
For Review Only
Latent Regression in Higher-Order Item Response Theory 

with the R Package hlt

Journal: Behavior Research Methods

Manuscript ID Draft

Manuscript Type: Original Manuscript

Date Submitted by the 
Author: n/a

Complete List of Authors: Kleinsasser, Michael; University of Michigan, Department of Biostatistics
Mistry, Ritesh; University of Michigan, Department of Health Behavior 
and Health Education
Hsieh, Hsing-Fang; University of Michigan, Department of Health 
Behavior and Health Education
McCarthy, William; University of California Los Angeles, Department of 
Health Policy and Management
Raghunathan, Trivellore; University of Michigan, Department of 
Biostatistics

 



For Review Only

1

Latent Regression in Higher-
Order Item Response Theory 
with the R Package hlt
Michael J. Kleinsasser

Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
734-635-5608

mkleinsa@umich.edu

Ritesh Mistry

Department of Health Behavior and Health Education, University of Michigan, 
Ann Arbor, Michigan, USA
riteshm@umich.edu

Hsing-Fang Hsieh

Department of Health Behavior and Health Education, University of Michigan, 
Ann Arbor, Michigan, USA
fayenie@umich.edu

William J McCarthy

Department of Health Policy and Management, University of California Los 
Angeles, Los Angeles, California, USA 
wmccarth@ucla.edu

Trivellore Raghunathan

Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
teraghu@umich.edu

Item response theory (IRT) has become a standard method in the analysis of survey data. In the 
IRT paradigm, the performance of test takers (i.e., their capacity to answer a question correctly) is 
explained by individual ability and the characteristics of the test. Classically, ability is assumed to 
be 1) univariate and 2) homogeneous across person characteristics. First, the variance in ability, 
which is the performance of each test taker on a continuum, is typically explained by variation in 
the characteristics of study participants. Second, recent applications involve characterizing a 
general, higher-order ability that explains multiple, first-order, domains of ability. The overall goal 
of these analyses, then, is to accurately represent the variation in general ability. To estimate the 
higher-order IRT model, the open-source R package hlt implements the random-walk Metropolis-
Hastings algorithm within a flexible Bayesian framework. We implement a higher-order 
generalized partial credit model and its extension of latent regression with the goal of explaining 
the relationship between the general latent construct and a set of explanatory variables. We provide 
the details about the model, estimation, software package, examples using simulated data, and an 
example analysis of data drawn from an adult self-transcendence survey.

Item Response Theory, Bayesian data analysis, higher-order model, latent 
regression, hierarchical modeling, R package
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Introduction
There are many applications in psychometrics and educational testing 

where a general latent domain, also called a factor or dimension, is sought to 

explain multiple underlying behaviors or constructs. Examples include the 

domains of the five-factor model of personality (Costa et al., 1995); quality of life 

among cancer patients (Gotay et al., 2002), assessment of stress in cancer patients 

with the Perceived Stress Scale (Golden-Kreutz et al., 2004), and academic self-

concept theory (Marsh & Hocevar, 1985). Recently, the higher-order item 

response theory model described in the current article was used to model the 

general latent domain of family functioning that consisted of three interrelated 

constructs (family cohesion, parental support, and parental supervision), and then 

examined socio-cultural differences in family functioning (Hsieh et al., 2022).

The purpose of the current article is to demonstrate the statistical 

framework of a higher-order IRT model with latent regression and to provide an 

open-source software tool for the statistical modeling. Item response theory, or 

IRT (Cai et al., 2016), constitutes a class of statistical models that relate the ability 

of survey respondents to correctly answer multiple-choice questions with varying 

test difficulty, that are useful for distinguishing test takers with high ability from 

those with low ability, and other item-level criteria. The classical assumption of 

IRT models is that of unidimensionality of ability, that is, there is only one latent 

variable that has a dominant effect on test score. In this scenario, a single 

underlying trait drives the person-level ability to perform well on a test. One 

recent advancement in IRT involves changing the unidimensionality of ability 

assumption to more complicated factor structures where multiple related latent 

traits are needed to satisfactorily explain one underlying construct or behavior. 

Page 2 of 30

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

3

One such formulation provides a hierarchical structure to the factors where one 

second order (or higher-order) factor is extracted from a set of domain-level 

factors. This higher-order factor provides a general measure of ability that can 

characterize overall test performance and performance on multiple domains of 

ability within a single model.

Huang et al. (2013) provides an overview of five types of latent trait 

structures used in IRT beyond the unidimensional case. The authors describe: 1) 

the consecutive unidimensional (CU-IRT) approach where multiple traits are 

assessed by scales within the survey and fitting the unidimensional model to each 

scale’s questions; 2) multidimensional structure (M-IRT) that introduces 

correlations between the latent traits of the consecutive approach; 3) the 

composite unidimensional (C-IRT) structure, which we call the unidimensional 

model, since it assumes a single factor (such as family functioning) over the 

multiple dimensions; 4) the bi-factor (B-IRT) where a single factor competes with 

multiple unidimensional factors, combining 1) and 3); and finally, 5) the higher-

order (HO-IRT) factor structure, where a general ability informs the multiple 

dimensions measured by the survey. Although this article focuses on the HO-IRT 

model, it has been shown that HO-IRT parameters can be estimated as a 

constrained re-parameterization of the B-IRT model (Rijmen, 2010). Thus, there 

can be considerable overlap between these approaches.

Another useful extension to the univariate IRT framework involves 

regressing the latent ability on a set of explanatory factors (Wilson & De Boeck, 

2004), which we refer to as latent regression IRT. This extension attempts to 

explain differences, or heterogeneity, in ability by person-level attributes such as 

gender or socioeconomic status. There are other IRT extensions that we did not 

explore, such as differential item functioning (DIF) (Thissen et al., 1993) and 
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multiple group analysis (Bock & Zimowski, 1997), but the model and software 

discussed here form a framework that can be extended to incorporate these other 

extensions of IRT.

In this article, we refer to the higher-order IRT model accounting for 

measurement, but not latent regression, as "descriptive HO-IRT," and the model 

with a latent regression component is referred to as "explanatory HO-IRT." For 

succinctness, we also refer to higher-order item response theory model with latent 

regression as HO-IRT-LR, where LR stands for latent regression.

Other Software

Since the higher-order latent structure within IRT can be viewed as a 

reparameterization of other multidimensional IRT models (Rijmen, 2010), our 

software review considered any multivariate IRT package that can fit the bifactor 

(B-IRT) model. There are many available packages that estimate multivariate IRT 

models, such as the bifactor model. Outside of the R environment, SAS provides 

PROC IRT (Matlock & Paek, 2017), MPLUS (Muthén & Asparouhov, 2013), and 

IRTPRO (Paek & Han, 2013) to name popular choices, but none of these 

programs allowed the extension of latent regression.

Inside of the R environment (Team, R Core (2021)), the flirt package 

(Jeon et al., 2014) provides a higher-order IRT procedure with latent regression 

using an expectation-maximization algorithm but the package is only available to 

Windows users and requires a non-standard compiler that requires a complicated 

installation. While the mirt package (Chalmbers, 2012) does not provide the 

higher-order model, the documentation provides the correct parameter constraints 

for estimating the higher-order loadings without latent regression. To the best of 

our knowledge, standard errors are not given for the higher-order factor loadings 

by either package. Both mirt and flirt use either the expectation-maximization 
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algorithm or Bayesian simulation methods for estimation, while hlt uses random-

walk Markov chain Monte-Carlo (MCMC) simulation. We found no software 

package that was fully capable of characterizing the higher-order IRT model with 

latent regression. The fully Bayesian estimation method of hlt provides the 

important advantage of posterior credible intervals and standard errors for all 

model parameters, plus the extension of latent regression. 

Summary

The higher-order IRT model (HO-IRT) and its extension of latent 

regression (HO-IRT-LR) is the focus of the present article. We provide a 

Bayesian model and statistical software package for the HO-IRT-LR model that 

can be extended to more complex problems, such as item-level regression or 

multiple group analysis. Currently, there is no software package that can directly 

estimate the higher-order latent trait structure described here in the context of IRT 

and its extension of latent regression. The present article combines these two 

extensions to IRT with a user-friendly and fast software implementation in the 

widely used statistical programming environment R and its interface to the C++ 

programming language, RCPP (Eddelbuettel, 2013).

In this paper, we describe the open-source R package hlt, that includes a 

set of functions for higher-order descriptive item response theory and an extension 

with latent regression to conduct explanatory IRT using person-covariates. 

Additionally, we provide functions to summarize and visualize the results from 

these models. First, we demonstrate how to install and load the package in R. 

Second, we give a detailed overview of the core package functionality including 

how to estimate the model and summarize the results. Third, we describe the 

statistical model that the software implements. Fourth, we give details about the 
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MCMC algorithm used for estimating the model parameters. Finally, we conduct 

an example analysis using data drawn from an adult self-transcendence survey.

Installation and usage
The R package hlt requires R (version > 3.5.0) and Rcpp (≥ 0.12.0). Pre-

build binaries for the current official release of the package are available from 

CRAN (Comprehensive R Archive Network), but if the user desires to manually 

compile the package, then the typical R compiler tools will have to be installed. 

Instructions can be found on the R Project’s website at https://www.r-

project.org/nosvn/pandoc/devtools.html.

The latest development version of the package can be found on Github 

(https://github.com/mkleinsa/hlt). The development version contains updates to 

the software that are typically a few weeks ahead of the CRAN release.

The hlt package can be installed from CRAN and loaded via the R console 

with the following commands:

R> install.packages(“hlt”)
R> library(hlt)

To install the development version of hlt, install the devtools package 

(Wickham et al., 2021) and run the following command:

R> devtools::install_github(“mkleinsa/hlt”)
R> library(hlt)

See the README of the hlt package on the Github repository page for 

additional details about package installation. To install the development version of 

the package, compilation of the C++ code is required at install, so the user’s 

development toolchain must at least include a C++ compiler.
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Core functionality
The main model fitting function, hlt(), encapsulates all the package’s estimation 

procedures. The output is either an object of class hltObj for a single run or an 

hltObjList for multiple parallel runs. For each object class, R generics are 

available to print(), plot(), produce a summary() or merge chains 

(merge_chains()) to merge multiple parallel runs. 

Help Pages

The functions available to the user of this package each contain detailed 

documentation in the form of R documentation files. To view the documentation 

for a given function, run ?FUNCTION_NAME at the R console. We also provide 

example data sets and function calls to demonstrate usage of each function within 

the Examples section of the documentation for the main functions. Run ?hlt to 

view the main documentation page and full examples.

Formatting Input Data

The main input to the hlt() function, called x, is a numeric matrix of item 

responses from the survey. Data can only be inputted in the wide format, where 

each row of the matrix contains all responses for one survey respondent, and each 

column represents the question asked of each respondent. Respondents may not be 

asked a different number of questions, resulting in a ragged matrix. Also, there 

may not be missing values in any entries of the data matrix. 

For each item in the item response matrix, the responses must be whole numbers 

where the lowest value is 0 and the highest value is the maximum possible 

response for the item minus one with no gaps. For example, if a question is asked 

with 5 possible response values, then the possible values should be lowest = 

0,1,2,3,4 = highest. For dichotomous items, use no = 0 and yes = 1. 
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In addition to the required data matrix x, the following arguments to the function 

are required to fit the model: id, a numeric vector indexing first-order latent 

domain membership for each domain. We index starting from zero, not one. For 

example, if there are three first-order domains with five questions per domain, 

then the corresponding id vector is c(0,0,0,0,0,1,1,1,1,1,2,2,2,2,2); 

iter, the number of total iterations including burn-in; burn, the number of burn-

in iterations; delta, the random-walk proposal standard deviation; and type, the 

type of model to fit: currently the partial credit model, or PCM (type = “1p”), 

or the generalized partial credit model, or GPCM (type = “2p”), are available.

For latent regression IRT, the optional z argument must be specified. z is a 

standardized numeric matrix of predictors. The dimension of z must match the 

number of rows of x and have one column for each regression parameter to be 

estimated. All columns of the z matrix must be numeric. For categorical or factor 

level of measurement, dummy variable must be coded (  indicator columns 𝑛 ― 1

for a factor with  levels). For continuous items, the columns should be 𝑛

standardized (mean of zero with standard deviation of one). 

In “Illustration of functions with simulated data”, we demonstrate the models that 

the hlt package can fit using simulated data and demonstrate the syntax of the 

auxiliary functions for viewing the results.

Illustration of functions with simulated data

The hlt package includes a function to simulate data under each of the modeling 

scenarios. In this section, we demonstrate how to simulate data and estimate the 

correct higher-order IRT model. For full documentation of the simulation function 

with examples, run ?hltsim at the R console.
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Simulation Function

The hltsim function has arguments for the type of higher-order IRT model 

(type), the sample size (n), the number of latent domains (ntheta), the true 

loadings for each latent domain (lambda), the domain membership of each latent 

domain (id), the number of levels of each question (dL), the number of regression 

parameters (nB), and the true regression parameter values (beta).

To simulate the generalized partial credit model without regression, the function 

call is as follows:

R> xdat = hltsim(n = 250, type = "2p", ntheta = 4, 
     lambda = c(0.5, 0.8, 0.9, 0.4), id = c(rep(0, 15),         
     rep(1, 15), rep(2, 15), rep(3, 15)), dL = 2)

In this example, we simulate data for 250 participants from a survey measuring 

four domains with 15 items per domain. Each response is binary, yes/no (1 or 0). 

In the following sections, we will demonstrate the other features of hltsim in 

showing the modeling procedures.

The hltsim function returns a named list of simulated outputs and arguments 

including the simulated survey data (x), regression design matrix (z), parameter 

settings (s.lambda, s.alpha, s.delta, s.beta), and domain I.D. vector (id).

Descriptive higher-order IRT
The descriptive higher-order item response theory model has two components: a 

measurement model that describes the probability of responding correctly to the 

given survey item; and a factor structure model that describes the relationship 

between the general factor and domain specific factors. 

Generalized Partial Credit Model

We focus on the partial credit model (PCM) and the generalized partial credit 

model (GPCM) for their flexibility (Muraki, 1992; Masters, 1982). The PCM and 

Page 9 of 30

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

10

GPCM are flexible enough to account for dichotomous and polytomous response 

items, covering a wide variety of survey question types. In the dichotomous case, 

the PCM model is mathematically equivalent to the 1-parameter logistic model 

and the GPCM is equivalent to the 2-parameter logistic model. Thus, four 

different types of IRT measurement models can be fitted with this package, and 

any number of dichotomous and polytomous item types is possible.

For person , question , and domain , the generalized partial credit model is 𝑖 𝑗 𝑘

given by:

𝑃(𝑌𝑖𝑗 = 𝑦|𝜃𝑖𝑘,𝑗,𝛼𝑗) =
exp (∑𝑦

𝑙 = 1𝑗 ∗ 𝜃𝑖𝑘 ― 𝑗𝑙 )

1 + ∑𝑛𝑗

𝑤 = 1exp (∑𝑤
𝑙 = 1𝑗 ∗ 𝜃𝑖𝑘 ― 𝑗𝑙) 

Equation 1

Here,  is the observed response for the given person and question for 𝑦𝑖𝑗 ∈ {1,…,𝑛𝑗}

a question with  possible response options. The parameter  is the difficulty of 𝑛𝑗 𝑗𝑙

responding to item  at level ,  is the discrimination of item , and  is the 𝑗 𝑙 𝑗 𝑗 𝜃𝑖𝑘

person-level ability for person  responding to an item belonging to factor domain 𝑖

.𝑘

To improve estimation, the parameterization of Equation 1 was used, where  and 𝑗

 are linearly related. In the parameterization of Muraki (1992), we have 𝑗𝑙 𝑗(𝜃𝑖𝑘

. Thus, the item difficulty of Muraki, , can be obtained by the ―  ∗
𝑗𝑙 )  ∗

𝑗𝑙

transformation . ∗
𝑗𝑙 = 𝑗𝑙/𝑗

For estimability, the difficulty parameter for responding positively in the lowest 

response category of item , , is set to zero. For the partial credit model, we set 𝑗 𝛿𝑗1

’s to 1. If , then the GPCM simplifies to the 2-parameter logistic (2-𝛼𝑗 𝑌𝑖𝑗 ∈ {0,1}

PL) model. Thus, any combination of items with two or more levels can be fitted 
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with this likelihood. With alpha’s set to 1 and , we are left with the 1-𝑌𝑖𝑗 ∈ {0,1}

parameter logistic (1-PL) model.

Specifying the descriptive HO-IRT model is done with the type argument of the 

hlt function. Use type=”1p” for the PCM (1-PL in the dichotomous case) and 

type=”2p” for the GPCM (2-PL in the dichotomous case). 

Higher-Order Latent Trait Model

Let  be the general ability for the th person and  be the loading for the th 𝜃𝐺𝑖 𝑖 𝜆𝑘 𝑘

domain. Then, the linear higher-order factor structure is defined as:

𝜃𝑖𝑘 = 𝜆𝑘𝜃𝐺𝑖 + 𝜀𝑖𝑘

Equation 2

𝜆𝑘~𝑇𝑟𝑢𝑛𝑐𝑁(0,10, ― 10,10)
Equation 3

𝜀𝑖𝑘~𝑁(0,1)
Equation 4

When only two domains are specified, the model is no longer identifiable (de la 

Torre, 2009). When this is the case, the remedy is to constrain the ’s to be 𝜆𝑘

equal, i.e. . 𝜆1 = 𝜆2

The following R code fits the HO-IRT model to the simulated data set: 

R> mod1 = hlt(x = xdat$x, id = xdat$id, iter = 12e5, 
     burn = 6e5, delta = 0.023)

Explanatory higher-order IRT
This descriptive IRT model can be extended with person- and item-level 

covariates, called explanatory IRT. The hlt package implements the person 

covariate approach to explanatory IRT.

Let  be the set of regression coefficients for  explanatory variables in { 𝛽1,…,𝛽𝑝} 𝑝

the latent regression model for general ability. Then, the linear latent regression 

model of general ability is given by,
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𝜃𝐺𝑖𝑘 = 𝛽1𝑥1𝑖 + … + 𝛽𝑝𝑥𝑝𝑖 + 𝑖𝑘

Equation 5

𝑖𝑘~𝑁(0,1)
Equation 6

To adapt the previous simulation to include latent regression, the function call is 

as follows:

R> xdat = hltsim(n = 250, type = "2p", ntheta = 4, 
     lambda = c(0.5, 0.8, 0.9, 0.4), id = c(rep(0, 15),         
     rep(1, 15), rep(2, 15), rep(3, 15)), dL = 2,
     beta = c(0.5, -0.7), nB = 2)

Note that two arguments were added: beta = c(0.5, -0.7), which sets two 

new regression coefficients, and nB = 2, which signifies the number of 

regression coefficients set. The corresponding hlt call to fit the model is:

mod2 = hlt(x = xdat$x, id = xdat$id, z = xdat$z, 
     iter = 12e5, burn = 6e5, delta = 0.023, nchains = 1)

Model Tuning

The random walk Metropolis-Hastings algorithm requires one tuning parameter, 

the root proposal variance (option delta in hlt()), which is the standard 

deviation of the normally distributed proposal. If alpha is too large, then the 

proposal will reject too often, leading to not enough exploration of the posterior 

density. If alpha is too small, then too many draws will be accepted, and the 

proposal density will not be explored. The optimal acceptance rate for 

multidimensional problems like this one is 0.234 (Rosenthal, 2011). 

To save time, it is recommended to run a sequence of models, beginning with few 

draws, and incrementally increasing the number of draws to monitor the 

acceptance rate. Once the acceptance rate approaches 0.234, run one long chain 

until convergence is achieved. This step is often followed by another multiple 

chain run with at least three chains to confirm agreement between independent 

chains. For example, to find delta = 0.023 in the previous example, we set 
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iter to 1e3, 1e4, and 1e5. By 1e5 iterations, a delta of 0.023 gave an 

acceptance rate of 0.214,which is acceptable.

Important Options

We also provide the start argument of hlt for user-specified starting values. 

start is given as a named list, which can be viewed on the ?hlt documentation 

page. We also include a function (get_hlt_start(x, nchains)) to use the 

results of the previous run as the starting values of the next run. 

For multiple chain MCMC simulation, we include the nchains argument of hlt 

to specify  parallel chains to run. If nchains > 1, then get_hlt_start must 𝑛

match the length of the starting values list, e.g., start = get_hlt_start(mod1, 

nchains = 3).

Summary, Plot, and Merge

The hlt package implements the hltObj and hltObjList classes that 

implement the R S3 generic functions print, summary, and plot, so that R users 

can inspect the output of hlt in the same way as the core R functions. This 

section provides an overview of how to interact with the objects that the package 

outputs.

Print

Calling print() on an hlt model object results in a brief model fit summary 

including the number of domains evaluated, total number of model parameters, 

model type and other input settings, acceptance rate, factor loadings and 

regression coefficients. For more detailed summaries, the summary() function is 

needed.
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Summary

Model estimates are made available by calling summary() on an hlt model 

object. Summary takes two primary arguments: 1) an object of class hltObj in 

the case of a single chain, or an object of class hltObjList in the case of a 

multiple chain object; 2) param, the name of the parameters to be summarized. 

Summary provides posterior mean, standard deviation, and 2.5%, 50%, and 97.5% 

percentiles for each of the test level parameters. Posterior estimates of ability 

parameters show only the mean and standard deviation since there are too many 

individual level parameters to save every posterior draw.

To display summaries of all parameter estimates at once (except for the ability 

estimates), use param = “all”.

Extract latent factor loadings (param = “lambda”), latent regression 

coefficients (param = “beta”), difficulty (param = “delta”) and 

discrimination parameters (param = “alpha”), and abilities (param = 

“theta”) from each dimension by also specifying the required dimension, e.g., 

for the first dimension, call summary(mod2, param = “theta”, 

dimension = 1). If a survey has  domains, then the dimension argument 𝑛

ranges from  to , where  represents the higher-order domain. For 1 𝑛 +  1  𝑛 +  1

example, if a survey has  domains, then the dimension argument takes the values 4

, or  for the higher-order ability parameters.1, 2, 3, 4 5

If the user prefers instead to obtain the draws to use elsewhere, the hltObj object 

contains a named attribute post, which is the matrix of posterior draws after burn-

in. 
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Plot

Similarly, model diagnostic and summary plots are available by calling plot() 

on an hlt model object. Plot requires the arguments x, param, and type for 

MCMC traceplots, or x, item, and type for item characteristic curves, item 

information curves, and the total information curve. Unlike the summary function, 

if a traceplot for a parameter is desired, the user must explicitly give the full name 

of the model parameter. For a full list of parameter names from an hltObj object, 

use summary(mod, param = “all”) or colnames(mod$post). For 

example, to retrieve the traceplot for the second level of the fifth difficulty 

parameter, use:

R> plot(mod, param = “d5_2”, type = “trace”)

Traceplots are not available for the ability, or theta, parameters since saving each 

draw of the individual level parameters uses too much memory. Thus, we only 

save means and standard deviations of the ability parameters.

One can also obtain traceplots when multiple parallel chains are run by calling 

plot on an hltObjList object. 

Also with plot, item characteristic, item information, and total information 

curves can be obtained. Item I.D’s can range from  to the number of items asked 1

in the survey. For example, to produce the item characteristic (“icc”), item 

information (“iic”) , and total information (“tic”) curves, use the following 

syntax:

R> plot(mod, item = 5, type = “icc”)
R> plot(mod, item = 5, type = “iic”)
R> plot(mod, type = “tic”)
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Merge

A merge function called merge_chains is available to merge multiple chain 

objects (hlt with nchains > 1) into one object. This makes running summary and 

plot on the combined results more convenient.

Implementation
Given the complexity of the model, we used the Bayesian technique of MCMC 

simulation to obtain estimates of model parameters. Specifically, we implemented 

the random walk Metropolis-Hastings MCMC algorithm to estimate the full joint 

posterior distribution. The sampler was implemented in C++ for the comparative 

speed advantages of C++ over R. We resorted to using another language because 

pre-compiled languages like C++ and Fortran are more efficient at repeating the 

same task millions of times, and this makes a significant difference if the model 

has thousands of parameters, as our models do.

To implement the random walk Metropolis-Hastings algorithm, one needs only to 

describe the log of the joint posterior distribution for the desired model. In this 

section, we describe the joint posterior distribution in terms of the joint likelihood 

and prior distributions.

Let  be an  by  matrix of item responses where each element represents the th 𝒙 𝑁 𝐽 𝑛

( ) participant’s response to the th ( ) question. Let the th 𝑛 =  1,…,𝑁 𝑗 𝑗 =  1,…,𝐽 𝑗

vector of item response, , take the values  to . Also, let  be an  𝑥𝑗 0 max (𝑥𝑗) ― 1 𝒛 𝑁

by  ( ) matrix of person covariates. The parameters of interest are the 𝑃 𝑝 =  1,…,𝑃

length  item discriminations , the  vectors of item difficulties , the factor 𝐽  𝐽 𝑗

loadings , the domain specific ability vectors  for , the general 𝜆 𝜃𝑘 𝑘 = 1,…,𝐾

ability vector , and the  latent regression slope parameters .𝜃𝐺 𝑃 𝛽

We seek to do inference on the joint posterior distribution, 
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𝑃(,1,…,𝐽, 𝜃𝐺,𝜃1,…,𝜃𝐾,𝜆,𝛽|𝒙,𝒛)
Equation 7

Using Bayes theorem, the joint posterior distribution of the set of parameters {,

} given data  and  is:1,…,𝐽, 𝜃𝐺,𝜃1,…,𝜃𝐾,𝜆,𝛽 𝒙 𝒛

𝑃(,1,…,𝐽, 𝜃𝐺,𝜃1,…,𝜃𝐾,𝜆,𝛽│𝒙,𝒛) ∝  
                    𝑃(𝒙,𝒛│,1,…,𝐽, 𝜃𝐺,𝜃1,…,𝜃𝐾,𝜆,𝛽) ∗ 𝑃() ∗ 𝑃(1) ∗ ⋯ ∗ 𝑃(𝐽) ∗ 𝑃(𝜃𝐺)

∗ 𝑃(𝜃1) ∗ ⋯ ∗ 𝑃(𝜃𝐾) ∗ 𝑃(𝜆) ∗ 𝑃(𝛽)
Equation 8

Given that we can specify the right-hand side of (5), what is left is to specify the 

joint sampling distribution and the joint posterior distribution.

The joint sampling distribution is given by:

𝑃(𝒙,𝒛│,1,…,𝐽, 𝜃𝐺,𝜃1,…,𝜃𝐾,𝜆,𝛽)

=
𝑁

∏
𝑖 = 1

𝐽

∏
𝑗 = 1

𝐾

∏
𝑘 = 1

exp (∑𝑦
𝑙 = 1𝑗 ∗ 𝜃𝑖𝑘 ― 𝑗𝑙 )

1 + ∑𝑛𝑗

𝑤 = 1exp (∑𝑤
𝑙 = 1𝑗 ∗ 𝜃𝑖𝑘 ― 𝑗𝑙) 

Equation 9

The prior distributions for the set of model parameters { } ,1,…,𝐽, 𝜃𝐺,𝜃1,…,𝜃𝐾,𝜆,𝛽

are given by (10) – (15):

𝑗~𝑇𝑟𝑢𝑛𝑐𝑁(0,2,0,10)
Equation 10

Here,  is the truncated normal distribution and  is the 𝑇𝑟𝑢𝑛𝑐𝑁(𝜇,𝜎,𝑎,𝑏) 𝑁(𝜇,𝜎)

normal distribution with mean  and standard deviation  truncated at lower 𝜇 𝜎

bound  and upper bound .𝑎 𝑏

𝑗𝑙~𝑇𝑟𝑢𝑛𝑐𝑁(0,10)
Equation 11

𝜃𝑘𝑖~𝑁(𝜆𝑘𝜃𝐺𝑖,1)
Equation 12

𝜆𝑘~𝑇𝑟𝑢𝑛𝑐𝑁(0,10, ― 10,10)
Equation 13

𝜃𝐺𝑖~𝑁(𝛽1𝑧𝑖1 + … + 𝛽𝑝𝑧𝑖𝑝,1)
Equation 14

𝛽𝑝~𝑁(0,10)
Equation 15

In the case where the model is fitted without latent regression, (14) becomes 

. The prior distributions were chosen to conform to prior studies and 𝜃𝐺𝑖~𝑁(0,1)
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hyperpriors were chosen to be vague unless model constraints required strong 

prior information. For example, in (10), (12), and (14), prior variance of the 

factors and their loadings were constrained for estimability.

Random Walk Metropolis-Hastings Algorithm

In general, the goal of Markov chain Monte Carlo (MCMC) simulation is to 

sample from a target random variable with probability distribution  by 𝑃( ∙ )

generating a Markov chain with stationary distribution  (Sherlock et al., 𝑃( ∙ )

2010). In our case, the probability distribution of interest is the posterior 

distribution given in (7). 

One popular choice of MCMC algorithm is random walk Metropolis-Hastings 

(Metropolis et al., 1953; Hastings, 1970). In this algorithm, the log posterior 

density is evaluated at its current position, , and a proposed position, , 𝑥 𝑥 +  𝑥 ∗

sampled from the Normal probability density. When the log density of the 

proposal is greater than that of its current position, the draw is excepted. 

Otherwise, the draw is accepted with probability . For min (1, (𝑥 +  𝑥 ∗ ) (𝑥)))

a good review of random walk Metropolis-Hastings, see Sherlock et al., 2010.

Presented below are the details of the random walk Metropolis-Hastings algorithm 

used to sample from the joint posterior distribution of the HO-IRT-LR model:

1. Set initial values for the parameters { }. In the ,1,…,𝐽, 𝜃𝐺,𝜃1,…,𝜃𝐾,𝜆,𝛽

package, there are two ways of setting initial values using the start 

argument of the hlt function. If start is not specified, then random starting 

values are chosen. If start is specified, then the user specified starting 

values are used. The syntax for specifying starting values is given by 

start = list(list(lambda = c(), theta = c(), delta = 

c(), alpha = c(), beta = c())). Here, we provide a list 
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containing a list of named starting values for each parameter and each 

chain. The length of each vector should match the number of parameters to 

be estimated. Alternately, use get_hlt_start().

2. Let  iterate over the total number of draws and set . Then for each 𝑡 𝑡 =  1

iteration, do:

a. Generate a random variate  from . The standard deviation 𝑥 ∗ 𝑁(𝑥,)

of the proposal distribution, , is specified by the delta 

parameter of hlt(). 

b. Calculate the acceptance ratio: 𝑎 = min (1,(𝑥 ∗ ) (𝑥)))

c. Acceptance/rejection step:

i. Generate  from 𝑢 𝑈𝑛𝑖𝑓(0, 1)

ii. If , set , else set 𝑢 ≤  𝑎 𝑥𝑡 + 1 = 𝑥 ∗ 𝑥𝑡 + 1 = 𝑥

Note that during model tuning, the delta parameter is adjusted until an acceptance 

rate of roughly 0.234 is achieved. The user can retrieve the acceptance rate from 

an hlt object called mod with mod$accept.rate or print(mod).

Example data analysis: ASTI

Data set

The adult self-transcendence inventory, or ASTI, was originally created to assess 

the construct of wisdom through self-transcendence (Levenson et al., 2005). 

Recently, Koller et al. (2017) re-analyzed 24 ASTI items measuring self-

transcendence over five dimensions. The five domains of the Koller ASTI survey 

were: 1) self-knowledge and integration (four items); 2) peace of mind (four 

items); 3) non-attachment (four items); 4) self-transcendence (seven items); 5) and 

presence in the here-and-now and growth (six items). A primary goal of the study 

was to determine if the ASTI formed a unidimensional scale. However, since the 
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five dimensions each form their own theoretical domain of wisdom, a 

unidimensional scale may be an oversimplification of the problem. This is further 

supported by the fact that the authors found that a multidimensional IRT (M-IRT) 

model with five dimensions fit the data better than the univariate model. Higher-

order IRT (HO-IRT) tests the correct hypothesis if what is sought is a single 

general dimension governing the hypothesized five domains of wisdom.

In this example, we demonstrate the process of fitting the generalized partial 

credit HO-IRT (descriptive) model to the ASTI data and we assess the effect of 

gender (male/female) and student status (student/non-student) on the higher-order 

transcendence dimension using the HO-IRT-LR (explanatory) model. For a 

graphical representation of the HO-IRT-LR model of the ASTI data, refer to 

Figure 1.

Figure 1. Higher-Order IRT Latent Regression Diagram for ASTI Data. 
Rectangles represent observed data, circles represent latent data, and the other 
parameters are left not circled. The notation used here matches Eq. 1.

Data preparation

The publicly available data set comes from the R package MPsychoR on CRAN 

(Mair 2018), but it is also available through the hlt package with:

R> library(hlt)
R> data(“asti”)
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Preparing the Input

The model fitting procedure occurs in two stages: first, we do a single chain run of 

the algorithm to tune the acceptance rate and to monitor convergence. Once 

convergence is achieved, we use the starting values from the previous solution 

and run three parallel chains. Finally, the results are summarized. The hlt model 

fitting function requires that survey responses from a given question  are integers 𝑖

ranging from  to . However, the ASTI data are coded from , so the 0 𝑛 ― 1 1,…,𝑛

responses are adjusted with:

R> x = asti[, 1:25] - 1

The id vector for the ASTI data requires 5 unique integer levels (one level for 

each domain of the survey) again coded from  to :0 𝑘 ― 1

R> id = c(rep(0, 4), rep(1, 4), rep(2, 4), rep(3, 7), rep(4,    
          6))

Note that the values of id must be an ordered sequence and the domain cannot 

overlap, e.g., c(0,0,0,1,0,0,1,1) is invalid and should rather be  

c(0,0,0,0,0,1,1,1).

Lastly, in preparation for the latent regression analysis, we create a matrix of 

dummy variables for each variable:

R> z = asti[, 26:27]
R> z[, 1] = (z[, 1] == "students") * 1
R> z[, 2] = (z[, 2] == "male") * 1

Notice that this example includes two factors that each have two levels, thus  2 – 1

dummy values are required of each variable. For continuous variables, a single 

numeric vector is required, but each numeric variable should also be standardized.

Model Fitting

We first conduct a descriptive analysis to assess the fit of the HO-IRT model in 

terms of the item parameters using the GPCM. We then fit the HO-IRT-LR model 
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to estimate the latent regression coefficients. While the analysis did not need to 

proceed in stages, it was done this way to show the software’s capacity for both 

facets of IRT.

Descriptive Analysis

In descriptive analysis, we seek to describe the properties of each scale within the 

context of a higher-order latent trait structure. These properties are characterized 

by the item parameters of discrimination and difficulty. Without prior knowledge 

about an acceptable proposal variance or starting values that are reasonably close 

to the posterior mode, we first need to tune the sampler and then sample until the 

posterior mode stops changing. Then, for the final run, we provide a set of starting 

values and run  parallel chains, check the trace plots, merge the chains, and 𝑛

summarize the results.

We first ran the model at 1e2, 1e3, 1e4, respective numbers of iterations, tuning 

the proposal variance parameter delta. Once an acceptance rate of 

approximately 0.234 was achieved, we ran one chain until the posterior mode was 

reached. Then, we ran three chains using the single chain starting values. The 

model fitting script is as follows:

R> asti_gpc = hlt(x = x, id = id, iter = 2.5e6, burn = 2e6, 
        delta = 0.01, type = "2p")
R> asti_gpc
Higher-order item response theory model with 5 first-order 
domains
 Total number of parameters: 6879
 Model type (1p = "Partial Credit model"; 2p = "Generalized 
Partial Credit Model"): 2p
 iterations: 2500000; burn-in: 2e+06
 Proposal standard deviation: 0.01
 Acceptance rate: 0.225

Loadings:  1.276 1.537 0.43 0.285 1.712

R> asti_gpc_m = hlt(x = x, id = id, iter = 2e5, burn = 1e5,     
        delta = 0.01, type = "2p", nchains = 3,
        start = get_hlt_start(asti_gpc, nchains = 3))
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It is essential that the MCMC chains are monitored for convergence. Once a 

model is fitted trace plots for the parameters should be checked individually with, 

for example:

R> plot(asti_gpc_m, param = "lambda4", type = "trace")

Figure 2. Traceplots of the five latent factor loadings. Traces are shown for 
post burn-in iterations for lambda1 (top left), lambda2 (top right), lambda3 
(middle left), lambda4 (middle right), and lambda5 (bottom left).

Figure 2 displays the MCMC chains for four selected parameters. For a complete 

set of parameter names in the model, use colnames(asti_gpc$post). Next, 

we show how to view the item-level parameter estimates using the model 

summary function after merging the multiple chains:

R> asti_merg = merge_chains(asti_gpc_m)
R> summary(asti_merg, param = "alpha")
R> summary(asti_merg, param = "delta")

The item characteristic, item information, and total information curves are 

produced with the following code (see Figure 3, below):

R> plot(asti_merg, item = 1, type = "icc", min = -6, 
     max = 6)
R> plot(asti_merg, item = 1, type = "iic", min = -6, 
     max = 6)
R> plot(asti_merg, item = 1, type = "tic", min = -6, 
     max = 6)
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Figure 3. Item characteristic curve for item 1 (top left), item information curve 
for item 1 (bottom left), and total information curve (right).

The relationship between latent dimensions can be characterized by the raw factor 

loadings, correlations between the general factor and each first-order domain, and 

the correlations among the first-order domains themselves, as shown below and in 

Figure 4:

R> summary(asti_merg, param = "lambda")

         mean    se  2.5%   50% 97.5%
lambda1 1.209 0.059 1.105 1.207 1.326
lambda2 1.464 0.038 1.389 1.464 1.540
lambda3 0.376 0.042 0.287 0.378 0.453
lambda4 0.313 0.039 0.236 0.313 0.387
lambda5 1.595 0.044 1.511 1.595 1.682

R> summary(asti_merg, param = "correlation")

       theta1 theta2 theta3 theta4 theta5 theta6
theta1  1.000  0.787  0.406  0.281  0.824  0.895
theta2  0.787  1.000  0.477  0.344  0.853  0.937
theta3  0.406  0.477  1.000  0.236  0.427  0.510
theta4  0.281  0.344  0.236  1.000  0.367  0.402
theta5  0.824  0.853  0.427  0.367  1.000  0.951
theta6  0.895  0.937  0.510  0.402  0.951  1.000
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Figure 4. Correlogram showing the bivariate correlations (upper triangle), 
scatter plots (lower triangle), and density plots (diagonal) for each first-order 
domain (theta1 through theta5) and the higher-order domain (theta6).

The ability estimates are extracted with summary for each of the first-order 

domains and the higher-order domain. Since there are five first-order domains, 

dimension = 1,…,5 will give each respective summary, and dimension = 6 gives 

the higher order abilities:

R> # First dimension
R> summary(asti_merg, param = "theta", dimension = 1)
R> # higher-order dimension
R> summary(asti_merg, param = "theta", dimension = 6)

Explanatory Analysis

In the explanatory case, the person characteristics of gender and student status are 

used to explain heterogeneity in the ability of persons to answer questions 

correctly. This analysis is much simpler given the work we did in the descriptive 

analysis, which provided good starting values and proposal variance. Now, we 

repeat the previous analysis, but this time by also specifying a latent regression 

model:

R> asti_gpc_reg = hlt(x = x, id = id, z = z, iter = 2.5e6, 
     burn = 2e6, delta = 0.01, type = "2p", 
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     start = get_hlt_start(asti_merg, nchains = 1),            
     nchains = 1)
R> asti_gpc_reg
Higher-order item response theory model with 5 first-order 
domains
 Total number of parameters: 6881
 Model type (1p = "Partial Credit model"; 2p = "Generalized 
Partial Credit Model"): 2p
 iterations: 2500000; burn-in: 2e+06
 Proposal standard deviation: 0.01
 Acceptance rate: 0.205

Loadings:  1.443 1.517 0.49 0.244 1.579 
Latent regression beta estimates:  -0.118 -0.058

R> asti_gpc_reg_m = hlt(x = x, id = id, z = z, iter = 1e6, 
     burn = 5e5, delta = 0.01, type = "2p", 
     start = get_hlt_start(asti_gpc_reg, nchains = 3),            
     nchains = 3)

Figure 5. Traceplots of latent regression coefficients. Traces are shown for post 
burn-in iterations for beta1 (top) and beta2 (bottom). Beta1 represents 
“students” and beta2 represents “males”.

We then merge the chains into one summary and inspect the results:

R> asti_gpc_reg_mm = merge_chains(asti_gpc_reg_m)
R> summary(asti_gpc_reg_mm, param = "beta")

        mean    se   2.5%    50% 97.5%
beta1 -0.137 0.076 -0.272 -0.143 0.023
beta2 -0.096 0.053 -0.201 -0.095 0.008
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Final Remarks
The hlt package merges two recent developments in item response theory. These 

developments allow practitioners to characterize variance in test items, individual 

ability at multiple levels, and variance due to explanatory variables. However, the 

common item response techniques of differential item functioning (DIF) and 

multiple group analysis have not been implemented. Given the importance of 

detecting heterogeneity at the level of the person and the test, item-level 

regression is our intended future development. Additionally, though the GPCM 

covers a variety of item types, future developments will involve implementing 

other measurement models like the graded response, three-parameter, or even 

four-parameter models. 

Our implementation of the random walk Metropolis algorithm requires the user to 

tune the variance of the Normal proposal density themselves. Since the proposal 

variance is essential to algorithm convergence, this puts a higher burden on the 

user to ensure accurate results. One solution is to implement an adaptive random 

walk algorithm that tunes the proposal variance as sampling occurs (Rosenthal 

2011). Lastly, a set of model fit statistics, such as the deviance information 

criterion, and diagnostic plots of the posterior predictive checks would improve 

comparison and evaluation of competing models.
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