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Manipulation of linear edits and error localization
with the editrules package.

Edwin de Jonge and Mark van der Loo

Summary: This paper is the first of two papers describing the editrules pack-

age. The current paper is concerned with the treatment of numerical data

under linear constraints, while the accompanying paper (Van der Loo and De

Jonge, 2011) is concerned with constrained categorical and mixed data. The

editrules package is designed to offer user-friendly interface for edit defini-

tion, manipulation and checking. The package offers functionality for error

localization based on the paradigm of Fellegi and Holt and a flexible interface

to binary programming based on the choice point paradigm. Lower-level func-

tions include echelon transformation of linear systems, variable substitution and

a fast Fourier-Motzkin elimination routine. We describe theory, implementation

and give examples of package usage.

Keywords: Statistical data editing, error localization, Fellegi-Holt, backtrack-

ing, statistical software
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1 Introduction

The value domain of real numerical data records with n variables is often re-

stricted to a subdomain of Rn due to linear equality and inequality relations

which the variables in the records have to obey. Examples include equality re-

strictions imposed by financial balance accounts, positivity demands on certain

variables or limits on the ratio of variables.

Any such restriction can be written in the form

a · x� b with � ∈ {<,≤,=}, (1)

where x is a numerical data record, a, x ∈ Rn and b ∈ R. In data editing

literature, data restriction rules are referred to as edits, or edit rules. In this

paper we will call edits, written in the form of Eq. (1) (specifically, without

using ≥ or >), edits in normal form.

Large, complex surveys are often endowed with dozens or even hundreds of edit

rules. For example, the Dutch Structural Business Survey, which aims to report

on the financial structure of companies in the Netherlands, contains about 100

variables, and has a similar number of linear equality and inequality restrictions

involving multiple variables, as well as many univariate positivity constraints.

Defining and manipulating large edit sets in matrix representation is a daunting

task, because it may involve hundreds of rows and columns. This is also true

for finding which variables in a record are responsible for edit violations: the

so-called error localization problem.

The editrules package for the R statistical computing environment (R De-

velopment Core Team, 2011) aims to provide an environment to conveniently

define, read and check linear (in)equality restrictions, perform common edit

manipulations and offer error localization functionality based on the (general-

ized) paradigm of Fellegi and Holt (1976). This paradigm assumes that errors

are distributed randomly over the variables and there is no detectable cause of

error. It also decouples the detection of corrupt variables from their correction.

For some types of error, such as sign flips, typing errors or rounding errors, this

assumption does not hold. The cause of these errors can be detected and are

closely related to their resolution. The reader is referred to the deducorrect

package (Van der Loo et al., 2011; Scholtus, 2008, 2009) for treating such errors.

The following chapters demonstrate the functionality of the editrules pack-

age with coded examples as well a description of the underlying theory and

algorithms. For a detailed per-function description the reader is referred to

the reference manual accompanying the package. Unless mentioned otherwise,

all code shown in this paper can be executed from the R command line after

loading the editrules package.
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2 Defining and checking numerical restrictions

2.1 The editmatrix object

For computational processing, a general set of edits of the form

a · x� b with � ∈ {<,≤,=,≥, >}, (2)

is most conveniently represented as a matrix. In the editrules package, a set

of linear edits is stored as an editmatrix object. This object stores the linear

relations as an augmented matrix [A,b], where A is the matrix obtained by

combining the a vectors of Eq. (2) in rows of A and constants b in b. A second

attribute holds the comparison operators as a character vector. Formally, we

denote that every editmatrix E is defined by

E = 〈[A|b],�〉 with [A|b] ∈ Rm×(n+1), � ∈ {<,≤,=,≥, >}m, (3)

where n is the number of variables, m the number of edit rules and the notation

〈 , 〉 denotes a combination of objects. Retrieval functions for various parts of

an editmatrix are available, see Table 1 (page 10) for an overview. Defining

augmented matrices by hand is tedious and prone to error, which is why the

editmatrix function derives edit matrices from a textual representation of edit

rules. Since most functions of the editrules package expect an editmatrix

in normal form (that is, � ∈ {<,≤,=}m), the editmatrix function by default

transforms all linear edits to normal form.

As an example, consider the set of variables

turnover t

personnel cost cp

housing cost ch

total cost ct

profit p,

subject to the rules

t = ct + p (4)

ct = ch + cp (5)

p ≤ 0.6t (6)

ct ≤ 0.3t (7)

cp ≤ 0.3t (8)

t > 0 (9)

ch > 0 (10)
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> E <- editmatrix(c(

+ "t == ct + p" ,

+ "ct == ch + cp",

+ "p <= 0.6*t",

+ "ct <= 0.3*t",

+ "cp <= 0.3*t",

+ "t > 0",

+ "ch > 0",

+ "cp > 0",

+ "ct > 0"), normalize=TRUE)

> E

Edit matrix:

ct p t ch cp Ops CONSTANT

e1 -1 -1 1.0 0 0 == 0

e2 1 0 0.0 -1 -1 == 0

e3 0 1 -0.6 0 0 <= 0

e4 1 0 -0.3 0 0 <= 0

e5 0 0 -0.3 0 1 <= 0

e6 0 0 -1.0 0 0 < 0

e7 0 0 0.0 -1 0 < 0

e8 0 0 0.0 0 -1 < 0

e9 -1 0 0.0 0 0 < 0

Edit rules:

e1 : t == ct + p

e2 : ct == ch + cp

e3 : p <= 0.6*t

e4 : ct <= 0.3*t

e5 : cp <= 0.3*t

e6 : 0 < t

e7 : 0 < ch

e8 : 0 < cp

e9 : 0 < ct

Figure 1: Defining an editmatrix from a character vector containing ver-

bose edit statements. The option normalize=TRUE ensures that all comparison

operators are either <, ≤ or ==.

cp > 0 (11)

ct > 0. (12)

Clearly, these can be written in the form of Eq. (1). Here, the equality re-

strictions correspond to balance accounts, the 3rd, 4th and 5th restrictions are

sanity checks and the last four edits demand positivity. Figure 1 shows how

these edit rules can be transformed from a textual representation to a matrix

representation with the editmatrix function. To define an editmatrix, edit

restrictions can be defined in usual R syntax, using == as comparison oper-

ator for equalities and <, <=, >= or > for inequalities. Coefficients may be

negative or positive, and both the binary + and − operator are recognized.

As Figure 1 shows, the editmatrix object is shown on the console as a matrix,
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> data(edits)

> edits

name edit description

1 b1 t == ct + p total balance

2 b2 ct == ch + cp cost balance

3 s1 p <= 0.6*t profit sanity

4 s2 cp <= 0.3*t personnel cost sanity

5 s3 ch <= 0.3*t housing cost sanity

6 p1 t >0 turnover positivity

7 p2 ch > 0 housing cost positivity

8 p3 cp > 0 personnel cost positivity

9 p4 ct > 0 total cost positivity

> editmatrix(edits)

Edit matrix:

ct p t ch cp Ops CONSTANT

b1 -1 -1 1.0 0 0 == 0

b2 1 0 0.0 -1 -1 == 0

s1 0 1 -0.6 0 0 <= 0

s2 0 0 -0.3 0 1 <= 0

s3 0 0 -0.3 1 0 <= 0

p1 0 0 -1.0 0 0 < 0

p2 0 0 0.0 -1 0 < 0

p3 0 0 0.0 0 -1 < 0

p4 -1 0 0.0 0 0 < 0

Edit rules:

b1 : t == ct + p [ total balance ]

b2 : ct == ch + cp [ cost balance ]

s1 : p <= 0.6*t [ profit sanity ]

s2 : cp <= 0.3*t [ personnel cost sanity ]

s3 : ch <= 0.3*t [ housing cost sanity ]

p1 : 0 < t [ turnover positivity ]

p2 : 0 < ch [ housing cost positivity ]

p3 : 0 < cp [ personnel cost positivity ]

p4 : 0 < ct [ total cost positivity ]

Figure 2: Declaring an editmatrix with a data.frame. The input data.frame

is required to have three columns named name, edit (textual representation of

the edit rule) and description (a comment stating the intent of the rule). All

must be of type character.

as well as a set of textual edit rules. The editrules package is capable of

coercing a set of R expressions to an editmatrix and vice versa. To coerce

text to a matrix, the editmatrix function processes the R language parse tree

of the textual R expressions as provided by the R internal parse function. To

coerce the matrix representation to textual representation, an R character string

is derived from the matrix which can be parsed to a language object. In the

example, the edits were automatically named e1, e2, . . ., e9.

It is also possible to name and comment edits by reading them from a data.frame.
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The ability to read edit sets from a data.frame facilitates defining and main-

taining the rules outside of the R environment by storing them in a user-filled

database or text file. Manipulating and combining edits, for example through

variable elimination methods will cause editrules to drop or change the names

and drop the comments, as they become meaningless after certain manipula-

tions.

2.2 Basic manipulations and edit checking

Table 1 shows simple manipulation functions available for an editmatrix. Ba-

sic manipulations include retrieval functions for the augmented matrix, coeffi-

cient matrix, constant vector and operators of an editmatrix. There are also

functions to test for and transform to normality.

When groups of editrules are unrelated, that is, if they do not share any vari-

ables, the edit matrix can be decomposed as

E = E1 ⊕ E2 ⊕ . . .⊕ Ek, (13)

where the Ej are mutually independent edit matrices and ⊕ is the direct sum

operator. The function blocks expects an editmatrix and returns a list of

independent edit matrices composing the original one. Splitting an edit matrix

into independent blocks can yield a significant speedup in error localization

problems.

The function violatedEdits expects an editmatrix and a data.frame or a

named numeric vector. It returns a logical array where every row indicates

which edits are violated (TRUE) by records in the data.frame. Figure 3 demon-

strates the result of checking two records against the edit rules defined in Eqs.

(4)–(12). Indexing of edits with the [ operator is restricted to selection only.

2.3 Obvious redundancy and infeasibility

After manipulating a linear edit set by value substitution and/or variable elim-

ination, it can contain redundant edits or become infeasible. The editrules

package has two methods available which check for easily detectable redun-

dancies or infeasibility. The Fourier-Motzkin elimination method has auxiliary

built-in redundancy removal, which is described in Section 3.3.

A system of inequalities Ax ≤ b is called infeasible or overconstraint when

there is no real vector x satisfying it. It is a consequence of Farkas’ lemma

(Farkas (1902), but see Schrijver (1998) and/or Kuhn (1956)) on feasibility of

systems of linear equalities, that a system is infeasible if and only if 0 ≤ −1 can
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Table 1. Simple manipulation functions for objects of class editmatrix.

Only the mandatory arguments are shown, refer to the built-in documenta-

tion for optional arguments.

function description

getA(E) Get matrix A

getb(E) Get constant vector b

getAb(E) Get augmented matrix [A,b]

getOps(E) Get comparison operators

E[i,] Select edit(s)

as.editmatrix(A,b,ops) Create an editmatrix from its attributes

normalize(E) Transform E to normal form

isNormalized(E) Check whether E is in normal form

violatedEdits(E, x) Check which edits are violated by x

duplicated(E) Check for duplicates in rows of E

isObviouslyRedundant(E) Check for tautologies and duplicates in E

isObviouslyInfeasible(E) Check for contradictions in rows of E

isFeasible(E) Complete feasibility check for E

blocks(E) Decompose E in independent blocks

> # define two records in a data.frame

> dat <- data.frame(

+ t = c(1000, 1200),

+ ct = c(400, 200),

+ ch = c(100, 350),

+ cp = c(200, 575),

+ p = c(500, 652 ))

> # check for violated edits

> violatedEdits(E,dat)

e1 e2 e3 e4 e5 e6 e7 e8 e9

[1,] TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

[2,] TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

Figure 3: Checking which edits are violated for every record in a data.frame.

The editmatrix is the same as used in Fig. 2. The first record violates e1, e2

and e4, the second record violates e1, e2, and e5.

be derived by taking positive linear combinations of the rows of the augmented

matrix [A,b].

The function isFeasible eliminates variables one by one using Fourier-Motzkin

elimination (Section 3.3), and checks if such infeasible rules arise. If none are

found after the last variable has been eliminated, the system is feasible. This

function is useful in checking the feasibility of large sets of edits, which may

contain contradictory edits after maintenance.
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Algorithm 1 isObviouslyInfeasible(E)

Input: a normalized editmatrix E

for ai · x�i bi ∈ E do

if ai = 0 ∧ ¬0�i bi then

return true

return false

Output: . logical indicating if E is obviously infeasible.

Algorithm 2 isObviouslyRedundant(E, duplicates, ε)
Input: a normalized editmatrix E, with m edits, a boolean “duplicates”, and

a tolerance ε.

v← (false)m

for ai · x�i bi ∈ E do

if ai = 0 ∧ 0�i bi then

vi ←true

if duplicates then

for {(ai · x�i bi, aj · x�j bj) ∈ E × E : j > i} do

if |(ai, bi)− (aj , bj)| ≤ ε element wise ∧ �i = �j then

vj ←true

Output: v . logical vector indicating which rows of E are obviously

redundant.

A complete feasibility check is as computationally expensive as solving a system

of inequalities. Therefore, the function isObviouslyInfeasible was written to

perform a quick check on obvious inconsistent rules in an editmatrix. It returns

a logical indicating whether an obvious contradiction of the form 0 < −1 or

0 = 1 is present in an editmatrix. The latter inconsistency can be caused by

substitution of values in the edit matrix. Algorithm 1 gives the pseudo-code for

reference purposes.

Both value substitution and variable elimination derive new edits, that may

be of the form 0 ≤ 1 or 0 = 0. The function isObviouslyRedundant detects

such rules and returns a logical vector indicating which rows of an editma-

trix are redundant. By default, the function detects row duplicates within

an adjustable tolerance, but this may be switched of by providing the option

duplicates=FALSE. Pseudo-code is given in Algorithm 2. The actual implemen-

tation avoids explicit loops and makes use of R’s built-in duplicated function,

which is also overloaded for editmatrix (see Table 1).
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Algorithm 3 substValue(E, j, x)
Input: E = 〈[A = [a1,a2, . . . ,aj , . . . ,an]|b],�〉, x ∈ R, j ∈ {1, 2, . . . n}

. Note that here, the subscripts of a denote the column index of A

Output: 〈[A = [a1,a2, . . . ,aj−1,0,aj+1, . . .an] |b− ajx],�〉

3 Manipulation of linear restrictions

There are two fundamental operations possible on edit sets, both of which

reduce the number of variables involved in the edit set. The first, most simple

one is to substitute a variable with a value. The second possibility is variable

elimination. For a set of linear inequalities, one can apply Fourier-Motzkin

elimination to eliminate a variable. The package also has functionality to rewrite

systems of equalities in echelon form. Table 2 (page 15) gives an overview.

3.1 Value substitution

Given a set of m linear edits as defined in Eq. (3). For any record x it must

hold that

Ax � b, � ∈ {<,≤,=,≥, >}m. (14)

Substituting one of the unknowns xj by a certain value x amounts to replacing

the jth column of A with 0 and b with b− a′jx. After this, the reduced record

of unknowns, with xj replaced by x has to obey the adapted system (14). For

reference purposes, Algorithm 3 spells out the substitution routine. Figure 4

shows how substValue can be called from the R environment. The function is

set up so multiple variables can be substituted in a single call as well.

3.2 Gaussian elimination

The well-known Gaussian elimination routine has been implemented as a utility

function, enabling users to reduce the equality part of their edit matrices to

reduced row echelon form. The echelon function has been overloaded to take

either an R matrix or an editmatrix as argument. In the latter case, the

equalities are transformed to reduced row echelon form, while inequalities are

left untreated. Gaussian elimination is explained in many textbooks (see for

example Lipschutz and Lipson (2000)). Algorithm 4 is written in a notation

which is close to our R implementation in the sense that it involves just one

explicit loop. Figure 5 demonstrates a call to the R function.
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> substValue(E, "t", 10)

Edit matrix:

ct p t ch cp Ops CONSTANT

e1 -1 -1 0 0 0 == -10

e2 1 0 0 -1 -1 == 0

e3 0 1 0 0 0 <= 6

e4 1 0 0 0 0 <= 3

e5 0 0 0 0 1 <= 3

e7 0 0 0 -1 0 < 0

e8 0 0 0 0 -1 < 0

e9 -1 0 0 0 0 < 0

Edit rules:

e1 : 10 == ct + p

e2 : ct == ch + cp

e3 : p <= 6

e4 : ct <= 3

e5 : cp <= 3

e7 : 0 < ch

e8 : 0 < cp

e9 : 0 < ct

Figure 4: Substituting the value 10 for the turnover variable using the sub-

stValue function. substValue can substitute multiple values as well.

Algorithm 4 echelon(E)

Input: An editmatrix 〈[A|b],=〉, [A|b] ∈ Rm×(n+1), m ≤ n+ 1.

I ← {1, 2, . . . ,m}
J ← {1, 2, . . . , n+ 1}
for j ∈ I do . eliminate variables

i← arg maxi′ : j≤i′≤m |Ai′j |
if |Aij | > 0 then

if i > j then

Swap rows i and j of [A|b].

[A|b]I\j,J ← [A|b]I\j,J − [A|b]I\j,j ⊗ [A|b]j,JA−1
jj

Divide each row [A|b]i,J by Aii when Aii 6= 0

Move rows of [A|b] with all zeros to bottom.

Output: E, transformed to reduced row echelon form.

3.3 Fourier-Motzkin elimination

Fourier-Motzkin elimination [Fourier (1826); Motzkin (1936), but see Williams

(1986) for an elaborate or Schrijver (1998) for a concise description] is an ex-

tension of Gaussian elimination to solving systems of linear inequalities. While

Gaussian elimination is based on the reversible operations of row permutation

and linear combination, Fourier-Motzkin elimination is based on the irreversible

action of taking positive combinations of rows.
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> (E2 <- editmatrix(c("2*x1 + x2 -x3 == 8",

+ "2*x3 + 11 == 3*x1 + x2",

+ "x2 + 2*x3 + 3 == 2*x1")

+ ))

Edit matrix:

x1 x2 x3 Ops CONSTANT

e1 2 1 -1 == 8

e2 -3 -1 2 == -11

e3 -2 1 2 == -3

Edit rules:

e1 : 2*x1 + x2 == x3 + 8

e2 : 2*x3 + 11 == 3*x1 + x2

e3 : x2 + 2*x3 + 3 == 2*x1

> echelon(E2)

Edit matrix:

x1 x2 x3 Ops CONSTANT

e1 1 0 0 == 2

e2 0 1 0 == 3

e3 0 0 1 == -1

Edit rules:

e1 : x1 == 2

e2 : x2 == 3

e3 : x3 == -1

Figure 5: Transforming linear equalities of an editmatrix to reduced row ech-

elon form. If the editmatrix argument contains inequalities, these are copied

to the resulting system.

A full Fourier-Motzkin operation on a system of inequalities involves eliminating

variables (where possible) one by one from the augmented matrix [A|b]. Elim-

inating a single variable is an important step in the error localization algorithm

elaborated in Section 4.

Consider a system of inequalities Ax ≤ b. The jth variable is eliminated

by generating a positive combination of every row of [A|b] where Aij > 0

with every row of [A|b] where Aij < 0 such that for the resulting row the

jth coefficient equals zero. Rows of [A|b] for which Aij = 0 are copied to the

resulting system. If the system does not contain rows for which Aij > 0 and

rows for which Aij < 0, the result is the removal of all rows with nonzero Aij

Mixed systems with linear restrictions of the form a · x� b with � ∈ {<,≤,=}
can in principle be transformed to a form where every � ∈ {≤}. Restrictions

with � ∈ {<} can be transformed to ≤ by subtracting a suitable small number

from the right hand side of the inequation. However, it is more efficient to take

the comparison operators into account when combining rows. In that case,

new rules are derived by first solving the jth variable from each equality and

14



Table 2. Edit manipulation functions. Only mandatory func-

tions are shown. Refer to the built-in documentation for optional

arguments

function description

substValue(E,var,value) (multiple) value substitution

echelon(E) bring equalities in echelon form

eliminate(E,var) Fourier-Motzkin elimination

getH(E) derivation history of E

geth(E) nr. of eliminated variables

substituting them in each inequality. Next, inequalities are treated as stated

before. When inequalities are combined where one comparison operator is <

and the other is ≤, it is not difficult to show that < becomes the operator for

the resulting inequality.

It is a basic result of the theory of linear inequalities that the system result-

ing from a single variable elimination is equivalent to the original system. In

Fourier-Motzkin elimination, h elimination steps can generate up to (1
2m)2h

new rows (m being the original number of rows), of which many are redundant.

Since the number of redundant rows increases fast during elimination, removing

(most of) them is highly desirable. In our implementation, we use the property

that if h variables have been eliminated, any row derived from more than h+ 1

rows of the original system is redundant. This result was originally stated by

Černikov (1963) and rediscovered by Kohler (1967). A proof can also be found

in Williams (1986). For the implementation in R, an editmatrix is augmented

with an integer h, recording the number of eliminations and a logical array

H, which records for each edit from which original edit it was derived. Obvi-

ously, H is true only on the diagonal when h = 0. It is worth mentioning that

by using R’s vectorized indices and recycling properties, it is possible to avoid

any explicit looping in the elimination process. Algorithm 5 gives an overview

of the algorithm where explicit loops are included for readability. Figure 6

shows how one or more variables can be eliminated from an editmatrix with

the eliminate function. Note that when multiple variables are eliminated, the

editmatrix must be overwritten at every iteration to ensure that the history

H is updated accordingly.
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Algorithm 5 eliminate(E, j). In the actual implementation all explicit loops

are avoided by making use of R’s recycling properties and vectorized indices.
Input: A normalized editmatrix E = 〈[A|b],�,H, h〉, and a variable index

j.

if H = ∅ then

H← diag(true)m

h← 0

J ← {1, 2, . . . , n+ 1}
I0 ← {i : Aij = 0}
I= ← {i : �i ∈ {=}}\I0
I+ ← {i : Aij > 0}\I=
I− ← {i : Aij < 0}\I=
for i ∈ {1, 2, . . . ,m}\I0 do . All rows get jth coefficient in {−1, 0, 1}

if �i ∈ {<,≤} then

[A|b]i,J ← [A|b]i,J |Aii|−1

else

[A|b]i,J ← [A|b]i,JA−1
ii

. Substitute equalities and inequalities with positive jth coefficient in

inequalities with negative jth coefficient:

for (i, j) ∈ (I= ∪ I+)× I− do

k ← k + 1

[Ã|b̃]k,J ← [A|b]i,J + [A|b]j,J
H̃k,J ← Hi,J ∨Hj,J

if �i ∈ {<} then �̃k ← �i else �̃k ← �j

. Substitute equalities in inequalities with positive jth coefficient

for (i, j) ∈ I+ × I= do

k ← k + 1

[Ã|b̃]k,J ← [A|b]i,J − [A|b]j,J
H̃k,J ← Hi,J ∨Hj,J

�̃k ← �i

for {(i, j) ∈ I×2
= : j > i} do . Substitute equalities in equalities

k ← k + 1

[Ã|b̃]k,J ← [A|b]i,J − [A|b]j,J
H̃k,J ← Hi,J ∨Hj,J

�̃k ← �i

Ẽ ←
〈[

Ã|b̃]′, [A|b]′I0,J

]′
, (�̃,�I0), H̃, h+ 1

〉
Remove edit rules of Ẽ which have more than h+ 1 elements of Hi,J true

Remove edit rules of Ẽ for which isObviouslyRedundant(Ẽ) is true

Output: editmatrix Ẽ with variable j eliminated and updated history
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> eliminate(E, "t")

Edit matrix:

ct p t ch cp Ops CONSTANT

e1 -1.000000 0.6666667 0 0 0.000000 <= 0

e2 2.333333 -1.0000000 0 0 0.000000 <= 0

e3 -1.000000 -1.0000000 0 0 3.333333 <= 0

e4 -1.000000 -1.0000000 0 0 0.000000 < 0

e5 1.000000 0.0000000 0 -1 -1.000000 == 0

e6 0.000000 0.0000000 0 -1 0.000000 < 0

e7 0.000000 0.0000000 0 0 -1.000000 < 0

e8 -1.000000 0.0000000 0 0 0.000000 < 0

Edit rules:

e1 : 0.666666666666667*p <= ct

e2 : 2.33333333333333*ct <= p

e3 : 3.33333333333333*cp <= ct + p

e4 : 0 < ct + p

e5 : ct == ch + cp

e6 : 0 < ch

e7 : 0 < cp

e8 : 0 < ct

> F <- E

> for (var in c("t", "cp", "p")) F <- eliminate(F, var)

> F

Edit matrix:

ct p t ch cp Ops CONSTANT

e1 -2.5000000 0 0 0.000000 0 < 0

e2 0.8333333 0 0 -3.333333 0 <= 0

e3 0.8333333 0 0 0.000000 0 <= 0

e4 -1.0000000 0 0 1.000000 0 < 0

e5 0.0000000 0 0 -1.000000 0 < 0

e6 -1.0000000 0 0 0.000000 0 < 0

Edit rules:

e1 : 0 < 2.5*ct

e2 : 0.833333333333334*ct <= 3.33333333333333*ch

e3 : 0.833333333333334*ct <= 0

e4 : ch < ct

e5 : 0 < ch

e6 : 0 < ct

Figure 6: Above: eliminating t from the editmatrix with the eliminate func-

tion. Below: to eliminate multiple variables, the original editmatrix must be

overwritten at each iteration to ensure that the derivation history is updated

at every step.
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4 Error localization for numerical data

While checking whether a numerical record violates any imposed restrictions

(within a certain limit) is easy, finding out which variable(s) of the record

cause the violation(s) can be far from trivial. If possible, the cause of the

violation should be sought out, since it leads immediately to repair suggestions.

The deducorrect package (Van der Loo et al., 2011) mentioned above offers

functionality to detect and repair typing errors, rounding errors and sign errors.

Although not directly available in R, methods for detecting and repairing unit

measure errors or other systematic errors have been described in literature and

may readily be implemented in R (see De Waal et al. (2011) Chapter 2 for an

overview).

After systematic errors with detectable causes in a data set have been resolved,

one may assume that remaining errors are distributed randomly (but not nec-

essarily uniformly) over one or more of the variables. In that case, error local-

ization based on the (generalized) principle of Fellegi and Holt can be applied.

4.1 The generalized Fellegi-Holt paradigm

In line with the good practice of altering source data as little as possible, the

paradigm of Fellegi and Holt (1976) advises to edit an as small number of

variables as possible, under the condition that after editing, every edit rule can

be obeyed. A generalization of this principle says that a weighted number of

variables should be minimized. More formally the principle yields the following

problem. Given a record x, violating a number of edits in an edit matrix E (see

Eq. (3)) with m rules and n variables, find G such that

G = argmin
g⊂{1,2,...,n}

∑
j∈g

wj

such that a solution x̃ ∈ R|G| exists for∑
j∈G

Aij x̃j �i bi −
∑
j 6∈G

Aijxj , i ∈ {1, 2, . . . ,m}. (15)

In other words, for every variable in x, we have to decide whether to use or

adapt its value. Unadapted variables can be replaced with their observed value

xj while the values of the remaining variables have to be changed into x̃j , such

that these values form no contradiction. The solution to (15) need not be

unique, but there is always at least one solution unless the edit rules in E are

contradictory.

The minimization (15) amounts to a binary search problem, of which the search

space increases as 2n (n the number of variables). De Waal (2003) and De
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Waal et al. (2011) describe a branch-and-bound binary search algorithm which

generates all minimal weight solutions. It works by generating the following

binary tree: the root node contains E and x and weight w = 0. Both left and

right child nodes of the root node receive a copy of the objects in their parent.

In the left child node, x1 is assumed correct and its value is substituted in E. In

the right child node, x1 is assumed to contain an error and it is eliminated from

E by Fourier-Motzkin elimination. The weight w in the right node is increased

by w1. Each child node gets a left and right child node where x2 is substituted

or eliminated, and so on until every variable has been treated. Every path from

root to leaf represents one element of the search space. A branch is pruned

when E contains obvious inconsistencies, so no combinations not satisfying the

condition in (15) are generated. If a solution with certain weight w is found,

branches developed later, receiving a higher weight are pruned as well.

To clarify the above, in the next subsection we give two worked examples.

Subsection (4.4) describes a flexible binary search algorithm, which we imple-

mented to support general binary search problems. Subsection 4.3 describes its

application to the branch-and-bound algorithm mentioned above.

4.2 Two examples

To illustrate the binary search algorithm outlined above we will consider a sim-

ple two-dimensional example. The reader is encouraged to follow the reasoning

below by checking the calculations using the R-functions mentioned in the pre-

vious sections.

Consider a 2-variable record (x, y) subject to the set of constraints E:

E =


e1 : y > x− 1

e2 : y > −x+ 3

e3 : y < x+ 1

e4 : y < −x+ 5.

(16)

Each separate inequality yields a half-plane of which the border is determined

by the line obtained by replacing < or > by =. The intersection of the four

half-planes is the region of allowed records. In this example, the region is a

diamond, depicted as the gray area in Figure 1. The borders are labeled with

the edit rules in Eq. (16). Consider the record (x = 2, y = −1), depicted as

the bottom black dot in Figure 1. It is easy to confirm either graphically or

by substitution that (2,−1) violates edits e1 and e2, and that the record can

be made consistent by altering only y and leaving x constant (indicated by the

black arrow). It is also clear from the graph that the allowed values for y are

between 1 and 3 (indicated by the thin black vertical line in the diamond). The
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Figure 1. Graphic representation of edit rules and the allowed area. Left panel:

a convex case, as defined by Eq. (16). Right panel: the non-convex unconnected

case, as defined by Eq. (24). Gray areas indicate the valid record domain, black

dots indicate erroneous records and black arrows indicate the solution of the

error localization problem, while the thin black lines show the range of solutions.

The dotted arrows in the left panel indicate the range of directions in which the

record (0,0) can move to reach the valid area.

case (x = 0, y = 0) also violates e1 and e2 and can only be repaired by altering

both x and y, while the record (x = −1, y = 2) can be repaired by changing x

only.

In the following we show that the binary search algorithm described in the

previous subsection indeed solves the error localization problem for (x = 2, y =

−1). To find the unweighted, least number of variables to adapt, so that E can

be fulfilled, consider the triple

T0 = 〈E, (2,−1), w = 0)〉 , (17)

This is the root node of the binary search tree described in the previous subsec-

tion, with w the initial solution weight. The left child is generated by assuming

that the first value in the record is correct. We therefore replace the variable x

in E by its value in the record, which yields after removing redundancies,

T0l =

〈
y > 1

y < 3
, (2,−1), 0

〉
. (18)

In this notation, each time a left (right) node is added, the subscript of T is

augmented with an l (r). Substituting one of the values further restricts the

possible values for variables that have not been treated yet. In fact, after the

error localization problem has been solved, substituting all unaltered values into
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E yields a set of equations which determine the range of the variables which

have to be altered or imputed.

Since no variables were eliminated, the weight in T0l is 0, and the record has

not changed. In the right child of the root, x is assumed to be wrong, and

therefore eliminated using Fourier-Motzkin elimination:

T0r =

〈
y > 1

y < 3
, (x,−1), 1

〉
. (19)

The system of equations left after elimination of x illustrates the geometrical

interpretation of Fourier-Motzkin elimination. The range of y corresponds to

the projection of the diamond in the left pane of Figure 1 onto the y-axis. (The

fact that T0l yields the same system is mere coincidence and depends on the

fact that the x-coordinate in the record at hand equals 2). Calculating the left

child of T0l means substituting y by −1 in the edits of T0l. This yields

T0ll =

〈
−1 > 1

−1 < 3
, (2,−1), 0

〉
, (20)

where the contradiction −1 > 1 indicates that T0ll is not a solution (which is

obvious since none of the values in the records are assumed incorrect). The

right child of T0l is obtained by eliminating y:

T0lr = 〈∅, (2, y), 1〉 , (21)

where the tautology 0 < 2 was removed. This end node does represent a

solution, since no conflicting rules have been generated. To see if any other

solutions exist, continue to calculate the left child node of T0r

T0rl =

〈
−1 > 1

−1 < 3
, (x,−1), 1

〉
, (22)

which is no solution since its edits hold a contradiction. The final, right child

node of T0r reads

T0rr = 〈∅, (x, y), 2〉 , (23)

which also is a solution, but since both x and y have to be adapted, it has a

higher weight than the solution T0lr found earlier.

The edit sets described so far involved a single set of (in)equalities, yielding a

convex record domain in Rn. However, in practical cases the sets of allowed

values for a record need not be convex, or even connected. As an example

consider the space of allowed records, indicated by the gray areas in the right

panel of Figure 1. Such a range can be defined by a conditional edit of the form

if e0 : x < 0 then


e1 : y > x+ 3

e2 : y > −x+ 1

e3 : y < x+ 5

e4 : y < −x+ 1

else


e′1 : y > x

e′2 : y > −x+ 4

e′3 : y < x+ 2

e′4 : y < −x+ 6.

(24)
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〈 y > x− 1
y > −x+ 3
y < x+ 1
y < −x+ 5

, (2,−1), 0

〉

〈
y > 1
y < 3

, (2,−1), 0

〉 〈
y > 1
y < 3

, (x,−1), 1

〉

〈
−1 > 1
−1 < 3

, (2,−1), 0

〉
〈∅, (2, y), 1〉

〈
−1 > 1
−1 < 3

, (x,−1), 1

〉
〈∅, (x, y), 2〉
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Figure 2. Graphical representation of the binary tree used to solve the error

localization problem for the record (x = −2, y = −1), subject to the edits of

Eqn.(16). Each node contains an edit set, a (partially completed) record and

the solution weight.

This error localization problem can be handled by solving the partial local-

ization problems for {e0, e1, . . . , e4} and {e0, e′1, . . . , e′4} separately, where e0

stands for the complement e0 : x ≥ 0. The partial solution with the lowest

weight solves the complete optimization problem. As an illustration consider

the record (x = 2, y = 0) in the right panel of Figure 1. The error localization

problem corresponding to x < 0 yields a solution where both x and y have to

be altered, while the localization problem corresponding to x ≥ 0 implies that

only y needs to be altered.

To generalize this example, note that a conditional edit set of the form

if E0 then E1 else E2, (25)

can be written as

(E0 ∧ E1) ∨ (E0 ∧ E2), (26)

which may be treated by finding the minimum weight solution between the

solutions generated by E0 ∧E1 and E0 ∧E2. Taking the complement can cause

the number of partial localization problems to grow quickly. As an illustration,

consider the following case where taking the complement yields three cases to

be treated by the error localization routine.

if (x = 0) then E1 else E2

⇔ ((x = 0) ∧ E1) ∨ ((x 6= 0) ∧ E2)

⇔ ((x = 0) ∧ E1) ∨ ((x < 0) ∧ E2) ∨ ((x > 0) ∧ E2). (27)
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The number of partial error localization problems to be treated grows as 2neq +

nineq, where neq is the number of equalities and nineq the number of inequalities

in E0. This is easily derived from Eq. (26) since by De Morgan’s rule, if E0 =

e1 ∧ e2 ∧ . . . ∧ ek, then

E0 = e1 ∧ e2 ∧ . . . ∧ ek = e1 ∨ e2 ∨ . . . ∨ ek. (28)

Here, each negated inequality translates to a single inequality, while each negated

equality yields two inequalities (as in Eq. (27)).

We will have more to say on conditional edits in the accompanying paper

(Van der Loo and De Jonge, 2011) where the error localization problem for

categorical and mixed data are treated.

4.3 Error localization with errorLocalizer

The error localization problem detailed in the previous subsections can be auto-

mated with errorLocalizer. This function expects an editmatrix, a named

numerical record and optionally a vector of reliability weights with the same

length as the record. There are extra options to control the maximum number

of variables to adapt (maxadapt), the maximum weight (maxweight) and the

maximum search time (maxduration) in seconds. The return value of error-

Localizer is not the solution to the error localization problem but an object

of class backtracker. With a backtracker object the branch-and-bound tree

can be searched to find solutions one by one. The internal machinery of back-

tracker objects is detailed in the next subsection, in this section it is shown

how to use such objects to solve error localization problems.

Consider again the edits of Eqn. (16), and the record (x = 2, y = −1). Figure 7

shows how the error localization problem can be solved with the backtracker

object returned by errorLocalizer. By calling the built-in searchNext func-

tion, the backtracker object traverses the binary search tree depth-first, until

the first solution is found or maxduration is exceeded. If a solution is found,

the contents of the current node is returned to the user as a list. It contains the

current solution weight w and a named logical vector called adapt, indicating

which variables have to be adapted. If maxduration is exceeded or no solution

is found, NULL is returned. The backtracker object property maxdurationEx-

ceeded indicates if the time limit has been exceeded or not.

As expected, in the example y is pointed out as the variable to change. At this

point, the backtracker object contains all the information needed to continue

the search for new solutions, starting from the node where it just ended. It also

stores some information on the elapsed time needed for the previous search in

the form of a standard proc_time object.
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> E1 = editmatrix(c(

+ "y > x - 1",

+ "y > -x + 3",

+ "y < x + 1",

+ "y < -x + 5"))

> bt <- errorLocalizer(E1, c(x=2,y=-1))

> bt$searchNext()

$w

[1] 1

$adapt

x y

FALSE TRUE

> bt$duration

user system elapsed

0.000 0.000 0.002

> bt$maxdurationExceeded

[1] FALSE

> bt$searchNext()

NULL

Figure 7: Localizing errors with the backtracker object generated by er-

rorLocalizer. After a search is performed, the backtracker object holds in-

formation on the duration of the search, and if the time-limit for a search was

exceeded.

Another call to searchNext will search for the next solution in the tree, with

lower weight. However, since in this example there is only one solution, search-

Next returns NULL.

The method searchNext is not the only method of the backtracker object

returned by errorLocalizer. The available methods are

� $searchNext Searches for the next solution with a lower weight than the

previously found solution.

� $searchAll Returns all solutions encountered in the branch-and-bound

search before maxduration is exceeded.

� $searchBest Returns the lowest-weight solution of all solutions found

before maxduration is exceeded. If multiple solutions have the same,

minimum weight, it returns one of those solutions at random.

All these methods accept the following optional arguments:
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� maxduration The number of seconds after which to stop the search. The

default value is the value passed to errorLocalizer, which created the

object.

� VERBOSE Print the path in the search tree and contents of each node during

search.

Any backtracker object is equipped with the searchNext and searchAll

methods. The searchBest method is specific for the backtracker object re-

turned by errorLocalizer.

The backtracker method offers a flexible interface for error localization. To

understand what happens when there are multiple solutions, consider the case

of a simple balance account for profit (p), loss (l) and turnover (t):

> E <- editmatrix(c("p + c == t"))

> r <- c(p=755, c=125, t=200)

> bt <- errorLocalizer(E, r)

The record obviously violates the edit in E. Since there is only a single edit rule,

there are three solutions, all of which can be found by calling bt$searchNext

> bt$searchNext()$adapt

p c t

FALSE FALSE TRUE

> bt$searchNext()$adapt

p c t

FALSE TRUE FALSE

> bt$searchNext()$adapt

p c t

TRUE FALSE FALSE

Each solution has weight 1. Suppose that the turnover value is trusted more,

for example because it comes from a more reliable source. We may increase its

reliability weight by providing a weight vector:

> bt <- errorLocalizer(E, r, weight=c(1,1,2))

> bt$searchNext()$adapt

p c t

FALSE TRUE FALSE

> bt$searchNext()$adapt
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p c t

TRUE FALSE FALSE

> bt$searchNext()$adapt

NULL

The solution where turnover must be adapted is not found anymore. The

reason is that errorLocalizer makes sure that during the search for solutions,

variables with the highest reliability weight are the last ones to be assumed

incorrect. Since it has found solutions for the less reliable variables (p and c),

it won’t search for solutions with higher weight.

If we add more restrictions, the number of solutions to the error localization

problem decreases. Here, we demand that the cost to turnover ratio does not

exceed 0.6.

> E <- editmatrix(c(

+ "p + c == t",

+ "c - 0.6*t >= 0"))

> bt <- errorLocalizer(E, r)

> bt$searchNext()$adapt

p c t

FALSE TRUE TRUE

> bt$searchNext()$adapt

p c t

TRUE FALSE FALSE

> bt$searchNext()$adapt

NULL

Here, first a solution of weight 2 is found, which may later be rejected in favor

of the solution which demands only that the profit variable should be changed.

With errorLocalizer records with missing data can be handled as well. Vari-

ables with missing values are treated as variables that need to be adapted:

they are eliminated from the edit matrix prior to further error localization. In

the next example we add some extra variables and demand positivity of all

variables.

> # An example with missing data.

> E <- editmatrix(c(

+ "p + c1 + c2 == t",

+ "c1 - 0.3*t >= 0",
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+ "p > 0",

+ "c1 > 0",

+ "c2 > 0",

+ "t > 0"))

> x <- c(p=755, c1=50, c2=NA,t=200)

> bt <- errorLocalizer(E,x)

> bt$searchNext()$adapt

p c1 c2 t

FALSE TRUE TRUE TRUE

> bt$searchNext()$adapt

p c1 c2 t

TRUE FALSE TRUE TRUE

> (s <- bt$searchNext()$adapt)

p c1 c2 t

TRUE TRUE TRUE FALSE

There are three equivalent solutions, all of which include the field with the

missing value (c2). To obtain the restrictions for the variables which have

altered, simply substitute all values which are retained in the solution, for

example:

> substValue(E, names(x)[!s], x[!s])

Edit matrix:

c1 c2 p t Ops CONSTANT

e1 1 1 1 0 == 200

e2 -1 0 0 0 <= -60

e3 0 0 -1 0 < 0

e4 -1 0 0 0 < 0

e5 0 -1 0 0 < 0

Edit rules:

e1 : c1 + c2 + p == 200

e2 : 60 <= c1

e3 : 0 < p

e4 : 0 < c1

e5 : 0 < c2

This system of equations must be obeyed if p, c1 and c2 are going to be adapted

or imputed.

4.4 General binary search with the backtracker object

As stated in subsection 4.1, the error localization problem can be interpreted as

a (pruned) binary programming problem. To facilitate implementation of error
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localization for numerical, categorical and mixed data, as well as to help fur-

ther research in error localization algorithms, we implemented general-purpose

binary search functionality in the form of backtracking programming. A back-

tracking algorithm (Knuth, 1968) finds solutions to a computational problem

by building incrementally candidate solutions. It starts with a partial solution

and extends the partial solution in subsequent steps until it is a valid solution.

When a partial solution is extended the full state of the current (sub) problem

is stored in a “choice point”. If a partial solution is not valid, the algorithm will

“back track” to the last previously stored choice point and continue its search.

In other words, it prunes invalid search subtrees and does not waste compu-

tation time on invalid solutions. Furthermore the algorithm allows users to

specify how to extend a partial solution and when a partial solution is invalid.

Backtracking is a specific form of the more general “choice point” programming

which stems from the field of nondeterministic programming. In nondetermin-

istic programming, the control flow of a program is not determined explicitly by

the programmer with standard branching statements. In stead, choice points

may be created which store the full state of a program so that control flow can

at any time return to a stored state and choose a new path from there. Choice

point programming is supported by various niche programming environments,

such as Alma-0 (Partington, 1997) and ELAN (Vittek, 1996). See Moreau (1998)

for a clear introduction or Mart-Oliet and Mesguer (2002) for a bibliographic

overview. The choice point paradigm offers an excellent environment for pro-

gramming backtracking algorithms, of which the branch-and-bound algorithm

of subsection 4.1 is just a specific example.

The R language is ideally suited to develop choice point-like systems because

of its first-class environments. An R environment can be thought of as a list of

R objects, forming the scope for expression evaluation. Expressions are a series

of R statements which may create, manipulate and remove R objects within

an environment. Having first-class environments means that expressions can

also be used to create, manipulate and delete environments like any other R

object. Moreover, expressions can be evaluated in any environment created by

the programmer.

In our implementation, we model the search tree as a binary search tree, in

which each node is a binary choice (left or right) for extending the current

partial solution. In the backtracker object the sequence of connected nodes

is represented by a sequence of nested environments. Each environment stores

the state of a binary “choice point” . Such a series of nested environments is

equivalent to a stack, where a push-operation corresponds to nesting a new

environment and a pop-operation ensures that the next expression will be eval-

uated in the last-pushed environment. Since environments are nested, expres-
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sions evaluated in a child node have read access to information stored in the

parent node. Pseudo-code for the backtracker object is given in Algorithm

6. Expressions are denoted with Greek letters ψ or φ, environments are denoted

as E and :: is the scope resolution operator. The symbol S denotes a formal

stack. We denote the result of evaluating an expression φ in an environment

E as φ(E). One can think of φ as a subroutine which alters the internal state

of E . It is also possible for φ to generate a return value (by issuing a return

statement) which is pushed to the enveloping environment, similar to the action

of a standard function.

To construct a backtracker object, the user provides an expression φ0 to ini-

tialize the root node, expressions φl and φr to be evaluated at left and right child

nodes and an expression ψ to evaluate the contents of a node. The initialization

expression usually consists of a number of variable declarations. Expressions

φl and φr alter the state of left or right child node, any returned values are

ignored. The expression ψ serves two purposes. First of all, it judges a node E
and must return one of the following values:

ψ(E) =


true if environment E contains a solution

false if environment E cannot lead to a solution

null if environment E contains a partial solution.

(29)

Secondly, ψ may be used to update weights or other administration and to pre-

pare the variables in a node for output. The method searchNext generates

nodes in the binary tree, depth-first and returns the (contents of) the first envi-

ronment corresponding to a solution. If bt is the instance of a backtracker

object, then each call to bt::searchNext will return a new, and better so-

lution, until all solutions are found, in which case null is returned. A call

to bt::searchAll (not shown in pseudo-code) will return all solutions. Since

search spaces grow exponentially with tree depth, the backtracker object can

be equipped with a time limit for tree search or a maximum tree depth. The

latter is mainly useful for debugging purposes.

The backtracker function constructs a backtracker object and accepts the

following arguments:

� isSolution : An R expression corresponding to ψ of Eqn. (29).

� choiceLeft : An R expression for execution in left child nodes (φl) .

� choiceRight : An R expression for execution in right child nodes (φr).

� maxduration : Optional: the default maximum time in seconds for a

tree search with $searchNext() or $searchAll(). This time may be

overwritten by passing a new maxduration when calling a search function.
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Algorithm 6 backtracker object. φj and ψ are expressions, E and E ′ environ-

ments :: is the scope resolution operator and S a stack.
Struct backtracker (φ0, φl, φr, ψ)

S ← newStack

E ← newEnvironment

E :: treatedleft← false

E :: treatedright← false

φ0(E) . φ0 Initialize root node

push(E ,S)

Method searchNext

E ← pop(S) . pop returns null if stack is empty

while ψ(E) ∈ {false,null} ∧ E 6= null do

if ¬E :: treatedleft then

E ′ ← E . Create child node

φl(E ′) . Treat child node

E :: treatedleft← true . Mark parent node

push(E ,S)

push(E ′,S)

else if ¬E :: treatedright then

E ′ ← E
φr(E ′)
E :: treatedright← true

push(E ,S)

push(E ′,S)

E ← pop(S)
return E

EndMethod

EndStruct

� maxdepth : Optional: The maximum tree search depth.

� ... : Named arguments, to initialize the root node (φ0).

As an example, Figure 8 shows a simple implementation of the branch-and-

bound algorithm for error localization (the implementation in errorLocalizer

is somewhat more advanced and faster than this example). The top environment

(root node) receives an edit matrix E, a record r, a vector of variable names that

have yet to be treated (totreat), a logical vector indicating whether a variable

should be altered or not (adapt), a weight vector weight with reliability weights

for each variable. Also, the weight wsol of the current solution is initialized to

the maximum possible weight.

The expression isSolution first computes the weight of the current solution

30



by adding all elements of weight for which adapt==TRUE. Next, it checks if the

editmatrix is infeasible, or if the current weight exceeds the weight of the last

found solution. Since wsol is initialized on the maximum weight, the latter can

only happen when at least one solution has been found. If either condition is

met, the branch must be pruned, so FALSE is returned. Otherwise, it is checked

whether any variables are left to treat. If so, the search continues. If not, the

solution weight in the top environment is set (using the <<- operator) and TRUE

is returned. Before returning, output is prepared by copying the variable adapt

from the enveloping environment, and removing the empty vector totreat.

In choiceLeft, the first variable to be treated is chosen and its value replaced in

the editmatrix. The value of E in the call to substValue is copied automatically

from the enveloping environment which by construction holds the parent node

of the node under treatment. For the same reason assigning the indexed value

of adapt works. The value corresponding to the variable under treatment in

adapt is set to FALSE since a variable for which the value is substituted in

the editmatrix is assumed correct in the treated node. Finally, the vector of

variables to be treated is updated.

In choiceRight, the same administrative chores are performed as in choiceLeft.

The only difference is that in the right node a variable is eliminated from the

editmatrix, and therefore assumed incorrect.

The editmatrix used here corresponds to edit e1 and e2 of Eqn. (16), which are

the edits violated by the record (x = 2, y = −1). As expected, a single call to

bt$searchNext() yields the correct solution.

5 Related R-packages

The editrules packages provides methods to specify, modify and solve sets

of linear constraints. Solving systems of linear constraints is the domain of

linear programming (Schrijver, 1998). The comprehensive R Archive Network

(CRAN, 2011) provides several R packages that use external libraries to solve

linear programming problems. For example R packages linprog (Henningsen,

2010) and lpSolve (Berkelaar and others, 2011). editrules takes a different

approach for a number of reasons.

First of all, the specification of constraints in editrules is in R syntax, while

other packages typically use the specification format of the external library.

This facilitates the maintenance of edits and reuse of these statements within

R. It is very useful to check data within R before, during and after data analysis.

Secondly, De Waal et al. (2011), Chapter 3.4.9 compare various implementa-

tions of error localizers, based on specifically written branch-and-bound software
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> bt <- backtracker(

+ isSolution = { # check for solution or pruning

+ w <- sum(weight[adapt])

+ if ( isObviouslyInfeasible(.E) || w > wsol ) return(FALSE)

+ if (length(.totreat) == 0){

+ wsol <<- w

+ adapt <- adapt

+ return(TRUE)

+ }

+ },

+ choiceLeft = { # things to do in the left node

+ .var <- .totreat[1]

+ .E <- substValue(.E, .var , r[.var])

+ .totreat <- .totreat[-1]

+

+ adapt[.var] <- FALSE

+ },

+ choiceRight = { # things to do in the right node

+ .var <- .totreat[1]

+ .E <- eliminate(.E, .var)

+ .totreat <- .totreat[-1]

+

+ adapt[.var] <- TRUE

+ },

+ # Initialize variables in root node

+ .E = editmatrix(c("y > x-1 ","y > -x+3")),

+ .totreat = c("x","y"),

+ r = c(x=2,y=-1),

+ adapt = c(x=FALSE, y=FALSE),

+ weight = c(1,1),

+ wsol = 2

+ )

> bt$searchNext()

$w

[1] 1

$adapt

x y

FALSE TRUE

Figure 8: Solving a simple error localization problem using the backtracker

object directly.

and based on general linear solvers. They observed that branch and bound al-

gorithms for error localization problems in realistic data are as fast as linear

programming techniques, but have the added advantage of returning multiple

equivalent solutions to the specified problem. errorLocalizer is an improved

implementation of their original branch and bound algorithm.

Thirdly, editrules provides a powerful toolbox to write advanced editing and

backtracking operations on sets of edits using R statements. Some linear pro-

gramming libraries also offer branch and bound or branch and cut methods,

but these typically have to be specified in the original programming language
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of the library. In editrules all coding is in R.

6 Conclusions

The editrules package offers an interface to define and manipulate sets of

linear (in)equality restrictions. Linear restrictions can be entered textually

for for automated translation to matrix form or vice versa. Edit sets can be

manipulated by value substitution or variable elimination, through a newly

developed fast routine for Fourier-Motzkin elimination. The latter routine also

allows the user to check sets of linear (in)equalities for internal consistency.

The package offers the ability to identify the edit rules violated by a set of

records. Based on the generalized Fellegi-Holt assumption, one can localize

the erroneous fields in edit-violating records. The error localization routines

are based on a backtracker-programming paradigm which is exported to user

space, providing users with a flexible and easy to use interface for solving binary

programming problems.
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Oeuvres II, 317–328.

Henningsen, A. (2010). linprog: Linear Programming / Optimization. R package

version 0.9-0.

Knuth, D. (1968). The Art of Computer Programming, Volume 4A, Enumera-

tion and Backtracking. Reading, Massachusetts: Addison-Wesley.

Kohler, D. (1967). Projections of convex polyhedral sets. Technical Report

ORC 67-29, University of California, Berkely.

Kuhn, H. W. (1956). Solvability and consistency for linear equations and in-

equalities. The American Mathematical Monthly 63, 217–232.

Lipschutz, S. and M. Lipson (2000). Linear algebra (third ed.). Schaum’s outline

series. McGraw-Hill.

Mart-Oliet, N. and J. Mesguer (2002). Rewriting logic: Roadmap and bibliog-

raphy. Theoretical Computer Science 285, 121–154.

Moreau, P.-E. (1998, June). A choice-point library for backtrack programming.

In JICSLP’98 Post-Conference Workshop on Implementation Technologies

for Programming Languages based on Logic.

34



Motzkin, T. S. (1936). Beitrage zur Theorie der Linearen Ungleichungen. In-

augural Dissertation, Basel-Jerusalem.

Partington, V. (1997). Implementation of an imperative programming language

with backtracking. Technical Report P9714, University of Amsterdam, Pro-

gramming research group.

R Development Core Team (2011). R: A Language and Environment for Statis-

tical Computing. Vienna, Austria: R Foundation for Statistical Computing.

ISBN 3-900051-07-0.

Scholtus, S. (2008). Algorithms for correcting some obvious inconsistencies and

rounding errors in business survey data. Technical Report 08015, Statistics

Netherlands, Den Haag. The papers are available in the inst/doc directory

of the R package or via the website of Statistics Netherlands.

Scholtus, S. (2009). Automatic correction of simple typing error in numerical

data with balance edits. Technical Report 09046, Statistics Netherlands, Den

Haag. The papers are available in the inst/doc directory of the R package or

via the website of Statistics Netherlands.

Schrijver, A. (1998). Theory of linear and integer programming. Wiley-

Interscience series in descrete mathematics and optimization. New York: John

Wiley and Sons.

Van der Loo, M. and E. De Jonge (2011). Manipulation of categorical and

mixed data edits and error localization with the editrules package. Technical

Report 2011xx, Statistics Netherlands. In preparation.

Van der Loo, M., E. De Jonge, and S. Scholtus (2011). Correction of round-

ing, typing and sign errors with the deducorrect package. Technical Report

201119, Statistics Netherlands. R package version 1.0-0.

Vittek, M. (1996). A compiler for nondeterministic term rewriting systems.

In H. Ganziger (Ed.), Proceedings of RTA’96, Volume 1103 of Lecture Notes

in Computer Science, New Brunswick (New Jersey), pp. 154–168. Springer-

Verlag.

Williams, H. (1986). Fourier’s method of linear programming and its dual. The

American mathematical monthly 93, 681–695.

35



Index

backtracker, 29–31

backtracking, 28

branch-and-bound, for error localiza-

tion, 19

choice point, 28

deducorrect, 5

edit, 5

edit rules, 5

checking, 9

conditional, 23

defining, 7

normal form, 5

editmatrix, 6

basic functions, 9

blocks, 9

feasibility, 11

manipulation, 15

redundancy, 11

value substitution, 12

errorLocalizer, 23

Fellegi and Holt principle, 18

Fourier-Motzkin elimination, 13, 15

Gaussian elimination, 12

36


	Manipulation of linear edits and error localization with the editrules package
	Contents
	1. Introduction
	2. Defining and checking numerical restrictions
	3. Manipulation of linear restrictions
	4. Error localization for numerical data
	5. Related R-packages
	6. Conclusions
	References
	Index

