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Abstract

RCALI 1 is a R [R D11] package that makes the interface between the CaliFloPP2 and R.
CaliFloPP is a software that calculates flows of particles between pairs of polygons, when

given a so-called individual dispersal function. The individual dispersal function describes the
particle dispersion between pairs of points, and CaliFloPP deduces the total flows between pairs
of polygons. This integration problem is solved by reducing the dimension of the integral and by
using algorithms from computational geometry (see [BKAM09]).

In addition, RCALI allows to take into account the angle of the current point with the horizontal
and so, define anisotropic dispersal functions.

This manual first describes the methods implemented in CaliFloPP, then illustrates how to use
it through RCALI, and last, gives some hints to customize the package.

Résumé

RCALI1 est un paquetage R [R D11] qui interface le logiciel CaliFloPP2 à R.
Le logiciel CaliFloPP estime des flux de particules entre paires de polygones: à partir d’une

fonction de dispersion dite individuelle, c’est-à-dire décrivant la dispersion des particules de point à
point, il calcule les flux totaux émis d’un polygone à un autre. Ce problème d’intégration est résolu
en réduisant la dimension de l’intégrale et en utilisant des algorithmes de géométrie algorithmique
(voir [BKAM09]).

RCALI permet en outre de prendre en compte l’angle du point courant avec l’horizontale, et
ainsi, de définir des fonctions de dispersion anisotropiques.

Cette notice décrit les méthodes implémentées dans CaliFloPP, illustre comment l’utiliser via
RCALI, et comment adapter le paquetage.

1http://w3.jouy.inra.fr/unites/miaj/public/logiciels/RCALI
2http://w3.jouy.inra.fr/unites/miaj/public/logiciels/califlopp

http://w3.jouy.inra.fr/unites/miaj/public/logiciels/RCALI/
http://www.r-project.org/
http://w3.jouy.inra.fr/unites/miaj/public/logiciels/califlopp/
http://w3.jouy.inra.fr/unites/miaj/public/logiciels/RCALI/
http://www.r-project.org/
http://w3.jouy.inra.fr/unites/miaj/public/logiciels/califlopp/welcome_french.html
http://w3.jouy.inra.fr/unites/miaj/public/logiciels/RCALI
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� K. Adamczyk, A. Bouvier, K. Kiêu et H. Monod, INRA, MIA, Jouy-en-Josas. http://www.inra.fr/miaj

� Ying Fu developped the prototype: see [Y.05].

Other Participants

� Nathalie Colbach, INRA, UMR Biologie et Gestion des Adventices INRA-ENESAD-Université
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Chapter 1

Introduction

1.1 An application: Pollen and seed dispersal between fields

The development of genetically modified (GM) plants has triggered much research to study how
different types of agriculture can co-exist on a given landscape. In particular, several models have
been developed and implemented to quantitatively describe and predict the risks of contamination
of non-GM fields by GM fields, such as Genesys for oilseed rape [CCDM01a, CCDM01b].

A key stage in models such as Genesys consists in calculating the pollen and seed flow between
two fields A and B. In Genesys, this calculation is performed by integrating a plant-to-plant (or
individual) dispersal function φ over all emitting plants in A and all receiving plants in B, where
φ is a function of the distance between the emitting and the receiving plants. The individual
dispersal functions φ have been previously determined by specifically designed experiments (see
e.g. [LKV+98]). In practice, because the plant density is high in a cultivated field, the integration
is made continuously over A and B.

The calculation of field-to-field pollen and seed dispersals is a key stage not only for biological
but also for numerical reasons. First, it is a non-trivial programming task. Relatively simple
algorithms can be imagined for integrating the dispersal function over pairs of fields, but they
may not be able to cope properly with the large diversity of field sizes and shapes which are met
in actual agricultural landscapes. Second, the calculation requires a lot of computing time and
so it imposes limits on the size of the landscapes one wants to study. The initial motivation for
developing CaliFloPP was precisely to make the calculation of pollen and seed flow in Genesys
more general and more efficient.

1.2 What CaliFloPP calculates : integrated flow of particles

between polygons

Pollen and seed dispersal between fields is just an example of phenomena involving flows of particles
between polygonal objects. Other examples include the flow of pathogen spores between fields in
plant epidemiology, or the flow of polluting particles between sites in environmental applications.

CaliFloPP is a general programme, which makes it possible to calculate such global flows
efficiently between pairs of polygons, by integration of an individual dispersal function. When
running CaliFloPP, the basic entries that one needs to specify are :

� the coordinates of the vertices of each polygon ;
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� the individual dispersal function φ.

In CaliFloPP, the polygons are considered as continuous and homogeneous sources of emission
and continuous and homogeneous reception areas. The individual dispersal function φ between
two points x and y in IR2 is assumed to depend on x2 − x1 and y2 − y1, so that the argument of
φ is a two-dimensional vector. As a special case, the dispersal may be isotropic so that φ(y − x)
depends on

√
(y1 − x1)2 + (y2 − x2)2 only.

For each pair of polygons A and B, CaliFloPP calculates the integrated flow from A to B, that
is

F(A,B) =

∫

A

∫

B

φ(y − x) dy dx. (1.1)

1.3 What CaliFloPP can help to calculate : an example

In many applications, the calculations performed by CaliFloPP will just represent an initial step,
making time-consuming calculations once and for all before simulating a more complex space-and-
time model.

Consider for example a landscape constituted of non-GM oilseed rape fields, GM oilseed rape
fields, and other fields. Then the expected rate of contamination (due to pollen only, for simplicity)
on a given non-GM field B can be defined as the proportion of pollen received by B which has
been emitted by neighbouring GM fields. In the present context, this is equal to

C =

∑
GMfieldsA F(A,B)

∑
GMfieldsA F(A,B) +

∑
non−GMfieldsA F(A,B)

. (1.2)

Thus, calculating the expected rate of contamination for all non-GM fields requires to calculate
F(A,B) for all pairs of fields with A an oilseed rape field and B a non-GM oilseed rape field. In
Genesys, such calculations are performed over several years with different allocations of crops from
one year to the next one. Thus, there is an interest in calculating F(A,B) over all pairs of fields
once and for all.

Note that a more general form of equation (1.2) is

C =

∑
GMfieldsA αAF(A,B)

∑
GMfieldsA αAF(A,B) +

∑
non−GMfieldsA αAF(A,B)

,

where αA denotes the quantity of pollen per squared meter emitted by field A and φ(y−x) must be
interpreted as the proportion of particles emitted at point x that arrives at point y. As this example
shows, the CaliFloPP calculations are perfectly compatible with models involving different levels
of emission or reception between polygons.

1.4 The main steps of the CaliFloPP calculations

According to equation (1.1), the calculation of A(A,B) requires a four-dimensional integration,
since A and B are both two-dimensional. When A(A,B) must be calculated for many pairs of
polygons, this represents a heavy lot of computing time.

In fact, the first step in CaliFloPP consists in reducing the dimension of the integral from 4 to 2.
This is done by taking profit of the invariance properties of the dispersal function (see Chapter 2).

The price to pay for the dimension reduction is the arrival of geometrical quantities in the
reduced integral, whose calculations are not trivial. These calculations, however, can be performed
efficiently provided tools from computational geometry are used. This is explained in Chapter 3.
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In order to apply some of these methods, it is necessary that the polygons be convex. Chap-
ter 3.4 describes a method to partition any polygon into convex sub-polygons.

The second step consists in the integration per se, for which several approaches have been
considered. Two of them have been implemented in CaliFloPP: one based on regular grids over
the domain of integration, the other based on cubature integration methods. They are described
in Chapter 4.
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Part I

Methods for Particle Flow

Integration





Chapter 2

Integral Reduction

The quantity A of particles from a polygon A to a polygon B, can be computed by integrating the
individual dispersal function, φ(y − x), over pairs of points (x, y), x ∈ A, y ∈ B, see Section 1 and
Fig. 2.1.

A

B

(a) The first and second points of each pair can be chosen
independently in A and B.

(b) Consider all the pairs of points separated by the same
vector t (t is in bold on the figure). For a given t, x ∈ A
and x + t ∈ B, if and only if x ∈ A ∩ (B − t) (such x
and x + t are joined here by blue segments; A∩ (B − t) is
represented by the blue area).

Figure 2.1: The quantity of particles from a polygon A to a polygon B is computed by integrating
the individual dispersal function over all pairs of points (x, y) ∈ A×B. These pairs are represented
here by segments.

Rather than scrolling through the pairs of points by choosing each member independently in A
and B, it is worth considering the pairs separated by the same vectors. The dispersal function is
constant on such subsets of the pairs of points.

With the variable change (x, y) → (x, t = y − x), the set

{y − x|x ∈ A, y ∈ B}
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can be written Ǎ ⊕ B where Ǎ = −A and ⊕ stands for the Minkowski sum. The Minkowski sum
of two sets A and B is simply the set obtained by addition of the points of A and B (see Fig. 2.2).
On the other hand, for each vector t ∈ Ǎ ⊕ B:

x ∈ A, y = x + t ∈ B ⇔ x ∈ A ∩ (B − t)

A

B

Figure 2.2: The set of points t = y − x, where x ∈ A and y ∈ B, is written Ǎ ⊕ B. It is the set of
points covered by B when the vertex o is moved inside Ǎ. Here, to simplify, the origin of the plan
o is located on a vertex of B.

Now, we can rewrite the integral F defined by the equation (1.1):

F =

∫

Ǎ⊕B

∫

A∩(B−t)

φ(t) dx dt (2.1)

as:

F =

∫

Ǎ⊕B

∫

A∩(B−t)

dx φ(t) dt. (2.2)

The integral in x is simply the area of A ∩ (B − t), so:

F =

∫

Ǎ⊕B

area(A ∩ (B − t))φ(t) dt (2.3)

The computation of one of the two integrals has been replaced by the computation of an area
and of an intersection, the intersection of A and a translation of B. The calculation of (2.3) has
proven to be faster than the one of (1.1) 1 So, it is the formula implemented in CaliFloPP.

1Time comparisons have been made by using the integration subroutines of the NAG [NAG] library, D01FCF
(adaptive integration, i.e where the evaluation spots depend on the integrand), and D01GCG (Korobov-Conroy
method) on real and simulated fields.



Chapter 3

Geometric Computation

In order to compute numerically the two-dimensional integral (2.3), one must compute the area of
the intersection area(A ∩ (B − t)) for different values of t ∈ Ǎ ⊕ B (domain of integration) where
A and B are polygons. Note that A and B are not necessarily convex. Computations of polygonal
areas, intersections and Minkowski sums are known problems in computational geometry. The
textbook [O’R98] is a rather nice introduction to that topic. Most algorithms briefly described
below are provided there. Note that this chapter is only devoted to the computation of the
geometric features involved in the integral (2.3). The problem of numerical integration is treated
in Chapter 4.

The intersection A ∩ (B − t) is a polygon. The computation of the area of a polygon is
straightforward, see Section 3.1 for the case when the polygon is convex.

The computation of the intersection A ∩ (B − t) is easy when both A and B are convex, see
Section 3.2. When either A or B is not convex, the intersection may be complicated. In particular,
it may not be connected.

The computation of the Minkowski sum Ǎ⊕B is rather easy if A or B are convex, see Section 3.3.

Hence the computation of the integral (2.3) is easy when both A and B are convex. This is
why we propose to first decompose A and B as unions of convex polygons:

A =
n⋃

i=1

Ai, B =
m⋃

j=1

Bj , (3.1)

where the areas of Ai ∩ Ai′ , respectively Bj ∩ Bj′ , are equal to 0 whenever i 6= i′, respectively
j 6= j′. An algorithm for computing such a decomposition is described in Section 3.4. It is easy to
check that the integral (2.3) can be written as:

∫

Ǎ⊕B

area(A ∩ (B − t))φ(t) dt =
n∑

i=1

m∑

j=1

∫

Ǎi⊕Bj

area(Ai ∩ (Bj − t))φ(t) dt. (3.2)

Based on the algorithm for decomposing polygons into convex ones and tools for computing numer-
ically the integral (2.3) for any pair (A,B) of convex polygons (see Chapter 4), the integral (2.3)
for an arbitrary pair of polygons can be computed using Algorithm 1.

Below, convex polygons are represented as sequences of vertices labeled counterclockwise:
(v0, . . . , vn−1). Many computations involve cycling over vertices. Hence it is convenient to use the
convention vn = v0. All edges can be represented as ei = (vi, vi+1), i = 0, . . . , n − 1.



18 Geometric Computation

Algorithm 1: Integral computation for an arbitrary pair of polygons

Data: Two polygons A and B, a dispersal function φ.
Result: Computation of area(A ∩ (B − t)) for an arbitrary vector t.
Compute convex polygons A1, . . . , An such that A =

⋃n
i=1 Ai and such that1

area(Ai ∩ Ai′) = 0 if i 6= i′;
Compute convex polygons B1, . . . , Bm such that B =

⋃m
j=1 Bj and such that2

area(Bj ∩ Bj′) = 0 if j 6= j′;
F = 0;3

for i = 1, . . . , n do4

for j = 1, . . . ,m do5

Increment F by6 ∫

Ǎi⊕Bj

area(Ai ∩ (Bj − t))φ(t) dt;

end7

end8

3.1 Area of a convex polygon

A convex polygon can be decomposed into triangles, see Figure 3.1. Thus its area is the sum of its
triangles areas. Each of them is computed using the following formula

1

2
(xB − xA)(yC − yA) − (xC − xA)(yB − yA), (3.3)

where A, B and C are the triangle vertices and the x’s and y’s are Cartesian coordinates. Equa-
tion (3.3) yields a signed area. It is positive if A, B and C are ordered counterclockwise, otherwise
it is negative. The final result is exact if the coordinates are integers. The computing time de-
pends on the number of polygon vertices. Algorithm 2 describes the whole procedure. Note that if
the polygon vertices are numbered counterclockwise then the triangle vertices are also numbered
counterclockwise.

Algorithm 2: Area of a convex polygon. Triangle areas are computed using Equation (3.3).

Data: Convex polygon with vertices (numbered counterclockwise) v0, . . . , vn−1.
Result: Area of the polygon.
a = 0;1

for i = 1, . . . , n − 2 do2

a = a + area(triangle v0, vi, vi+1);3

end4

For area computation convexity is not an issue. The area of an arbitrary polygon is also easy
to compute. If (x0, y0), . . . , (xn−1, yn−1) are the Cartesian coordinates of the vertices (numbered
counterclockwise) of a polygon, its area is equal to

1

2

n−1∑

i=1

(xi + xi+1)(yi+1 − yi). (3.4)
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0

1

2

3

4

5

Figure 3.1: Decomposition of a convex polygon into triangles. An arbitrary vertex is connected to
all non adjacent vertices.

3.2 Intersection of two convex polygons

Here we focus on the case when the boundaries of the two convex polygons P and Q meet each
other: the cases where the intersection is void or where one polygon is included in the other one
are not considered.

The intersection P ∩Q is a convex polygon whose vertices are vertices of P or vertices of Q or
intersection of edges of P with edges of Q. The intersection can be computed using the algorithm
described in [O’R98, Section 7.6]. Two orientated edges a ⊂ P and b ⊂ Q are chosen. The edges a
and b are advanced so that all the vertices of P ∩Q can be detected and recorded, see Algorithm 3.
Note that special cases are not treated: the algorithm is valid if P and Q are in general relative
position, i.e. their boundaries cross only at the interior of edges. Also the implementation of this
algorithm requires some further low-level functions:

� Test whether two segments meet.

� Compute the intersection of two segments.

� The advancing rule can be reformulated and requires only the computation of signed areas
see [O’R98, Section 7.6] for further details.

3.3 Minkowski sum of convex polygons

Let P and Q be two convex polygons. An algorithm for computing the so-called convolution of P
and Q is described in [O’R98, Section 8.4]. When both P and Q are convex, the convolution is
equivalent to the Minkowski sum. The computation of the convolution is based on the star diagram
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Algorithm 3: Intersection of two convex polygons

Data: Two convex polygons P and Q
Result: Computation of P ∩ Q.
Choose an edge a of P and an edge b of Q;1

R = ∅;2

repeat3

if a meets b then4

if a ∩ b coincides with the first vertex of R then5

Terminate;6

else7

Add a ∩ b to R;8

end9

Advance either a or b;10

else11

if One edge points toward the line containing the other then12

Advance it;13

else14

if One edge is on the right-hand side of the other then15

Advance it;16

else17

Advance either a or b;18

end19

end20

end21

until both a and b cycle along P and Q boundaries;22
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of P and Q edges. For any edge e of P Let α(e) ∈ [0, 2π) be the angle of e with an arbitrary axis.
The star diagram is a polar representation of the α′s. The Algorithm 4 shows how to compute the
Minkowski sum from the star diagram. Due to the convexity assumption, α is increasing on the
set of edges of a polygon if the reference axis is parallel to its first edge.

Algorithm 4: Minkowski sum of two convex polygons.

Data: Two convex polygons P and Q.
Result: The Minkowski sum P ⊕ Q.
// Star diagram

Compute α for all edges of P and Q taking as the reference axis a line parallel to the first1

edge of P ;
Sort the α’s: αk, k = 0, . . . , n + m − 1 where n is the number of P -vertices and m is the2

number of Q-vertices;
R = {first vertex of P};3

for k = 0, . . . , n + m − 1 do4

Add to R the latter vertex of R translated by ~e where e is the edge associated with αk;5

end6

3.4 Convex partitioning of a polygon

In order to implement Algorithm 1, one needs to decompose an arbitrary polygon into convex
polygons. The decomposition algorithm is three-step:

1. The polygon P is triangulated using an ear removal algorithm, see e.g. [O’R98, Section 1.6].

2. Essential diagonals of the triangulation are identified.

3. The convex subpolygons are created.

An internal (resp. external) diagonal is a segment joining two vertices which is contained in (resp.
lies outside) the polygon. An ear is a triangle inside the polygon whose vertices are three consecutive
vertices a, b, c of the polygon, i.e. ac is an internal diagonal.

The triangulation algorithm, see Algorithm 5, consists in successive ear removals. In order to
test whether a vertex vi is an ear tip, one tests whether vi−1vi+1 is an internal diagonal. The latter
test is decomposed into two steps: first test whether vi−1vi+1 is a diagonal (internal or external),
second test if vi−1vi+1 is internal. The first test involves edge intersection tests (loop along the
edges). For the second test, one has to consider two cases: vi is convex or reflex. The second test
requires only computation of signed areas.

The triangulation yields internal diagonals (inner edges of the triangulation). A non-essential
diagonal divides two adjacent cells whose union is still convex. It is easy to check that a diagonal
is non-essential if both its ends are convex.

The last step is to split the polygon according to computed essential diagonals, see Algorithm 6.
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Algorithm 5: Triangulation of a polygon.

Data: A polygon P with vertices v0, . . . , vn−1.
Result: A triangulation of P
// Find ear tips

for i = 0, . . . , n − 1 do1

if vi−1vi+1 is an internal diagonal then2

Set vi as an ear tip;3

end4

end5

T = ∅;6

v = first vertex of P ;7

while P has more than 3 vertices do8

if v is an ear tip then9

Add to T the triangle uvw where u is the vertex previous to v and w is the vertex10

next to v;
// Update ear tip status of u and w
if the vertices before and after u form a diagonal then11

Set u as an ear tip;12

end13

if the vertices before and after v form a diagonal then14

Set v as an ear tip;15

end16

Remove v from P ;17

end18

Advance v;19

end20

Algorithm 6: Creation of convex polygons from the essential diagonals

Data: A nonconvex polygon: its nvertices vertices and ndiagonals diagonals; the essential
diagonals are marked. The sides of the polygon are essential diagonals.

Result: The np convex subpolygons: their vertices are stored anticlockwise in polyg.
np = 01

while there is an essential diagonal do2

(va, vb) = any essential diagonal3

start = va4

while vb! = start do5

store (va, vb) into polyg[np]6

mark (va, vb) non-essential7

// Determine the following diagonal:

(vb, vc) is the diagonal starting from vb and such as the angle (va, vb, vc) is minimum8

va = vb; vb = vc9

end10

np = np + 111

end12



Chapter 4

Two-dimensional Numerical

Integration

This chapter is devoted to the numerical computation of integrals of the type

∫

Ǎ⊕B

area(A ∩ (B − t))φ(t) dt, (4.1)

where A and B are bounded polygons and φ is an arbitrary integrable dispersal function. As seen
in Chapter 3, without loss of generality we can focus on the case when both A and B are convex.

We will start by preliminary remarks concerning the smoothness of the integrand. Then we
will discuss two methods for numerical integration:

� A simple randomized discretization of the integral;

� An adaptive cubature method.

The first method, described in Section 4.2, combines simple discretization and Monte-Carlo
techniques. This method is quite robust (convergence even for non-smooth integrands). It yields
unbiased estimates and it is able to assess its precision. However it may be slow compared to other
methods.

The second method consists of an adaptive cubature. First, the domain of integration (a convex
polygon) is triangulated. Then the integral over each triangle is approximated using the adaptive
cubature method proposed by Berntsen and Espelid [BE92]. The convergence of this method
depends on the smoothness of the integrand. It may fail to converge if the integrand cannot be
approximated locally by a polynomial. Some basic results about the smoothness of the integrand in
Equation (4.1) are stated in Section 4.1. Details about the adaptive cubature method are provided
in Section 4.3.

4.1 Smoothness of the integrand

The integrand in Equation (4.1) is the product of two functions:

area(A ∩ (B − t)) and φ(t).

The function t 7→ area(A ∩ (B − t)) is a piecewise linear function. Its support Ǎ ⊕ B can be split
by line segments obtained by adding edges of Ǎ and edges of B, see Figure 4.1. Inside each cell of
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A

B

O

Ǎ ⊕ B

Figure 4.1: Partitionning of the Minkowski sum of two convex polygons A and B according to
their edges.

this partition, t 7→ area(A ∩ (B − t)) behaves linearly. The differential t 7→ area(A ∩ (B − t)) is
not continuous along the network of cell boundaries.

The smoothness of the whole integrand also depends on the smoothness of the dispersal func-
tion φ. For instance, the dispersal function given in Equation (10.2) is infinitely continuously
differentiable except at the origin where it is not twice differentiable. Then the whole integrand
is infinitely continuously differentiable except along the cell boundaries in the partition of the
Minkowski sum where it is not differentiable and at the origin where it is not twice differentiable.
Another example: the dispersal function given in Equation (10.1) is not differentiable at the origin
and it is not twice differentiable along a circle with radius 1.5 meter centered at the origin. Then
the whole integrand is not differentiable neither at the origin nor along the cell boundaries and it
is not twice differentiable along the circle.

4.2 Method based on grids of points

A simple and intuitive method to perform numerical integration consists of evaluating the integrand
over a regular grid of points. The integral is then approximated by summing the integrand over
the grid points, and by multiplying the result by the volume of each cell in the grid. Provided the
grid position is randomised, this method yields an unbiased estimate of the integral. In addition, it
can be repeated several times, with grid positions randomised independently. The integral is then
estimated by the mean over the replicated grids. Replications increase precision but also allow the
standard error to be estimated.

To simplify, this method will be called the grid method in the sequel. In CaliFloPP, the
distances between the nodes of the grids are the same for all grids and they are chosen by the user.
The number of replications is also set by the user.

Let A and B be two polygons. The main steps are :

1. calculation of the Minkowski sum Ǎ ⊕ B ;

2. determination of the smallest rectangle which includes the Minkowski sum and whose sides
are parallel to the axes (see Fig. 4.2) ;
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3. integration over this rectangle, with the integrand multiplied by a coefficient w equal to 1 if
the point is in the Minkowski sum, to 0 otherwise.

Integration is performed as mentioned above, using several grids of points with the following
properties :

� all grids have the same x and y lags between adjacent nodes, chosen by the user ;

� each grid is positioned randomly on the integration area, by shifting it randomly relatively
to the origin. The shifting is determined by pseudo-random numbers from the uniform
distributions over the intervals [0, px] and [0, py], where px and py denote the x and y lags
between adjacent grid nodes.

The integral is estimated by the mean integral over the replicated grids.

4.2.1 Additional results

� Standard deviation

The standard deviation is defined as :

sd =

√∑r
i=1(ai − a•)2

r − 1
(4.2)

where ai is the integral value calculated by replication i, and r the number of grid replications.

� Coefficient de variation

The coefficient de variation is defined as :

CV =
sd

a•

(4.3)

� Precision and confidence intervals

Precision and confidence intervals can be calculated by the user from the replications results.
For example, when the number of replications is large enough and the distributions are
symmetric, they can be calculated from the quantile of the Student distribution. The half-
range hr of the confidence interval, or the absolute precision, is then defined as :

hr = sd × qt(r − 1, p)√
r

(4.4)

where qt(n, p) is the quantile for probability p of the Student distribution with n degrees of
freedom. The relative precision is hr

a•

.

4.3 Adaptive cubature method

The cubature method over triangles DCUTRI [BE92] uses an integration rule of degree 27 based on
37 points. Using estimates of approximation errors, triangles are iteratively split into subtriangles
until a nominal error is reached. At each iteration the triangle with the largest error is selected for
further splitting. The procedure is expected to converge if the integrand is smooth enough inside
each triangle. For instance, if the dispersal function is singular at the origin and if the domain
of integration Ǎ ⊕ B contains the origin, one expects a quicker convergence when the origin is a
vertex of the triangulation. Hence (see Figure 4.3):
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Figure 4.2: Minimal rectangle including the Minkowski sum and grid of points before random
shifting

� if Ǎ ⊕ B does not contain the origin, it is triangulated from an arbitrary vertex,

� if Ǎ ⊕ B contains the origin O, it is triangulated from O.

A further refinement is to avoid to integrate over areas where the dispersal function is considered
as negligible that is below a chosen threshold rmax. Note that whenever the dispersal function is
non-negative and tends to 0 at infinity, it can be considered in practice as null when it is less
than the smallest positive number greater than zero for the used type of number. Thus instead of
integrating over the whole Minkowski sum Ǎ ⊕ B, one may integrate only on its intersection with
a disc centered at the origin and with radius rmax. In practice it is simpler to replace the disc by a
regular polygon e.g. an octogon containing it, see Figure 4.4. Hence integration is still performed
on a convex polygon.
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A

B

O

Ǎ ⊕ B

A
B

O
Ǎ ⊕ B

A = B

O

Ǎ ⊕ A

Figure 4.3: Triangulation of the Minkowski sum of two convex polygons A and B. If A and B are
disjoint (top), the Minkowski sum Ǎ ⊕ B does not contain the origin and is triangulated from an
arbitrary vertex. If A and B share a common edge (middle) or if A = B (bottom), the Minkowski
sum Ǎ ⊕ B contains the origin O and is triangulated from O.
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rmax

rmax

A
B

O
Ǎ ⊕ B

A

B

O

Ǎ ⊕ B

Figure 4.4: Reduction of the domain of integration. Beyond rmax the dispersal function is consid-
ered as negligible. The integral is computed only over the intersection of Ǎ ⊕ B and an octogon
(blue solid line) containing the disc centered at the origin with radius rmax (blue dash line). Top:
the Minkowsi sum Ǎ ⊕ B does not contain the origin . Bottom: the Minkowski sum contains the
origin.
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Figure 4.5: Example of 66 polygons extracted from the ORTHO IGN data base. Unit is meter.

4.4 Introduction

In this Section, we analyze the behavior of the grid and cubature methods on a real landscape.
First, we compare the results calculated with different parameterisations of each method; then, the
two methods are compared.

4.4.1 Data

The data are 66 polygons extracted from the ORTHO demo, a IGN1 data base , see Fig. 4.5. To
illustrate contrasted situations, five pairs of polygons are treated:

� (1,1): two identical convex polygons,

� (14,14): two identical non-convex polygons,

� (11,12): two convex polygons next to each other,

� (56,57 ): two polygons next to each other, one convex, the other non-convex,

� (4,4): two identical very irregular polygons.

1Institut Géographique National: http://www.ign.fr/rubrique.asp?rbr id=1619

http://www.ign.fr/rubrique.asp?rbr_id=1619
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Table 4.1: Grid results with different numbers of replications (r) and grid step equal to 1 m.

Polygons r bF bσ bσ/ bF×100 T imes
1↔1 5 12222.2 234.6 1.88 3.5

10 12282.5 217.7 1.77 7.0
15 12238.8 204.1 1.66 10.5
20 12247.7 220.9 1.80 14.1

14↔14 5 23542.1 461.6 1.96 31.9
10 23359.0 391.1 1.67 63.7
15 23411 344.4 1.47 95.3
20 23413.3 332.4 1.41 126.7

11↔12 5 164.5 2.4 1.48 7.0
10 166.1 3.1 1.89 14.0
15 167.3 3.1 1.85 21.1
20 167.2 3.1 1.84 27.9

56↔57 5 132.5 2.0 1.51 5.9
10 133.0 2.2 1.70 11.7
15 132.5 2.1 1.62 17.6
20 132.8 1.9 1.49 23.4

4↔4 5 14610.1 72.3 0.5 45.7
10 14570.9 91.5 0.62 90.7
15 14617.7 155.2 1.06 136.7
20 14631.5 151.5 1.03 181.2

The individual dispersal function is the oilseed rape pollen dispersal function defined in Sec-
tion 10.8.1.

4.5 Influence of the parameterisation in the grid method

In the grid method, two parameters must be chosen according to the user’s needs: the number of
replications and the grid step.

4.5.1 Influence of the number of replications

To compare the results calculated with different numbers of replications, four values were succes-
sively applied: r = 5, 10, 15, 20. The grid step was constant and equal to 1 m for both axes.

The results2 are given in Table 4.1. They are: the evaluated mean flow (F̂), the standard

deviation (σ̂), the coefficient of variation (σ̂/F̂) and the execution time3. We can notice that the
execution times are the longer as the polygons are the more irregular: calculation is faster on
convex polygons (1↔1, 11↔12) than on non convex ones (14↔14, 56↔57) and very much longer
on irregular polygons (4↔4).

4.5.2 Influence of the grid step

To compare the results calculated with different grid steps, four values were tried successively:
step = 0.25 m, 0.5 m, 0.75 m and 1 m. The number of replications, r, is set to 10.

The results are displayed in Table 4.2. As expected, the times increase as the steps become
smaller.

2Results are dependent on the random numbers generator; so, actual values may be slightly different.
3 Execution times depend on the material context. They have been observed here on a Dell Biprocessor, in

shared mode and 3,2GhZ.
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Table 4.2: Grid results with different steps (r = 10);

Polygons step bF bσ bσ/ bF×100 T imes
1↔1 1 12282.5 217.7 1.77 7.0

0.75 12196.9 27.3 0.22 12.6
0.5 12277 32.8 0.26 28.5
0.25 12273.8 4.08 0.03 111.5

14↔14 1 23359.0 391.1 1.67 63.7
0.75 23362.7 183.2 0.78 114.5
0.5 23376.7 63.4 0.27 258.5
0.25 23380.6 7.7 0.03 1016.6

11↔12 1 166.1 3.1 1.89 14.0
0.75 167.2 1.4 0.85 25.3
0.5 167.1 0.5 0.34 57.1
0.25 167.2 0.1 0.05 223.9

56↔57 1 133.0 2.26 1.70 11.7
0.75 132.5 0.87 0.66 21.1
0.5 132.5 0.32 0.24 47.8
0.25 132.5 0.02 0.02 187.5

4↔4 1 14570.9 91.5 0.62 90.7
0.75 14585.4 46.9 0.32 164.5
0.5 14607.7 14.8 0.10 370.9
0.25 14612.8 1.85 0.01 1452.8

4.6 Influence of the parametrization in the cubature method

In the cubature method, two parameters must be chosen: the maximum number of function eval-
uations and the precision.

4.6.1 Influence of the number of evaluations

We compare the results calculated with different numbers of evaluations: Neval = 106, 105, 75×
103, 5 × 104.

As the integration process stops as soon as either the maximal number of evaluations or the
required absolute or relative precisions are reached, these precisions should be small enough to
ensure that all the evaluations are run (here, the required precisions are set to 1.0e-30).

The results are given in Table 4.34 and the confidence intervals are represented in Fig. 4.6. The
results obtained by the grid method with a rather great number of replications (r = 10) and a
small step (step = 0.25 m.) are given as references.

4.6.2 Influence of the required precision

To evaluate the impact on the results of the required relative precision, several values were suc-
cessively tried: req.rel.er = 0.0001, 0.001, 0.01, 0.1. The number of evaluations was set to its
maximum.

The results are summarized in Table 4.4 and the confidence intervals are represented in Fig. 4.7.

As previously, the results calculated by the grid method with r = 10 and step = 0.25 m., are
given as reference values.

4 The actual number of evaluations may be slightly less than the required number, because it is a multiple of the
number of triangles built by the method on each integration regions.
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Table 4.3: Cubature results with different numbers of evaluations. The columns 2 and 3 are grid
results (r = 10, step = 0.25). The subsequent ones are cubature results with different numbers of
evaluations.

Polygons bF T imes bF rel.er abs.er Neval T imes
1↔1 12273.8 111.5 12273.2 2.7e-6 0.033 999962 13.3

12273.2 3.3e-5 0.4 99974 1.3
12273.2 4.6e-5 0.57 74962 1.02
12273.2 5.3e-5 0.65 49950 0.65

14↔14 23380.6 1016.6 23381.1 1.8e-5 0.42 999999 15.1
23381.4 0.0003 7.7 99863 1.47
23381.5 0.0006 15.07 74999 1.14
23379 0.002 54.09 49987 0.72

11↔12 167.2 223.9 167.3 1.3e-6 0.0002 999962 16.8
167.3 3e-5 0.005 99974 1.6
166.3 4.2e-5 0.007 74962 1.3
167.3 8e-5 0.013 49950 0.83

56↔57 132.5 187.5 132.4 5.2e-6 0.0007 999888 17.2
132.5 0.00010 0.013 99900 1.7
132.5 0.00016 0.022 74888 1.37
132.5 0.0005 0.062 49876 0.87

4↔4 14612.8 1452.8 14613.5 5.7e-5 0.8 999888 14.3
14611 0.0066 96.7 99900 1.4
14625.6 0.017 249.5 74888 1.15
14623.9 0.058 849.6 49876 0.73

Table 4.4: Cubature results with different relative precisions required. The columns 2 and 3 are
grid results (r = 10, step = 0.25). The subsequent ones are cubature results with different relative
precisions required.

Polygons bF T imes bF req.rel.er rel.er abs.er Neval T imes
1↔1 12273.8 111.5 12273.3 0.0001 9.8e-5 1.21 23754 0.3

12273 0.001 0.00093 11.48 8362 0.1
12283.4 0.01 0.0098 121.28 5550 0.08
12279.7 0.1 0.066 820.0 4070 0.06

14↔14 23380.6 1016.6 23381.2 0.0001 9.9e-5 2.3 218707 3.24
23381.8 0.001 0.00099 23.2 62715 0.9
23370.4 0.01 0.0099 233.3 30007 0.45
22762.8 0.1 0.099 2275.2 12395 0.21

11↔12 167.2 223.9 167.3 0.0001 9.9e-5 0.016 42402 0.7
167.28 0.001 0.00097 0.16 10286 0.2
166.8 0.01 0.009 1.5 2738 0.05
166.7 0.1 0.07 12.5 2442 0.05

56↔57 132.5 187.5 132.4 0.0001 9.9e-5 0.013 100344 1.76
132.3 0.001 0.0009 0.13 16872 0.99
132.3 0.01 0.0098 1.3 8140 0.19
132.5 0.1 0.096 12.78 4292 0.08

4↔4 14612.8 1452.8 14613.5 0.0001 9.9e-5 1.46 587708 8.6
14613.9 0.001 0.0009 14.6 176860 5.16
14622 0.01 0.0099 145.4 86136 2.17
14432.3 0.1 0.099 1430.26 38332 1
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Figure 4.6: Cubature method: Mean and confidence interval against number of evaluations. The
first value (abscissa G) is the grid reference value.
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4.7 Global comparison

4.7.1 Global summary

From these computation experiments, some general characteristics can be noticed:

� When the required precision is small enough, the results calculated by the cubature and grid
methods are very similar.

� The polygon shape is influent on execution times, in both methods: calculation is faster on
convex polygons than on nonconvex ones and very much longer on irregular polygons.

� The cubature method is faster than the grid method.

� In the cubature method, the maximum number of evaluations should be great enough for
the precision to be reached. This is all the more so since the polygons are more irregularily
shaped. For very irregular polygons, convergence may not be reached, whatever the number
of evaluations is.

4.8 Influence of the dispersal function

Section 4.1 has pointed out possible problems when the dispersal function is not smooth (its
derivative is not continuous5).

To bring into light this behavior, the following non differentiable individual dispersal function
is proposed:

φ(t) =

{
a − b × t2 when t ≤

√
a/b

0 otherwise,

with a = 10, b = 20. See Fig. 4.8

All the results calculated by the cubature method on the chosen pairs of polygons are then null
except for the pair 4↔4, whatever the required precision is. The grid method gives coherent values.

Comments: Before applying the cubature method on a new dispersal function, it is strongly
recommended to compare some results with the ones calculated by the grid method.

4.9 Conclusion

Comparison of the results calculated by the grid and cubature methods on different types of
polygons extracted from a real landscape has shown the coherence of these methods. The shapes
of the polygons and the required precision of the results have great impact on the execution
times with a great advantage for the cubature method. However, the grid method is convenient to
provide reference values in case of non convergence or when testing non smooth individual dispersal
functions.

5 When the dispersal function becomes very suddenly null, the triangles built by the cubature method may
intersect the support of the function without any evaluation points being in this support.
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Part III

Customization Guide





Chapter 5

Configuration variables

After downloading and un-taring the tar-file of the package, the file src/caliconfig.h contains
configuration variables that you should customize according to your needs. After modification,
recompilation is required: see 6 If you modify the value of any of them, reflect this change in the
help file of the R function califlopp (man/califlopp.Rd).

The following tables describe the configuration variables.
In the first column, in addition to the variable names, information is given about the possibility

for the user to modify the default value: an asterisk means that it is the case, through the argument
param of the R function califlopp (in an R session, see the on-line help of califlopp). The name
of the corresponding component of param is given in parenthesis in the following table.
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5.1 Input

Name Meaning Comments
DEFAULT INPUT FORMAT
(input) (*)

Format of the polygons-
file

- should be 1 if each polygon is coded
on two lines:
1/ an identification number, followed by
the x-coordinates
2/ the same number, followed by the y-
coordinates,
- should be 2 if each polygon is coded
on three lines:
1/ an identification number, a name,
the number of vertices (followed possi-
bly by other data that are ignored)
2/ the x-coordinates
3/ the y-coordinates.

DEFAULT DELIM (delim) (*) Separator character in the
polygons-file

should be between double-quotes

MAX LINE POLY Maximal number of char-
acters on each line of the
polygon file

MAX NAME Maximal length of the
polygon names

PATH MAX Maximal number of char-
acters for pathnames

usually, PATH MAX is defined in
stdio.h
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5.2 Output

Name Meaning Comments
OUTPUT FILE FORMAT Content of the result-file - should be ALL to output all the

results
- should be FLOW to output the
polygon identifiers and the flow
by square meter,
- should be LIGHT to output all
the results except for the time.

OUTPUT WARNING Warnings output on the error
unit

- should be ALL to print all
warnings,
- should be NOTHING for mini-
mum warnings.

DEFAULT OUTPUT (output) Output on the standard output
unit

- should be ALL to print all the
results,
- should be FLOW to print the
integrated flows, the flows by m2,
- should be LIGHT to print the
integrated flows, only, (one line
per pair of polygons)
- should be NOTHING for no
print.

DEFAULT VERBOSE
(verbose) (*)

verbose mode should be 1 to get output about
the decomposition into convex
polygons and landscape reloca-
tion, and 0 otherwise

5.3 Error treatment

Name Meaning Comments
ERR POLY treatment of erroneous polygons - should be 0 if an error on a poly-

gon should be a warning: the er-
roneous polygon is then ignored
- should be 1 if an error on a poly-
gon should be fatal
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5.4 Landscape features

Name Meaning Comments
MAX VERTICES Maximal number of vertices per

polygon
MAX TRIANGLES Maximal number of convex sub-

polygons per polygon
This number depends on the
polygons shapes: more they
have obtuse angles, more the
number of convex subpolygons
should be great. But, be careful:
If values of MAX VERTICES
and MAX TRIANGLES are too
big, execution errors may occur
(”Segmentation fault” or ”Out of
memory”)

TRANSLATE Landscape relocation. Should be 1 if the landscape
should be systematically relo-
cated, so that the left-bottom
corner of the landscape is (1,1).
(Recommanded value)

SCALE The polygon-coordinates are
multiplied by SCALE.

Should be 1 or a multiple of 10.
For example, to take into account
centimeters, set SCALE to 100

SAFE Maximal range of the coordi-
nates

It is the maximal range of the
coordinates after they have been
multiplied by SCALE.
SAFE should be less than
INT MAX (which is usually=
2147483647)

DISTP When the distance between two
successive vertices is less than or
equal to DISTP, the second ver-
tex is suppressed.

Expressed in meters.

ANGLEPREC Precision of the angle between 3
successive vertices.

When the arccosinus of the angle
between three successive vertices
is inside [π-ANGLEPREC,
π+ANGLEPREC], the ver-
tices are considered as aligned,
and the second one is sup-
pressed. When it is in-
side [-ANGLEPREC, +AN-
GLEPREC], it is supposed that
the sharp spike they form is an
artefact, and the second one is
suppressed.
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5.5 Individual dispersal functions

Name Meaning
DZ1, DZ2, DZ3, DZ4, DZ5 Thresholds for dispersal distances: When the

minimal distance between two polygons is
greater than or equal to these values, the cor-
responding dispersal function (f1 for DZ1, ...
f5 for DZ5) is supposed to be null; distances
are in meter. Negative or null values mean
that there is no limit in the dispersal.

DP1, DP2, DP3, DP4, DP5 Thresholds for dispersal distances: When the
minimal distance between two polygons is
greater than or equal to these values, the
dispersal is calculated between polygons cen-
troids; distances are in meter.

5.6 Methods features

5.6.1 Cubature method

Name Meaning
DEFAULT ABS ERR
(abser) (*)

Default absolute precision

DEFAULT REL ERR
(reler) (*)

Default relative precision

DEFAULT MAX PTS Maximal number of evaluation points per integration re-
gion.

DEFAULT NB PTS
(maxpts) (*)

Default maximal number of evaluations per triangle (should
be in [37,DEFAULT MAX PTS])

MAX SREGIONS Maximal number of subregions per integration region.
TZ1, TZ2, TZ3, TZ4,
TZ5 (tz) (*)

Method of triangulation for the cubature method. Should
be True, if triangulation from (0,0) has to be done when
(0,0) is included in the integration area (recommended value
when the dispersal function is very ”sharp” at the origin).

5.6.2 Grid method

Name Meaning
MAX EST Maximal number of estimations
DEFAULT EST (nr) (*) Default number of estimations (≤ MAX EST)
DEFAULT STEPX (step0) (*) Default step on the x-axis grid of points; in meters.
DEFAULT STEPY (step1) (*) Default step on the y-axis grid of points; in meters.
DEFAULT SEED (seed) (*) Default value of the seed for the random number generator.

5.7 Numerical parameters

Name Meaning Comments
REAL PREC Precision for real comparisons in

geometrical computations
Recommended:
(REAL MIN*1.0e+4)
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Chapter 6

How to make changes

1. Download the tar-archive file of RCALI package and untar it: a directory named RCALI is
created.

2. Possibly, reflect the changes you make in the source code in the help-file man/califlopp.Rd

of the function califlopp (default values of the parameters).

3. After alteration of the source code, recompilation is required. Typically use the standard R
command: R CMD build RCALI on top of your RCALI directory.
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Chapter 7

The polygons-file

In accordance with the gene flow application and the dispersal functions defined in Section 10.8,
we assume in the following that 1 unit in the polygon coordinates corresponds to 1 m.

7.1 Constraints on the polygons

� Polygons should be without holes.

� Small and narrow polygons (approximately less than 1 m2) should be avoided because of
possible numerical problems, as well as polygons with many obtuse angles because their
decomposition into convex subpolygons may not be possible.

� Shape and size restrictions are set in the file src/caliconfig.h. They are:

MAX VERTICES, the maximal number of vertices per polygon,
MAX TRIANGLES, the maximal number of convex subpolygons per polygon,
SAFE, the maximal extent of the landscape.

Notes: There is no limit in the number of polygons (except possible memory limitation) and
the polygons may intersect.

7.2 Syntax of the polygons file

The polygons file contains the coordinates of the polygons. It should respect the following rules:

� It should be an ASCII-file.

� Vertices should be ordered clockwise.

� The polygons may be closed or not.

� The coordinates may be negative or null. The number of decimal digits taken into account
depends on the constant SCALE1. (See Section 10.4).

1Constant set in the file src/caliconfig.h
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� The values separator is the character DEFAULT DELIM1 set in the file src/caliconfig.h.
It can be changed by the component delim of the argument param of the main function
califlopp, of RCALI.

The separator character can be repeated any number of times between successive values.

� Two formats for the polygons file are catered for:

The default format is defined by the constant DEFAULT INPUT FORMAT1. It can be
changed by the component input of the argument param of the main function califlopp, of
RCALI.

� In format 1, there are two lines per polygon: on the first one, an identifier (a positive
integer), followed by the x-coordinates, on the second one, the same identifier followed by
the y-coordinates. The function R export.listpoly generates such a file from R structures

� In format 2, there are three lines per polygon: on the first one, an identifier (a positive
integer), followed by a name for the polygon and by the number of its vertices, on the second
one, the x-coordinates, and on the third one, the y-coordinates.
The polygon names may consist of several words, as long as these words are not separated
by the values separator character.

Note:
If the number of polygons set on the first line, npoly, is less than the effective number, only

the first npoly polygons will be treated.
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Input

The argument dispf of the main function of RCALI, califlopp, describes the dispersal functions.
The argument param describes the other entries.

8.1 The dispersal functions

The required dispersion functions can be described by two different ways in the vector argument
dispf:

1. By vector of integers, when the dispersion functions are programmed in C (their source is in
the file RCALI/src/functions.cc) and compiled. By default, 1 is for dispersal of oilseed rape
pollen, 2 for dispersal of oilseed rape seed (dispersals of oilseed rape are the ones defined in
GeneSys - see [CCDM01a] and [CCDM01b]), 3 for the constant function, 4 for an anisotropic
version of the dispersal of yellow rust of wheat defined in Soubeyrand and all - see [Pap11], 5
for a discontinuous function. Details and instructions to modify them are given in the online
help of califlopp.

2. By R functions. The user defines the dispersal functions in R functions.

8.2 The parameters

Parameters can be described in the list argument param. Default values are provided. Details and
default values can be found in the online help of califlopp. Its components are:

� input The format of the polygons-file: 1 or 2 (see 7.2).

� delim Character separator between values in the polygons-file.

� method String equal to cub for cubature method, grid for the grid method.

� dz Integer vector, whose length is greater or equal to the number of required dispersion func-
tions. dz[i] is the distance in meters beyond which the ist dispersion function is considered
as nul.

� dp Integer vector, whose length is greater or equal to the number of required dispersion func-
tions. dp[i] is the distance in meters beyond which the ist dispersion function is calculated
between centroids only.
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� poly Required pairs of polygons.

� send.and.receive TRUE, if results are required from sending polygons to target polygons
and from target polygons to sending polygons (case of anisotropic functions).

� output The required output on the screen (see 9.1)

� verbose TRUE, if output is required about polygons convexity and landscape translation.

� warn.poly TRUE, if output is required about polygons simplification.

� warn.conv TRUE, if output is required when cubature convergence is not reached.

When the method is cub (cubature), additional components may be given. They are all vectors of
length equal to the number of required functions.

� maxpts Maximal number of evaluation points required for each function.

� reler Relative error required for each function.

� abser Absolute error required for each function.

� tz Mode of triangulation for the cubature method for each function.

When the method is grid (evaluation on a grid), additional components may be given:

� seed Seed of the random generator.

� step Steps of the grid

� nr Maximal number of replications or grids.
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Output

9.1 Screen output depend on the parameter “output”

Screen output depend on the component output of the argument param of the main function of
RCALI, califlopp. Its default value is the constant DEFAULT_OUTPUT set in the file src/caliconfig.h.
For each pair of polygons:

� When output= 1 or DEFAULT_OUTPUT=ALL, output are:

– With the grid method:

* the integrated flow calculated at each replication,

* the final value of the integrated flow, its mean per m2 of both polygons, the standard deviation
and the variation coefficient.

– With the cubature method:

* the integrated flow, its mean per m2 of both polygons, the absolute error, the
confidence interval and the number of evaluations.
An asterisk before the absolute error means that the convergence has not been
reached with the required precision.

– With both methods, the areas of the polygons.

� When output= 2 or DEFAULT_OUTPUT=LIGHT, an iteration number (starting from 1) is only
the output.

� When output= 3 or DEFAULT_OUTPUT=FLOW, output consist of: the integrated flow and its
mean per m2 of both polygons.

� When output= 0 or DEFAULT_OUTPUT=NOTHING: nothing is written.

Note: When all the pairs of polygons are treated, only (npoly∗(npoly+1))/2 results are displayed,
where npoly is the number of polygons, unless the component send.and.receive of the argument
param of the R-function califlopp is TRUE.

9.2 The result file

When the argument resfile of the RCALI-function califlopp is set, a file is created. It contains
part or all of the results.

On the result-file:
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� The values are separated by tabulates.

� The first line contains: "npoly:", "input-file:", "nfunc:", "method:", each of these
identifiers followed by the actual values ("method:" is followed by either "cubature" or
"grid").
When the method is grid, the remaining of the line is "stepx:", followed by the x-axis step
and "stepy:", followed by the y-axis step.

� On each of the following lines, the results for a couple of polygons are written:

– the identifiers of both polygons;

– for each dispersal function, the integrated flow divided by the area of the second polygon;

– the areas of both polygons.

When the constant OUTPUT FILE FORMAT1=LIGHT, the remaining of the line is:

– When the method is cubature: For each dispersal function,

1. the integrated flow,

2. the lower and upper bounds of the confidence interval,

3. the absolute error,

4. the number of evaluations.

– When the method is grid, for each dispersal function,

1. the integrated flow,

2. the standard deviation,

Examples can be found in files suffixed by .res, in the subdirectories of the examples directory.

9.3 Error treatment

When an error is encountered, an explicit message is issued on the standard error unit (the screen,
by default). Some types of errors are treated specifically:

� Error in a polygon:
A polygon is considered as not valid when it cannot be split into convex subpolygons, i.e
when it has too many obtuse angles. The treatment depends on the constant ERR_POLY2.
When ERR_POLY is null, an error message is issued, and the polygon is ignored. Otherwise,
the error is fatal.

� Memory allocation problem, Overflow and Range Error: An error message is issued
and execution stops and returns a negative value.

1 Constant set in the file src/caliconfig.h.
2Constant set in the file src/caliconfig.h
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Example

10.1 The polygons-file

The polygons file is named poly.txt. It is in format 1 (see 7.2) and the separator character is the
blank character. Its first lines1 are:

66

1 540139 540116 540261 540274

1 1794900 1795000 1795000 1794920

2 540378 540467 540453 540373 540374

2 1795000 1795000 1794850 1794850 1794890

10.2 Calculation by the cubature method

Only one result is calculated here: the integrated flow from the polygon 66 to itself, by the cubature
method. Thresholds are required for the relative errors: 1.0e-4 for function 1 (pollen flow) and 1.0e-
3 for function 2 (seed flow). The other parameters are let to their default values. The argument
param of the R function califlopp is:

> library("RCALI")

> param <- list(input=1, delim=' ',

+ reler=c(1.0e-4, 1.0e-3),

+ poly=c(66,66))

> file <- paste(system.file("extdata", package = "RCALI"),

+ "poly.txt", sep='/')

> califlopp(file=file, param=param)

CaliFloPP - Copyright (c) 2007 - INRA

Number of polygons: 66

-------------------

Parameters:

-----------

1The file poly.txt can be found in the directory extdata of the package.
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verbose: 0

output: 1

scale: 10

maximal dispersion distances for each function: 0 21

minimal dispersion distances for each function: 100 0

(the dispersion is calculated between centroids,

for distances beyond these values)

method:cubature

function 1: relative precision = 0.0001, absolute precision = 0.001

maximal number of evaluations points fixed to 100000

function 2: relative precision = 0.001, absolute precision = 0.001

maximal number of evaluations points fixed to 100000

mode of triangulation: 0 1

Polygons 66, 66

-------------------

Elapsed real time in integration: 0 seconds

Integrated flow for function 1:

mean: 6117.53 mean/area1: 0.942609 mean/area2: 0.942609

absolute error: 0.61155 relative error: 9.99668e-05

confidence interval: [6116.92, 6118.15]

nb. evaluations: 70448

Integrated flow for function 2:

mean: 6403.84 mean/area1: 0.986724 mean/area2: 0.986724

absolute error: 5.91296 relative error: 0.000923345

confidence interval: [6397.93, 6409.75]

nb. evaluations: 14726

area1: 6490 area2: 6490

Total elapsed real time in integration: 0 seconds (0.000000 minutes)

10.3 Calculation by the grid method

The parameter-file, exg2.param, is:

> param <- list(input=1, delim=' ',

+ method="grid",

+ output=3,

+ nr=20,

+ step=c(0.25, 0.25),

+ poly=c(66,66))

> califlopp(file=file, param=param)
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CaliFloPP - Copyright (c) 2007 - INRA

Number of polygons: 66

-------------------

Parameters:

-----------

verbose: 0

output: 3

scale: 10

maximal dispersion distances for each function: 0 21

minimal dispersion distances for each function: 100 0

(the dispersion is calculated between centroids,

for distances beyond these values)

method:grid

seed: 1

x-axis step: 0.25 m.

y-axis step: 0.25 m.

number of estimations: 20

Polygons 66, 66

-------------------

Integrated flow for function 1:

mean: 6117.35 mean/area1: 0.942581 mean/area2: 0.942581

Integrated flow for function 2:

mean: 6403.98 mean/area1: 0.986745 mean/area2: 0.986745

Total elapsed real time in integration: 41 seconds (0.000683 minutes)
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The main steps of the programme are shortly sketched here. The user is invited to read this
Section for a better understanding of the input, output, warning and error messages.

10.4 Preprocessing on the polygons

1. The coordinates are multiplied by SCALE2, a multiple of ten, and then truncated to integers.
For example, 2.986 is considered as 2 m if SCALE= 1, and as 298 cm if SCALE= 100.

2. The landscape is relocated so that the minimal x-coordinate (y-coordinate respect.) is one,

� when a x-coordinate (y-coordinate respect.), after multiplication by SCALE, is greater
than SAFE2

� when it is null or less than zero,

� systematically when TRANSLATE2 = 1.

3. Simplification of the polygons: the aligned3 or too close vertices4, as well as the sharp spikes5

are removed from the polygons.

4. The areas and the centroids of the polygons are calculated.

5. Convex subpolygons are created.

10.5 Steps for each pair of convex polygons

For each pair of convex polygons (P1, P2), the steps are:

� When the minimal distance between the polygons P1 and P2 is greater than a given threshold,
DP6, the dispersal function is calculated between the centroids of these polygons, and the
result is multiplied by the product of their areas.

� When this distance is greater than the threshold DZ6, the dispersal is automatically set to
zero.

� Otherwise, for each pair of convex subpolygons in P1 and P2, the Minkowski sum is calculated
and the flow is estimated by the result of an integration on all the Minkowski sums. The
integrand is the product of the individual dispersal function by the area of the intersection
between the first subpolygon and a translation of the second one in the pair.

2SCALE, SAFE,DISTP and TRANSLATE are constants set in the file src/caliconfig.h.
3 When the arccosinus of the angle built by three successive vertices is near to π, the vertices are considered as

aligned and the middle one is suppressed.
4 When the distance between two sucessive vertices is less than or equal to DISTP, the second vertex is suppressed.
5 When the arccosinus of the angle built by three successive vertices is near to zero, it is supposed that the three

vertices draw a sharp spike, and the second one is suppressed.
6Thresholds are set in the file src/caliconfig.h; they are different for each dispersal function. DP constants are

the distances beyond which calculation is made between centroids. DZ constants are the distances beyond which
dispersal is considered as null.
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10.6 Integration methods

Two integration methods are implemented (See details in Section 4):

� The grid method :
Integration is made by discretisation of the Minkowski sum on regular grids of points. Several
grids of regularly spaced points are generated, each one randomly shifted from the origin.
The successive results can be considered as replications.

The iterative process stops when the number of replications is reached.

� The cubature method:
This method is a numerical adaptive cubature method over triangles.
The absolute and relative precisions can be controlled, as well as the maximal number of
evaluations.

10.7 Final results

With the grid method, in addition to the mean of the integrated flow over the replications, the
coefficient of variation and the standard deviation are calculated.

With the cubature method, in addition to the integrated flow, the absolute precision and a confidence interval
are calculated.

10.8 The individual dispersal functions

In the deliverable, some individual dispersal functions are defined. We described here the first two
ones. See the comments in the file src/functions.cpp for the subsequent ones. These functions
may be customized according to the needs. See paragraph 10.8.3.

The user has also the possibility of coding the individual dispersal functions in R, but timing
performance can be affected: see the help-file of the RCALI function califlopp.

10.8.1 Individual dispersal function of oilseed rape pollen

The first function is the oilseed rape pollen individual dispersal function described by Étienne
Klein [KLP+06] until 50 m and by Céline Devaux for distances beyond 50 m [DLAK06]:

φ(t) =






d + er + fr2 when 0 ≤ r ≤ 1, 5
b

1+rc/a when 50 ≤ r < 1, 5

[ b
1+hc/a/(1 + h)g] ∗ (1 + r)g when r > 50

, r =‖ t ‖ . (10.1)

with a = 3.80, b = 0.03985, c = 3.12, d = 0.340, e = −0.405, f = 0.128, g = −2.297, h = 50 and
with t the distance between the source and target points. Distances are in meters. See Fig. 10.1.

For this function, the threshold beyond which the flow is calculated between centroids only, is
100 m.

7According to N. Colbach ([CCDM01a] and [CCDM01b]), g can vary between −2, 14 and −2, 56.
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10.8.2 Individual dispersal function of oilseed rape seeds

The second function is the oilseed rape seed individual dispersal function proposed by Nathalie
Colbach [CCDM01b]:

φ (t) =

{
b × c × r(c − 2) × exp (−b × rc)

2.0 ∗ π
, r = ‖t‖ . (10.2)

with b = 1.38930, c = 2.08686 and with t the distance between the source and the target points.
Distances are in meter. See Fig. 10.1.

For this function, the threshold beyond which the flow is supposed to be null is 21 m.
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Figure 10.1: Individual Dispersal Function of Pollen (on the left) and Oilseed (on the right) Rape
Seeds.

10.8.3 How to modify or add individual dispersal functions

The individual dispersal functions are coded in the C file src/functions.cpp. To modify them,
change the formulae expressions in the source code. Don’t forget they must be smooth functions.
Change also the DP* and DZ* constants in the file src/caliconfig.h, i.e the thresholds for
calculating dispersal between centroids only and for considering that dispersal is zero, respectively.

In the delivered package, up to five dispersal functions can be defined. By default, the DE-
FAULT NFUNCTIONS8 first functions are considered only.

After alteration of the source code, recompilation is required, typically by using the standard R
command: <tt>R CMD build RCALI</tt> on top of your <tt>RCALI</tt> directory (see 6).

8 DEFAULT NFUNCTIONS is defined the file src/caliconfig.h.
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� F̂ : integrated flow in the cubature method:
For each pair of convex subpolygons of a given pair of polygons, the Minkowski sum is
calculated and triangulated. F̂ is the result of an adaptive cubature integration method on
all the triangles.
Special cases: when threshold distances have been set, F̂ is automatically set to zero, or
calculated between centroids only, beyond these distances (see 10.5).

� F̂ : mean of the integrated flows in the grid method:
F̂ is the sum over all the pairs of convex subpolygons, of the mean of the calculated values
over the replications, i.e: F̂ =

∑i=k
i=1

∑j=r
j=1 f̂i,j/r, where k is the number of pairs of convex

subpolygons and f̂i,j is the calculated integrated flow between one such pair of subpolygons,
at the jth grid generation.
Special cases: when threshold distances have been set, F̂ is automatically set to zero, or
calculated between centroids only, beyond these distances (see 10.5).

� Coefficient of variation in the grid method:
CV =standard deviation/mean.

� Confidence Interval in the cubature method:
IC = [F̂ − absolute error, F̂ + absolute error]

� Minkowski sum of two polygons A and B.
This sum is a polygon, denoted by Ǎ⊕B. It is the set of points p, such that: p = y − x, x ∈
A, y ∈ B, i.e the set of points covered by B when a vertex of B is moved inside A.

� Relative error in the cubature method:
relative error = absolute error/result

� Standard deviation in the grid method:

standard deviation =
√∑j=r

j=1(f̂.j − f̂..)2/(r − 1), where r is the number of replications, i.e

the number of grid generations, f̂.j the result of the grid integration at replication j, and f̂..

the mean result over the j replications.
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Chapter 11

Implementation

11.1 Programme steps

The main steps have been described from the user’s point of view in Section V. Here, they are
sketched at the programming level.

11.1.1 Preprocessing

Function ReadPoly:

1. Read the polygons file and convert the coordinates into integers (->1ReadCoord);

2. Relocate the landscape (-> TranslatedParcel);

3. For each polygon:

(a) remove aligned vertices and vertices forming a sharp spike;

(b) create convex subpolygons: first, determine the essential diagonals, i.e the diagonals
which split the polygon into convex parts (-> Triangulate), and then determine and
store the convex subpolygons ((-> HMAlgor);

(c) compute areas (-> Area2).

11.1.2 Calculation steps

The function suite pilots the calculations process. It realizes the following tasks:

1. Create an object, methode, of class methodGrid or methodAdapt.

2. Call its method VerifArgu to verify its attributes.

3. Pilot the loop on the required pairs of polygons: for each of them, call the function go which
invokes the methods CalcR on methode to perform the calculations, Print to output the
results on the screen, and PrintFic to output them on a result-file.

11.1.3 Calculation by the grid method

The method CalcR of the class methodGrid is summarized by the following algorithm:
(The names of the devoted functions are between square brackets.)

1Arrow is for a call to a subroutine.
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Algorithm 7: methodGrid::CalcR

Data: A pair of polygons A and B, nf individual dispersal functions, user-defined
parameters.

Result: Dispersal estimations from A to B by the grid method.
Calculation of mindist, the minimal distance between the polygons.1

foreach dispersal function φ do2

if mindist ≥ threshold for function annulment then3

result = 04

end5

if mindist ≥ threshold for calculation between centroids then6

t = distance between centroids; result = φ(t) × area(A) × area(B)7

end8

end9

// In the other cases: one function at least should be integrated

foreach pair of convex subpolygons Ai and Bj in A and B do10

Compute and store their Minkowski sum: sommeMij [ SommeMinkowski];11

end12

foreach replication do13

foreach pair of convex subpolygons Ai and Bj do14

Grid generation [ Integration]:15

foreach point t of the grid do16

if t ∈ sommeMij [ InPolyConvex] then17

ar = area(Ai ∩ (Bj − t)); [ ConvexIntersect]18

foreach dispersal function φ to be integrated do19

result+ = φ(t) × ar;20

end21

end22

end23

end24

end25

Compute the final results: means over the replications, standard deviation.26
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11.1.4 Calculation by the cubature method

The algorithm 8 summarizes the tasks realized by the method CalcR of the methodAdapt class (the
names of the devoted functions are between square brackets).

octoφ stands for the smallest octogon centered in (0,0) which includes the circle of radius equal
to the distance beyond which the dispersal function φ becomes nul; octoφ is an attribute of the
methodAdapt class and is created by the class constructor.

Algorithm 8: methodAdapt::CalcR

Data: A pair of polygons A and B, nf individual dispersal functions, user-defined
parameters.

Result: Dispersal estimations from A to B by the cubature method.
Calculation of mindist, the minimal distance between the polygons.1

foreach dispersal function φ do2

if mindist ≥ threshold for function annulment then3

result = 04

end5

if mindist ≥ threshold for calculation between centroids then6

t = distance between centroids; result = φ(t) × area(A) × area(B)7

end8

// In the other cases: integration should be done

stvertce = ∅; result = 0;9

foreach pair of convex subpolygons Ai and Bj of A and B do10

Compute and store the Minkowski sum: sommeMij ; [ SommeMinkowski]11

if dispersal has no limit then12

S = sommeMij ;13

else14

// no dispersal beyond a given distance

S = sommeMij ∩ octoφ [ TConvexIntersect];15

end16

if S 6= ∅ then17

if (0, 0) ∈ S [ InPolyConvex] then18

stvertce+ = triangulation of S from (0, 0) [ Triangulate0];19

else20

stvertce+ = triangulation of S from any vertex [ Triangulate] ;21

end22

end23

end24

// End of the loop over Ai, Bj

Integration on the stvertce triangles for function φ [ Adapt::Integration];25

end26

// End of the loop over the functions
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11.2 Data structures

The main data structures are described in the following array:
Name Dimension Type Content

Poly npoly, nspoly, nvert, DIM tPolygoni (integer) Polygons coordinates, counterclock-
wise sorted, non-closed polygons

ni npoly, nspoly integer nii,j : number of vertices in the sub-
polygon j of the polygon i

a npoly integer ai: number of convex subpolygons of
the polygon i

vertices structure tVertex (integer) Linked list of the ordered vertices of a
polygon. Each element contains:

V[DIM] integer - coordinates of a vertex,
next - pointer to the next vertex or to the

head of the list if none,
prev - pointer to the preceding vertex or to

the head of the list if none,
vnum integer - vertex indices

sommeM nvert, DIM tPolygoni (integer) Minkowski Sum
intersection id. as vertices tdVertex (real) Intersection of polygons

npoly: number of polygons
nspoly: number of convex subpolygons in a polygon
nvert: number of vertices in a polygon
DIM: space dimension (here =2).



11.3 Functions list 77

11.3 Functions list

Some important functions are listed here.
(Words in italic refer to data structures.)

Function name File name Fonction

ecrmess util.cpp Error message output and return to the calling pro-
gramme

libMem util.cpp Memory de-allocation
califlopp sd fluxsd.cpp Pilot
suite go.cpp Pilot the loop over the pairs of polygons
go go.cpp Pilot the treatment of one pair of polygons

read1Poly,
read2Poly

read1Poly.cpp Read the coordinates in format 1 and 2, resp.

ReadCoord readPoly.cpp Read the polygons-file; verify the coordinates; scale
multiplication of the coordinates

ReadVertices readPoly.cpp Create vertices

ReadPoly readPoly.cpp Create Poly with:
- aligned vertices removal
- non-convex polygons splitting
- areas computation

TranslateParcel readPoly.cpp Relocation of the polygons

ConvexIntersect intersection.cpp Convexity test and creation of intersection

Triangulate,
HMAlgor, Area2

geom.cpp Programmes of geometric computation

SommeMinkowski zoneintegration.cpp Compute sommeM

genrand real2 mt19937ar.cpp Random numbers generation1

f0,f1,fX functions.cpp Individual dispersal functions
f methodAdapt.cpp The integrand for cubature method
Integration methodGrid.cpp,

methodAdapt.cpp Integration
CalcR methodGrid.cpp,

methodAdapt.cpp Compute one result
Print, PrintFic methodGrid.cpp,

methodAdapt.cpp Output results on screen and on file, resp.

See reference [MN98].

Error codes: The list and meaning of the errors codes can be found in the file calierror.h.
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Chapter 12

How to Modify

It may be useful to know how to modify some parts. Among them:

� The individual dispersal functions: see Section 10.8.3.

� The format of the polygons-file: see the files read1Poly.cpp and read2Poly.cpp.

� In interactive mode, the dialogue with the user: see the file fluxad.cpp, and the ReadArgu

method in the files methodGrid.cpp and methodAdapt.cpp.

� Screen output: see the file go.cpp, and the Print method in the files methodGrid.cpp and
methodAdapt.cpp.

� File output: output on the result-file depend on the constant OUTPUT FORMAT set in the
file caliconfig.h. They are carried on by the suite function and by the PrintFic methods
in the files methodGrid.cpp and methodAdapt.cpp.

� Erroneous polygons treatment: the identifiers of the erroneous polygons are made negative
by the ReadPoly function. Their treatment depends on the constant ERR POLY set in the
file caliconfig.h.

� Memory allocation: memory allocation is made via the macros CREER and NEW and de-
allocation via the macros DETRU and FREE; they are coded in the file calimacros.h.

� Random number generator: see the variable COPTIONS2 in the file obj/subdir.mk and the
corresponding code in methodGrid.cpp.

� Computing time measurement: see the file timing.cpp.

� Estimation of several integrals by the cubature method: this possibility can be added when
several integrals have enough similarity. Estimation of all of them can be made in one call.
It is less time consuming. For that, modify:

– the function f_ in the file methodAdapt.cpp: the vector funvls should contain as many
results as integrals on output.

– the function CalcR in the file methodAdapt.cpp: the first argument of the Adapt con-
structor should be equal to the number of integrals.

– the output operator in the file adapt/Adapt.h: it should print as many results and
absolute errors as integrals.

After alteration of the source code, recompilation is required: see paragaph 6.
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