Analyzing cell migration datain R
CelltrackR cheat sheet

To analyze cell movement, we record a cell’s coordinates in time-lapse videos
to obtain a cell track. To facilitate the interpretation of tracking data, {2
celltrackR implements a large variety of methods for the fast and

flexible analysis of track data in R. Load data from a text file, t ts
get rid of artefacts and tracking errors by performing quality

controls proposed in literature, and analyze any metric on the level of
individual tracks, steps, or subtracks. CelltrackR supports angle analyses and
allows rapid visualization, clustering, and simulation of tracks. Let’s get started!

ta

2. Quality control & preprocessing

1. Loading & converting tracks

Generate tracks object from a csv file:

Longer tracks allow better inference of the cell’s
behavior, especially in cell-based analyses (box 4).

mydata.csv: -Scelll: txyz s - -
ID txyz ti..... @ ist(sapply(X, nrow

cellltr. . . /} tar e §l max length distribution f{[alefely!
ggIB g = » “$cell2: txyz by i maxTrackLength(X) [UINEEOI
cell2t2. . . #steps longest track (# steps) WAy N

t.....
t.....
tracks object contains = o
a matrix for each cell
read.tracks.csv(mydata.csv,

id.column = 1, time.column = 2,
pos.columns = 3:5)

filterTracks(function(x) nrow(x)>n, X)
keep only tracks of at least n steps

Filtering can cause bias. Consider a step-based

analysis (box 4) instead of removing short tracks.

Check for unequal At between steps, or gaps:

Concatenate two tracks objects: = splitinto
< ‘i' /:
c(x1, x2) EP/LW p, o~ *% ULKESS
:p

At-av

Convert between data structures:
dataframe as.data.frame(X)
D txyz tracks to dataframe

— as.tracks(D)

8 % interpolate
@fixed At
avdt <- timeStep(x); hist(sapply(
subtracks(x, 1), duration) - avdt)

position

celltti.....
ESIH E """ dgtaframe to tracks Fix this issue automatically for all tracks in X with
cell2t2. . . as.list(X))) an irregular At above some threshold:
- E?”JS tracks to regular R list fixl <- repairGaps(X, “interpolate”)
itxyz wrapTrack(x)
ft..... wrap single track matrix Adjust time resolution At: subsample every
... into a track object Y S k-th timepoint
. t t subsample(x, k = 2)
Sort tracks by time-order: O

interpolateTrack(x, dtvec
sort(X) t:... P L%)

interpolate at times in dtvec

Output of read. tracks.csv()
and as.tracks.data. frame ()

Angle analyses (box 6) can help detect artifacts,
\drift, and tracking errors (Beltman et al, 2009). Y,

_ is time-ordered by default.

3. Subsetting data: single tracks, (staggered) subtracks, and steps

Tracks object
-$1:

Single track

use [[1] to return coordinate matrix,

[1to return a tracks object.

Subtracks

all.steps <- subtracks(X,

1)
first.steps <- prefixes(X, 1) a"quUBCkS
1 starting at t
_J

t.steps <- subtracksByTime(X, t,

“steps” are
% 1 N QO HIEES
£ o of length 1

matrix with all
“staggered”
subtracks

be performed with other analysis measures (box 5).

Cell-based

Find average speed of each
individual cell (track):
cell-based

i mean

cells

mean cell speed
mean(sapply(X, speed))

cells have equal weights; steps

from short tracks weigh more

Get instantaneous/"step” speed
distribution for each cell (track):

cell 1:

steps

—_

[cell 2:

steps

——
step speed

steps <- subtracks(x, 1)
hist(sapply(

. ay) steps of
SLeps, spee one cell x

\-

Step-based
Average speed over all steps,
pooled from all tracks together:

- Scell1: 7}

A 3
.

- Scell2:

R

aggregate(X, speed,
subtrack.length = 1,
FUN = mean)S$value

steps have equal weights; cells
with longer tracks weigh more

To get the distribution over all
steps instead of only the mean:

|

————
step speed

#steps

steps <- subtracks(X, 1)
hist(sapply(

all steps in
steps, speed))

object X

4. Analysis types: cell-based, step-based, and staggered metrics

Track properties can be computed in a cell-based, step-based, or staggered fashion. For more informa-
tion, please refer to (Beltman et al, 2009). Examples are shown for the analysis of speed, but can also

Staggered
Measure speed on all subtracks
in the staggered matrix:

symmetrical
2 0 1 I matrix. O-step
% T TS Pl subtracks have
11 @ speed (NA).

. fﬂdspeed—»

image (applyStaggered(
x, speed, matrix = TRUE))

if FALSE: return only the matrix
mean, which is dominated by

short (more frequent!) subtracks.

Directly get all mean cell speeds
(over the staggered subtracks):

X Tl
K e

sapply (X,
staggered(speed))

J

5. Analysis measures

6. Angles & Directionality

7.Visualization & Clustering:

(see also ?TrackMeasures)

Speed and displacement

txyz duration(x)
t..... =tend-11

3 B displacement (x,
ta..... from =m, to = n)

= d(tm,tn)

see also:
squareDisplacement ()

displacementVector ()

o normalizeToDuration ()
\"5\0) trackLength(x)
= d(t1,t2) + ..+ d(tendd,tend)
4+ speed(x)
& = tracklength/duration
Y maxDisplacement (x)
t =max d(ty, tn)

Track straightness

' [==.] displacementRatio(x)
‘\' 0 1 =d(t1,tend)/maxd
/.’ = outreachRatio(x)
"¢ 0 1 = max d/tracklength
‘ | straightness(x)
‘L" 0 1 = d(t,tend)/tracklength

note that asphericity
®.a A’ ignores time-ordering
Q\‘ 4 asphericity(x)

b =(a2_b2)2/(a2+b2)2

(see also ?AngleAnalysis)

Angles to a reference point, direction, or plane
angleToPoint(x,p)
= angle 0 between first step
and reference point

@0 (ps, py, p2)

distanceToPoint(x,p)
= distance d between first step

. "‘ and reference point
‘\\ A X angleToDir(x,dvec)
K K = angle 0 between first step

and reference direction

angleToPlane(x,pl,p2,p3)
p1 p2 =angle 6 between first step
T and plane with points p1-p3

distanceToPlane(x,pl,p2,p3)
= distance d between first step
and plane with points p1-p3

Angles between pairs of steps or tracks can help
identify directional biases or artefacts (Beltman et

al, 2009):
J expected:
90 degrees
L7
6,0 distance

ortry analyzeCellPairs ()

step.pairs <- analyzeStepPairs(X) X, speed, minv, Inf) stralghtness
Turning angles plot(step.pairs$dist, step.pairs$angle)
Or visualize higher dim- 4 . o
. overallAngle(x) ., . X . | feat t ith o o®
Vi = angle O(Vi, Vend) (first & last step) Hotelling's test can help detect global direction- ensional feature sets wi o o oo O
% overallbot (x). 056 ality in a dataset in an unbiased fashion (Textor et dimensionality reduction: s o
V;n;j = dot product vi+ Vend = al, 2011): trackFeatureMap (X, .
|V1”Ve"d| c (speed, straightness,
2 2 . meanTurningAngle),
symmetric useful for autocorrelation/ hotellingsTest(X method = “PCA” Other methods:
I 0 <0< autocovariance plots plot = TRUE) “UMAP” /“MDS”
9 Cluster tracks by features:
0 ‘ does the average clusterTracks (X,
meanTurningAngle(x) step displacement c (speed, straightness,
02 =mean (0, ..., Bend) differ from the null meanTurningAngle),
=™ " : “kmeans”
\ / \ vector? / \method hclust /

detecting patterns in track data

Visualizing tracks in space

3D tracks? see plot3d()
& projectDimensions ()
plot(X)
plot (normalizeTracks(X))

overlay track starting points

Track measures by subtrack At: mean square
displacement (MSD) & autocovariance plots

plot (aggregate(X,
plot (aggregate(X,

squareDisplacement))
overallDot))

Plot cos () of
overallAngle()

for an autocor-
relation plot

o
%)
=

acov

At

Tracks in feature space:
Visualize two measures o
in a scatterplot:
plotTrackMeasures (
X, speed, °

mean 6 _
®e
(8
R Shda
..
[]
N

meanTurningAngle) speed
Or subset tracks by one) A 4
feature first: ol *
minv <- median(< S

°
sapply (X, speed)) GE) ° .
fast <- selectTracks(° . .

Learn more?

Check out the detailed examples in the package vignettes:
browseVignettes (package = “celltrackR”)

8. Simulating tracks:

Models & bootstrapping

Comparing observed data to idealized models is
useful for interpretation. CelltrackR supports
several methods for simulating tracks.

A random walk in dim dimensions:
brownianTrack(nsteps, dim, mean=c(0,0),

sd=c(1,1)) (L

A "stop-and-go” model designed for T cells
(Beauchemin et al, 2007). Cells move at speed
v.free for time t.free, and then pause for a time
t.pause before changing direction (can be with
directional persistence or directional bias):

beaucheminTrack(sim.time, delta.t,
p.persist, p.bias, bias.dir, taxis.mode,
t.free, v.free, t.pause)

unlike brownianTrack (), beaucheminTrack ()
has an explicit definition of time.

A bootstrapped track matches speeds and
turning angles to those observed in data:
bootstrapTrack(nsteps, X)

Simulate multiple tracks at once:
simdata <- simulateTracks(10,
bootstrapTrack(nsteps, X))

or another simulation method
\& 4

References

Beauchemin et al (2007). Characterizing T cell movement within
lymph nodes in the absence of antigen. Journal of Inmunology.

Beltman et al (2009). Analysing Immune cell migration.
Nature Reviews Immunology.

Mokhtari et al (2013). Automated characterization and para-
meter-free classification of cell tracks based on local mi-
gration behavior. PLoS ONE.

Textor et al (2011). Defining the quantitative limits of intravital
two-photon lymphocyte tracking. PNAS.

© Johannes Textor, Katharina Dannenberg, Jeffrey Berry, Gerhard Burger, Inge Wortel (2019).
For the newest version, visit: https://github.com/ingewortel/celltrackR
To cite celltrackR, please refer to: citation(“celltrackR”).

