods
of recovery during which W' is replenished with a rate that depends on the difference between
CP and the power output, and the amount of W/ remaining, as follows:

d W'(t)
—W'(t)=(1- CP—-P). 5
G- (1=) er-r) 6
Equation 5 assumes that recovery slows down as W’(t) approaches the initial capacity W{.
Employing the substitution rule for integrals while solving Equation 5 and reexpressing in
terms of W'(t;_1) (see Appendix A for details) gives

W (1) = Wi — (W — W(ti_1)) exp (R sLLan ti_l)) . (6)
0

Since W'(t;—1) is the amount of W{ remaining at the start of the interval [t;_i,t;),
Wi — W!(ti—1) is the amount of W which has been depleted prior to ¢;—; and not yet been
replenished. Skiba et al. (2012) refer to this as W’ expended. Skiba et al. (2015) describe the
replenishing of W’ indirectly by describing how W’ expended is reduced over the course of
such a recovery interval. The exponential decay factor used in Equation 6 here is the same
as their Equation 4 with only different notation. Skiba et al. (2015) use ¢ to describe the
length of the interval, Dop = C'P — P; for the difference between critical power and power
output, and Wéxp for the amount of W’ previously expended. For P; < C'P, as is required for
replenishment, —D¢cp and P; — C'P are negative and thus the exponential factor is smaller
than 1, leading to an exponential decay as described.

Skiba et al. (2012) also assume an exponential decay of previously expended W’ to describe
replenishing W', albeit with a different decay factor. Instead of (P; — CP)/W{, they use
1/mwr. The relationship between the time constant of replenishing 7y, and the difference
between critical power and recovery power P is estimated based on experimental data as

T+ = 546 exp (—0.01(CP — P)) + 316

Hannah Frick, Ioannis Kosmidis

with recovery power P estimated by the mean of all power outputs below CP.

Using Equation 6, i.e., the formulation of Skiba et al. (2015), the change in W’ over the
corresponding interval [t;_1,t;) can be described through

Wt — W (ti1) = (W) — W (k1)) (1 — exp (P;V?DA)) | (7)

Work capacity at time t;

Equation 4 describes the depletion of W’ (when P; > C'P) and Equation 7 describes replen-
ishment of W’ (when P; < C'P) over an interval [t;_1,t;). These two aspects can be combined
to describe the change over the interval as

W/(ti) — W,(tifl) = — (Pz — CP)Alf(Pz > CP) +

(W — W' (ti1) (1 ~ exp <PWOCPA>> (1-1(P, > CP)).

The amount of W’ left at time point ¢;, j € {1,...,n}, can thus be described through the
initial amount W{ and the changes happening in the j intervals of constant power previous
to t;:

e

W' (t;) =Wo+ > (W'(t;) = W'(ti-1))

=1

Mo

i=1

(7= w500 (1= exo

P, -CP

J
/
— Wy

a))a-1rscry.®)

=1

W' expended at time t; is then W§ — W'(t;).

Function Wprime() can be used to calculate W’ exzpended by setting argument quantity
to "expended". If quantity is set to "balance", Wprime() calculates the current state
W'(t) (Equation 8). Wprime() contains implementations for Skiba et al. (2012) and Skiba
et al. (2015), which can be selected via the version argument. For example, session 11 of
the example data is an interval training with a warm-up and cool-down phase. Assuming a
critical speed of 4 meters per second, the following code chunk produces Figure 8, which shows
W' expended, based on the specification of Skiba et al. (2012), along with the corresponding
speed profile.

R> wexp <- Wprime(runs, session = 11, quantity = "expended',
+ cp = 4, version = "2012")
R> plot(wexp, scaled = TRUE)

During the warm-up phase speed rarely exceeds 4 meters per second and W’ expended remains
low. Over the course of the interval training, W’ exzpended rises during the high-intensity

19

20 trackeR: Infrastructure for Running, Cycling and Swimming Data in R

Speed [m/s] — W' expended [scaled]

7.54

5.0 P AR

//Jfﬂ \
2.54

0.0
Q) Q »H Q
N N 5 A \)
N D N N N
Time

Figure 8: W’ expended in session 11.

phases and drops during the recovery phases. In the last part of the session, speeds are
mostly below 4 meters per second and W’ expended drops again.

5.5. Distribution and concentration profiles

Kosmidis and Passfield (2015) introduce the concept of distribution profiles for which the
trackeR package provides an implementation. These profiles are motivated by the need to
compare sessions and use information on such variables as heart rate or speed during a session
for further modelling.

For a session lasting ¢,, seconds, the distribution profile is defined as the curve {v, II(v)|v > 0}
where

TI(v) :/Onl(v(t) > v)dt .

The function II(v) is monotone decreasing and describes the time spent exercising above a
threshold v for a variable V' under consideration (e.g., heart rate or speed).

On the basis of observations vy, . .., v, for V, at respective time points #g, ..., t,, the observed
version of II(v) can be calculated as

n

P(v) = (ti —ti-1)I(v; > v).

=1

This can subsequently be smoothed respecting the positivity and monotonicity of II(v), e.g.,
via a shape constraint additive model with Poisson responses (Pya and Wood 2015).

The concentration profile is defined in Kosmidis and Passfield (2015) as the negative derivative
of a distribution profile and is suitable for revealing concentrations of time around certain
values of the variable under consideration.

Hannah Frick, Ioannis Kosmidis

heart_rate [bpm] speed [m/s]

80

604 .
session
4

404 \ 8

2

204 1

Time spent above threshold [min]

0 50 100 150 200 250 0 4 8 12

Figure 9: Distribution profiles for sessions 1-4.

Distribution profiles can be calculated using the distributionProfile() function which re-
turns an object of class “distrProfile”. Concentration profiles can be derived from distribu-
tion profiles using concentrationProfile (), which returns an object of class “conProfile”.
Table 2 includes an overview of constructor functions and available methods for distribution
and concentration profiles.

By default, distribution profiles are calculated for speed and heart rate on grids inferred from
the data. The following code chunk illustrates the use of distributionProfile() and shows
how users can specify the variables for which to calculate profiles and the respective grids.

R> dProfile <- distributionProfile(runs, session = 1:4,

+ what = c("speed", "heart_rate"),

+ grid = list(speed = seq(0, 12.5, by = 0.05), heart_rate = seq(0, 250)))
R> plot(dProfile, multiple = TRUE)

The multiple argument of the plot() method determines whether to plot the profiles in
separate panels (FALSE) or overlay them in a common panel (TRUE), as in Figure 9. The
different session lengths are clearly visible in the height of the curves at 0. Amongst the
distribution profiles for speed, the descent of the profile for session 3 is slower than for the
other sessions. This difference is most apparent in the concentration profiles, which are shown
in Figure 10 and are produced by the following code chunk.

R> cProfile <- concentrationProfile(dProfile, what = "speed")
R> plot(cProfile, multiple = TRUE, smooth = TRUE)

The profile for session 3 has a mode at around 3.5 meters per second and another one at
5 meters per second, showing that this session involved training at a combination of low and
high speeds.

21

22 trackeR: Infrastructure for Running, Cycling and Swimming Data in R

speed [m/s]

60 -
session
4
<
E 40+ 3
(0]
E
5 2
20 - 1

L7 \\

0.0 25 5.0 75 10.0 125

Figure 10: Concentration profiles for sessions 1-4.

6. Handling units of measurement

Data objects of class “trackeRdata” and all objects derived from these (“trackeRdataSummary”,
“trackeRdataZones”, “trackeRWprime”, “distrProfile”, and “conProfile”) carry an at-
tribute with the relevant units of measurement. The getUnits() method returns the units
of measurement for each variable and the changeUnits () method can be used to change one
or more variables from one set of units to another. The following code chunk displays the
current units of run for running, changes the unit for speed for running to miles per hour,
and displays the changed units.

R> subset(getUnits(runs), sport == "running")
variable unit sport

13 latitude degree running

14 longitude degree running

15 altitude m running

16 distance m running

17 heart_rate bpm running

18 speed m_per_s running

19 cadence_running steps_per_min running

22 temperature C running

23 pace min_per_km running

24 duration min running

R> runTr2 <- changeUnits(run, variable = "speed", unit = "mi_per_h", sport = "running")

R> subset(getUnits(runTr2), sport == "running")

Hannah Frick, Ioannis Kosmidis 23

Measurement Unit(s)

latitude degrees (degree, default)

longitude degrees (degree, default)

altitude meters (m, default), kilometres (km), miles (mi), feet (ft)

distance meters (m, default), kilometres (km), miles (mi), feet (ft)

speed meters per second (m_per_s, default), kilometres per hour (km_per_h),

cadence_running
cadence_cycling

feet per minute (ft_per_min), feet per second (ft_per_s), miles per
hour (mi_per_h)

steps per minute (steps_per_min, default)

revolutions per minute (rev_per_min, default)

power Watts (W, default), kilowatts (kW)
heart rate beats per minute (bpm, default)
pace minutes per kilometre (min_per_km, default), minutes per
mile (min_per_mi), seconds per meter (s_per_m)
duration seconds (s), minutes (min), hours (h) — default is the largest possible unit
for which the duration is larger than 1
temperature degrees Celcius (C, default), degrees Fahrenheit (F)
Table 3: Supported units of measurement.
variable unit sport
13 latitude degree running
14 longitude degree running
15 altitude m running
16 distance m running
17 heart_rate bpm running
18 speed mi_per_h running
19 cadence_running steps_per_min running
22 temperature C running
23 pace min_per_km running
24 duration min running

Table 3 shows the variables and the corresponding units that are currently supported in

trackeR.

If objects with different units are c()ombined in one object, the units of the first session are
applied to all other sessions. Furthermore, the changeUnits() method uses name matching
to figure out which conversion needs to be done. This allows the user to easily add support
for converting from unit0ld to unitNew by authoring a function named unit0ld2unitNew.

If we wish to report the speed summaries for session 1 in runSummary in feet per hour (not
currently supported) instead of meters per second, we need to simply provide the appropriately
named conversion function as illustrated below. Note that the conversion applies to all speed
summaries, i.e., to “average speed” and “average speed moving”.

R> m_per_s2ft_per_h <- function(x) x * 3937/1200 * 3600
R> changeUnits (runSummary, variable = "speed", unit = "ft_per_h")

*** Session 1

! running ***

24 trackeR: Infrastructure for Running, Cycling and Swimming Data in R

Session times: 2013-06-01 18:32:15 - 2013-06-01 19:37:56
Distance: 14130.7 m

Duration: 65.68 mins

Moving time: 64.17 mins

Average speed: 42349.08 ft_per_h

Average speed moving: 43350.06 ft_per_h

Average pace (per 1 km): 4:38 min:sec

Average pace moving (per 1 km): 4:32 min:sec
Average cadence running: 88.66 steps_per_min
Average cadence cycling: NA rev_per_min

Average cadence running moving: 88.87 steps_per_min
Average cadence cycling moving: NA rev_per_min
Average power: NA W

Average power moving: NA W

Average heart rate: 141.11 bpm

Average heart rate moving: 141.13 bpm

Average heart rate resting: 136.76 bpm

Average temperature: NA C

Total elevation gain: 94.2 m

Work to rest ratio: 42.31

Moving thresholds: 23622 (cycling) 11811 (running) 5906 (swimming) ft_per_h
Unit reference sport: running

7. Thresholding and smoothing

There are instances where the data include artefacts due to inaccuracies in the GPS measure-
ments. These can be handled with the threshold () method for objects of class “trackeRdata”,
which replaces values outside the specified thresholds with NA. The variables and the (lower
and upper) thresholds which should be applied for each variable can be specified through the
arguments variable, lower, and upper, respectively. An example is given in ?threshold.
The default thresholds are listed in Table 4 and, if necessary, are converted to the units of
measurement used for the “trackeRdata” object.

The other option for